विद्युत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
इसमें [[ बिजली का आवेश |विद्युत के आवेश]] की उपस्थिति होती है , जो या तो सकारात्मक या ऋणात्मक हो सकता है, यह [[विद्युत अभियन्त्रण]] का उत्पादन करती है। विद्युत आवेशों की आवागमन [[विद्युत प्रवाह]] के रूप में होता है और जो [[चुंबकीय क्षेत्र]] का उत्पादन करता है।
इसमें [[ बिजली का आवेश |विद्युत के आवेश]] की उपस्थिति होती है , जो या तो सकारात्मक या ऋणात्मक हो सकता है, यह [[विद्युत अभियन्त्रण]] का उत्पादन करती है। विद्युत आवेशों की आवागमन [[विद्युत प्रवाह]] के रूप में होता है और जो [[चुंबकीय क्षेत्र]] का उत्पादन करता है।


जब आवेश को गैर-शून्य विद्युत क्षेत्र के साथ किसी स्थान पर रखा जाये , तो बल उस पर कार्य करेगा। इस बल की भयावहता कूलॉम के नियम द्वारा दी गई है। यदि आवेश चलता है, तो विद्युत क्षेत्र इलेक्ट्रिक आवेश पर कार्य '''(भौतिकी)''' कर रहा होगा। इस प्रकार हम अंतरिक्ष में निश्चित बिंदु पर विद्युत क्षमता की बात कर सकते हैं, जो किसी बाहरी एजेंट द्वारा किए गए कार्य के बराबर है, जो किसी भी त्वरण के बिना उस बिंदु पर इच्छानुसार चुने गए संदर्भ बिंदु से सकारात्मकआवेश की इकाई को ले जाता है और यह सामान्यतः वोल्ट में मापा जाता है।
जब आवेश को गैर-शून्य विद्युत क्षेत्र के साथ किसी स्थान पर रखा जाये , तो बल उस पर कार्य करेगा। इस बल की भयावहता कूलॉम के नियम द्वारा दी गई है। यदि आवेश चलता है, तो विद्युत क्षेत्र इलेक्ट्रिक आवेश पर कार्य कर रहा होगा। इस प्रकार हम अंतरिक्ष में निश्चित बिंदु पर विद्युत क्षमता की बात कर सकते हैं, जो किसी बाहरी एजेंट द्वारा किए गए कार्य के बराबर है, जो किसी भी त्वरण के बिना उस बिंदु पर इच्छानुसार चुने गए संदर्भ बिंदु से सकारात्मकआवेश की इकाई को ले जाता है और यह सामान्यतः वोल्ट में मापा जाता है।


विद्युत कई आधुनिक प्रौद्योगिकियों के केंद्र में है, जिसका उपयोग किया जा रहा है:
विद्युत कई आधुनिक प्रौद्योगिकियों के केंद्र में है, जिसका उपयोग किया जा रहा है:
Line 12: Line 12:
* [[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] जो [[विद्युत सर्किट|विद्युत]] परिपथ से संबंधित है जिसमें [[निष्क्रियता (इंजीनियरिंग)|सक्रिय विद्युत घटक]] जैसे कि वैक्यूम ट्यूब, ट्रांजिस्टर, [[डायोड]] और एकीकृत परिपथ, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियां सम्मिलित है ।
* [[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] जो [[विद्युत सर्किट|विद्युत]] परिपथ से संबंधित है जिसमें [[निष्क्रियता (इंजीनियरिंग)|सक्रिय विद्युत घटक]] जैसे कि वैक्यूम ट्यूब, ट्रांजिस्टर, [[डायोड]] और एकीकृत परिपथ, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियां सम्मिलित है ।


प्राचीनता के बाद से विद्युत घटनाओं का अध्ययन किया गया है, चूंकि सैद्धांतिक समझ में प्र[[गति]] सत्रहवीं और अठारहवीं शताब्दी तक धीमी रही। विद्युत चुम्बकत्व का सिद्धांत 19 वीं शताब्दी में विकसित किया गया था, और उस सदी के अंत तक विद्युत अभियांत्रिकी द्वारा औद्योगिक और आवासीय उपयोग के लिए विद्युत(बिजली) रखा जा रहा था । इस समय विद्युत प्रौद्योगिकी में तेजी से विस्तार ने उद्योग और समाज को बदल दिया, जो दूसरी औद्योगिक क्रांति के लिए प्रेरक शक्ति बन गया। विद्युत की असाधारण बहुमुखी प्रतिभा का कारण है कि इसे लगभग असीम समूह अनुप्रयोगों में रखा जा सकता है जिसमें पावर (भौतिकी), [[एचवीएसी]], [[ विद्युत प्रकाश |विद्युत प्रकाश]] , [[दूरसंचार]] और [[गणना]] सम्मिलित हैं। [[विद्युत शक्ति]] अब आधुनिक औद्योगिक समाज की रीढ़ है।<ref>
प्राचीनता के बाद से विद्युत घटनाओं का अध्ययन किया गया है, चूंकि सैद्धांतिक समझ में प्र[[गति]] सत्रहवीं और अठारहवीं शताब्दी तक धीमी रही। विद्युत चुम्बकत्व का सिद्धांत 19 वीं शताब्दी में विकसित किया गया था, और उस सदी के अंत तक विद्युत अभियांत्रिकी द्वारा औद्योगिक और आवासीय उपयोग के लिए विद्युत(बिजली) रखा जा रहा था । इस समय विद्युत प्रौद्योगिकी में तेजी से विस्तार ने उद्योग और समाज को बदल दिया, जो दूसरी औद्योगिक क्रांति के लिए प्रेरक शक्ति बन गया। विद्युत की असाधारण बहुमुखी प्रतिभा का कारण है कि इसे लगभग असीम समूह अनुप्रयोगों में रखा जा सकता है जिसमें पावर, [[एचवीएसी]], [[ विद्युत प्रकाश |विद्युत प्रकाश]] , [[दूरसंचार]] और [[गणना]] सम्मिलित हैं। [[विद्युत शक्ति]] अब आधुनिक औद्योगिक समाज की रीढ़ है।<ref>
{{Citation
{{Citation
| first = D.A. | last = Jones
| first = D.A. | last = Jones
Line 88: Line 88:
|archive-url=https://web.archive.org/web/20170226025346/http://classics.mit.edu/Aristotle/soul.1.i.html#244
|archive-url=https://web.archive.org/web/20170226025346/http://classics.mit.edu/Aristotle/soul.1.i.html#244
|url-status=live
|url-status=live
}}</ref>ल्स का यह मानना गलत था कि आकर्षण एक चुंबकीय प्रभाव के कारण था, लेकिन बाद में विज्ञान चुंबकत्व और विद्युत के बीच एक कड़ी साबित होगा। एक विवादास्पद सिद्धांत के अनुसार, 1936 में [[बगदाद बैटरी]] की खोज के आधार पर, [[पार्थिया|पार्थियन]] लोगों को [[ ELECTROPLATING |विद्युत आवरण]] का ज्ञान हो सकता है, जो [[ बिजली उत्पन्न करनेवाली सेल |विद्युत उत्पन्न करने वाले सेल(गैल्वेनिक सेल)]] जैसा दिखता है, चूंकि यह अनिश्चित है कि क्या कलाकृति विद्युत प्रकृति की थी।<ref>{{Citation
}}</ref> थेल्स का यह मानना गलत था कि आकर्षण एक चुंबकीय प्रभाव के कारण था, लेकिन बाद में विज्ञान चुंबकत्व और विद्युत के बीच एक कड़ी साबित होगा। एक विवादास्पद सिद्धांत के अनुसार, 1936 में [[बगदाद बैटरी]] की खोज के आधार पर, [[पार्थिया|पार्थियन]] लोगों को [[ ELECTROPLATING |विद्युत आवरण]] का ज्ञान हो सकता है, जो [[ बिजली उत्पन्न करनेवाली सेल |विद्युत उत्पन्न करने वाले सेल(गैल्वेनिक सेल)]] जैसा दिखता है, चूंकि यह अनिश्चित है कि क्या कलाकृति विद्युत प्रकृति की थी।<ref>{{Citation
| first = Arran
| first = Arran
| last = Frood
| last = Frood
Line 198: Line 198:
| url = https://archive.org/details/engineeringinhis0000unse/page/331
| url = https://archive.org/details/engineeringinhis0000unse/page/331
}}
}}
</ref><ref name="guarnieri 7-1" /> जस्ता और तांबे की वैकल्पिक परतों से बनी 1800 के [[एलेसेंड्रो वोल्टा]] की बैटरी, या वोल्टिक पाइल, ने वैज्ञानिकों को पहले उपयोग की जाने वाली [[इलेक्ट्रोस्टैटिक मशीन|इलेक्ट्रोस्टैटिक मशीनों]] की तुलना में विद्युत ऊर्जा का अधिक विश्वसनीय स्रोत प्रदान करती है ।<ref name="guarnieri 7-2" /><ref name="kirby" /> विद्युत चुम्बकत्व की पहचान, विद्युत और चुंबकीय घटनाओं की एकता, हंस क्रिश्चियन एस्टड और आंद्रे-मैरी अम्पेयर के कारण 1819-1820 में जानकारी में आया ।माइकल फैराडे ने 1821 में [[ बिजली की मोटर |विद्युत की मोटर]] का आविष्कार किया, और [[जॉर्ज ओम]] ने गणितीय रूप से 1827 में विद्युत परिपथ का विश्लेषण किया।<ref name="kirby" /> विशेष रूप से 1861 और 1862 में "बल की भौतिक रेखाओं पर" विद्युत और चुंबकत्व (और प्रकाश) निश्चित रूप से [[जेम्स क्लर्क मैक्सवेल]] द्वारा जुड़े हुए थे। <ref name="berkson" />{{rp|p=148}}
</ref><ref name="guarnieri 7-1" /> जस्ता और तांबे की वैकल्पिक परतों से बनी 1800 के [[एलेसेंड्रो वोल्टा]] की बैटरी, या वोल्टिक पाइल, ने वैज्ञानिकों को पहले उपयोग की जाने वाली [[इलेक्ट्रोस्टैटिक मशीन|इलेक्ट्रोस्टैटिक मशीनों]] की तुलना में विद्युत ऊर्जा का अधिक विश्वसनीय स्रोत प्रदान करती है ।<ref name="guarnieri 7-2" /><ref name="kirby" /> विद्युत चुम्बकत्व की पहचान, विद्युत और चुंबकीय घटनाओं की एकता, हंस क्रिश्चियन एस्टड और आंद्रे-मैरी अम्पेयर के कारण 1819-1820 में जानकारी में आया ।माइकल फैराडे ने 1821 में [[ बिजली की मोटर |विद्युत की मोटर]] का आविष्कार किया, और [[जॉर्ज ओम]] ने गणितीय रूप से 1827 में विद्युत परिपथ का विश्लेषण किया।<ref name="kirby" /> विशेष रूप से 1861 और 1862 में "बल की भौतिक रेखाओं पर" विद्युत और चुंबकत्व(और प्रकाश) निश्चित रूप से [[जेम्स क्लर्क मैक्सवेल]] द्वारा जुड़े हुए थे। <ref name="berkson" />{{rp|p=148}}
अपितु 19 वीं शताब्दी की प्रारंभ में विद्युत विज्ञान में तेजी से प्रगति देखी गई थी, 19 वीं शताब्दी के उत्तरार्ध में इलेक्ट्रिकल अभियांत्रिकी में सबसे बड़ी प्रगति दिखाई दी। [[अलेक्जेंडर ग्राहम बेल|अलेक्जेंडर ग्राहम बेल, ओटो ब्लाथी, थॉमस एडिसन,]] [[गैलीलियो फेरारिस]], ओलिवर हीविसाइड, एनोस जेडलिक, विलियम थॉमसन, प्रथम बैरन केल्विन, [[चार्ल्स अल्गर्नन पार्सन्स]], वर्नर वॉन सीमेंस, जोसेफ स्वान, रेजिनाल्ड फेसेन्डेन, निकोला टेस्ला और [[अलेक्जेंडर ग्राहम बेल|जॉर्ज वेस्टिंगहाउस]] ऐसे लोगों के माध्यम से विद्युत वैज्ञानिक-जिज्ञासा से आधुनिक-जीवन के लिए आवश्यक उपकरण में बदल गई।  
अपितु 19 वीं शताब्दी की प्रारंभ में विद्युत विज्ञान में तेजी से प्रगति देखी गई थी, 19 वीं शताब्दी के उत्तरार्ध में इलेक्ट्रिकल अभियांत्रिकी में सबसे बड़ी प्रगति दिखाई दी। [[अलेक्जेंडर ग्राहम बेल|अलेक्जेंडर ग्राहम बेल, ओटो ब्लाथी, थॉमस एडिसन,]] [[गैलीलियो फेरारिस]], ओलिवर हीविसाइड, एनोस जेडलिक, विलियम थॉमसन, प्रथम बैरन केल्विन, [[चार्ल्स अल्गर्नन पार्सन्स]], वर्नर वॉन सीमेंस, जोसेफ स्वान, रेजिनाल्ड फेसेन्डेन, निकोला टेस्ला और [[अलेक्जेंडर ग्राहम बेल|जॉर्ज वेस्टिंगहाउस]] ऐसे लोगों के माध्यम से विद्युत वैज्ञानिक-जिज्ञासा से आधुनिक-जीवन के लिए आवश्यक उपकरण में बदल गई।  


Line 212: Line 212:
{{See also|इलेक्ट्रॉन|प्रोटॉन|आयन}}
{{See also|इलेक्ट्रॉन|प्रोटॉन|आयन}}


[[File:Electroscope.svg|thumb|upright|alt=A clear glass dome has an external electrode which connects through the glass to a pair of gold leaves।एक चार्ज रॉड बाहरी इलेक्ट्रोड को छूता है और पत्तियों को पीछे छोड़ देता है। एक सोने की [[सोने की पत्ती विद्युत]] पर चार्ज होता है।]]आवेश की उपस्थिति इलेक्ट्रोस्टैटिक बल को जन्म देती है : आवेश एक दूसरे पर बल को बढ़ाने का कार्य करते हैं, ऐसा प्रभाव जो पुरातनता में ज्ञात था, चूंकि इसे समझा नहीं गया था।<ref name=uniphysics>
[[File:Electroscope.svg|thumb|upright|alt=A clear glass dome has an external electrode which connects through the glass to a pair of gold leaves।एक चार्ज रॉड बाहरी इलेक्ट्रोड को छूता है और पत्तियों को पीछे छोड़ देता है। एक सोने की [[सोने की पत्ती विद्युत]] पर चार्ज होता है।]]आवेश की उपस्थिति इलेक्ट्रोस्टैटिक बल को जन्म देती है: आवेश एक दूसरे पर बल को बढ़ाने का कार्य करते हैं, ऐसा प्रभाव जो पुरातनता में ज्ञात था, चूंकि इसे समझा नहीं गया था।<ref name=uniphysics>
{{Citation
{{Citation
| first = Francis | last = Sears
| first = Francis | last = Sears
Line 269: Line 269:
</ref> प्रणाली के अंदर,आवेश को निकायों के बीच, या तो सीधे संपर्क द्वारा, या संवाहक सामग्री, जैसे कि तार के साथ पारित करके स्थानांतरित किया जा सकता है।<ref name="Duffin" />{{rp|2–5}} अनौपचारिक शब्द स्थैतिक विद्युत निकाय पर आवेश की शुद्ध उपस्थिति (या 'असंतुलन') को संदर्भित करती है, सामान्यतः यह तब होती है जब अलग-अलग सामग्रियों को एक साथ रगड़ कर आवेश को एक से दूसरे में स्थानांतरित किया जाता है।
</ref> प्रणाली के अंदर,आवेश को निकायों के बीच, या तो सीधे संपर्क द्वारा, या संवाहक सामग्री, जैसे कि तार के साथ पारित करके स्थानांतरित किया जा सकता है।<ref name="Duffin" />{{rp|2–5}} अनौपचारिक शब्द स्थैतिक विद्युत निकाय पर आवेश की शुद्ध उपस्थिति (या 'असंतुलन') को संदर्भित करती है, सामान्यतः यह तब होती है जब अलग-अलग सामग्रियों को एक साथ रगड़ कर आवेश को एक से दूसरे में स्थानांतरित किया जाता है।


इलेक्ट्रॉनों और प्रोटॉन परआ वेश चिह्न के विपरीत होता है, इसलिए आवेश की मात्रा को ऋणात्मक या धनात्मक होने के रूप में व्यक्त किया जा सकता है। परिपाटी द्वारा, इलेक्ट्रॉनों द्वारा वहन किए जाने वाले आवेश को ऋणात्मक माना जाता है, और प्रोटॉन धनात्मक द्वारा, प्रथा जो बेंजामिन फ्रैंकलिन के कार्य से उत्पन्न हुई थी ।<ref>
इलेक्ट्रॉनों और प्रोटॉन परआ वेश चिह्न के विपरीत होता है, इसलिए आवेश की मात्रा को ऋणात्मक या धनात्मक होने के रूप में व्यक्त किया जा सकता है। परिपाटी द्वारा, इलेक्ट्रॉनों द्वारा वहन किए जाने वाले आवेश को ऋणात्मक माना जाता है, और प्रोटॉन धनात्मक द्वारा, प्रथा जो बेंजामिन फ्रैंकलिन के कार्य से उत्पन्न हुई थी ।<ref>
{{Citation
{{Citation
| first = Jonathan | last = Shectman
| first = Jonathan | last = Shectman
Line 283: Line 283:
| publisher = Lockwood
| publisher = Lockwood
| page = 18
| page = 18
| year = 1902}}. The ''Q'' originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'.</ref> प्रत्येक इलेक्ट्रॉन लगभग −1.6022×10<sup>−19</sup> कूलॉम का ही आवेश वहन करता है '''& nbsp;''' । प्रोटॉन का आवेश बराबर और विपरीत होता है, और इस प्रकार +1.6022×10<sup>−19</sup> कूलॉम होता है। '''& nbsp;'''। आवेश न केवल पदार्थ द्वारा, किंतु [[ प्रतिकण |प्रतिकण]] द्वारा भी धारण किया जाता है, प्रत्येक एंटीपार्टिकल अपने संबंधित [[कण]] के बराबर और विपरीत आवेश रखता है।<ref>
| year = 1902}}. The ''Q'' originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'.</ref> प्रत्येक इलेक्ट्रॉन लगभग −1.6022×10<sup>−19</sup> कूलॉम का ही आवेश वहन करता है । प्रोटॉन का आवेश बराबर और विपरीत होता है, और इस प्रकार +1.6022×10<sup>−19</sup> कूलॉम होता है। आवेश न केवल पदार्थ द्वारा, किंतु [[ प्रतिकण |प्रतिकण]] द्वारा भी धारण किया जाता है, प्रत्येक एंटीपार्टिकल अपने संबंधित [[कण]] के बराबर और विपरीत आवेश रखता है।<ref>
{{Citation
{{Citation
| first = Frank | last = Close
| first = Frank | last = Close
Line 297: Line 297:
{{Main|विद्युत प्रवाह(विद्युत धारा)}}
{{Main|विद्युत प्रवाह(विद्युत धारा)}}


इलेक्ट्रिक आवेश की गति को विद्युत प्रवाह के रूप में जाना जाता है, जिसकी तीव्रता सामान्यतः [[ एम्पेयर |एम्पेयर]] में मापी जाती है। धारा में कोई भी गतिमान आवेशित कण हो सकते हैं; सामान्यतः ये इलेक्ट्रॉन होते हैं, किन्तु गति में कोई भी आवेश एक धारा का निर्माण करता है। विद्युत प्रवाह कुछ चीजों, विद्युत संवाहकों के माध्यम से प्रवाहित हो सकता है, लेकिन एक विद्युत इन्सुलेटर के माध्यम से प्रवाहित नहीं होगा।<ref>{{citation|last=Al-Khalili|first=Jim|title=Shock and Awe: The Story of Electricity|work=BBC Horizon}}</ref>
इलेक्ट्रिक आवेश की गति को विद्युत प्रवाह के रूप में जाना जाता है, जिसकी तीव्रता सामान्यतः [[ एम्पेयर |एम्पेयर]] में मापी जाती है। धारा में कोई भी गतिमान आवेशित कण हो सकते हैं; सामान्यतः ये इलेक्ट्रॉन होते हैं, किन्तु गति में कोई भी आवेश एक धारा का निर्माण करता है। विद्युत प्रवाह कुछ चीजों, विद्युत संवाहकों के माध्यम से प्रवाहित हो सकता है, लेकिन एक विद्युत इन्सुलेटर के माध्यम से प्रवाहित नहीं होगा।<ref>{{citation|last=Al-Khalili|first=Jim|title=Shock and Awe: The Story of Electricity|work=BBC Horizon}}</ref>


ऐतिहासिक परिपाटी द्वारा, सकारात्मक धारा को प्रवाह की ही दिशा के रूप में परिभाषित किया जाता है, जैसा कि किसी भी सकारात्मक आवेश में होता है, या परिपथ के सबसे सकारात्मक भाग से सबसे ऋणात्मक भाग तक प्रवाहित होता है। इन विधियों से परिभाषित धारा को पारंपरिक धारा कहा जाता है।एक [[ इलेक्ट्रीक सर्किट |इलेक्ट्रीक परिपथ]] के चारों ओर ऋणात्मक रूप से आवेशित किए गए इलेक्ट्रॉनों की गति, धारा के सबसे परिचित रूपों में से एक है , इस प्रकार यह आवेश इलेक्ट्रॉनों के विपरीत दिशा में सकारात्मक माना जाता है।<ref>
ऐतिहासिक परिपाटी द्वारा, सकारात्मक धारा को प्रवाह की ही दिशा के रूप में परिभाषित किया जाता है, जैसा कि किसी भी सकारात्मक आवेश में होता है, या परिपथ के सबसे सकारात्मक भाग से सबसे ऋणात्मक भाग तक प्रवाहित होता है। इन विधियों से परिभाषित धारा को पारंपरिक धारा कहा जाता है।एक [[ इलेक्ट्रीक सर्किट |इलेक्ट्रीक परिपथ]] के चारों ओर ऋणात्मक रूप से आवेशित किए गए इलेक्ट्रॉनों की गति, धारा के सबसे परिचित रूपों में से एक है , इस प्रकार यह आवेश इलेक्ट्रॉनों के विपरीत दिशा में सकारात्मक माना जाता है।<ref>
{{Citation
{{Citation
| first = Robert | last = Ward
| first = Robert | last = Ward
Line 306: Line 306:
| page = 18
| page = 18
| year = 1960}}
| year = 1960}}
</ref> चूंकि, स्थितियों के आधार पर, एक विद्युत प्रवाह में आवेशित कणों का प्रवाह किसी भी दिशा में, या यहाँ तक कि दोनों दिशाओं में एक साथ हो सकता है। इस स्थिति को सरल बनाने के लिए सकारात्मक-से-नकारात्मक परिपाटी का व्यापक रूप से उपयोग किया जाता है।
</ref> चूंकि, स्थितियों के आधार पर, एक विद्युत प्रवाह में आवेशित कणों का प्रवाह किसी भी दिशा में, या यहाँ तक कि दोनों दिशाओं में एक साथ हो सकता है। इस स्थिति को सरल बनाने के लिए सकारात्मक-से-नकारात्मक परिपाटी का व्यापक रूप से उपयोग किया जाता है।


[[File:Lichtbogen 3000 Volt.jpg|thumb|left|alt=Two metal wires form an inverted V shape।एक अंधा उज्ज्वल नारंगी-सफेद इलेक्ट्रिक चाप उनके सुझावों के बीच बहता है।विद्युत प्रवाह का एक ऊर्जावान प्रदर्शन प्रदान करता है]]जिस प्रक्रिया से विद्युत धारा सामग्री से होकर निकलता है, उसे [[विद्युत चालन]] कहा जाता है, और इसकी प्रकृति आवेशित कणों और उस सामग्री के साथ भिन्न होती है जिसके माध्यम से वे यात्रा कर रहे हैं। विद्युत धाराओं के उदाहरणों में धातु चालन सम्मिलित है, जहां इलेक्ट्रॉन विद्युत संवाहक जैसे धातु, और [[ इलेक्ट्रोलीज़ |इलेक्ट्रोलीज़]] के माध्यम से प्रवाहित होते हैं, जहां [[आयन]] (चार्ज [[परमाणु]]) तरल पदार्थों के माध्यम से, या [[प्लाज्मा]] (भौतिकी) जैसे विद्युत स्पार्क्स के माध्यम से प्रवाहित होते हैं। अपितु कण स्वयं पर्याप्त मात्रा में धीरे -धीरे आगे बढ़ सकते हैं, कभी-कभी एक औसत बहाव वेग के साथ केवल एक मिलीमीटर प्रति सेकंड के अंश  उन्हें चलाने वाला विद्युत क्षेत्र स्वयं प्रकाश की गति के करीब फैलता है,<ref name=Duffin/>{{rp|17}} '''विद्युत क्षेत्र जो उन्हें चलाता है, वह स्वयं प्रकाश की गति के निकट  फैलता है,''' जिससे विद्युत संकेतों को तारों के साथ तेजी से निकलने में सक्षम बनाया जाता है।<ref>
[[File:Lichtbogen 3000 Volt.jpg|thumb|left|alt=Two metal wires form an inverted V shape।एक अंधा उज्ज्वल नारंगी-सफेद इलेक्ट्रिक चाप उनके सुझावों के बीच बहता है।विद्युत प्रवाह का एक ऊर्जावान प्रदर्शन प्रदान करता है]]जिस प्रक्रिया से विद्युत धारा सामग्री से होकर निकलता है, उसे [[विद्युत चालन]] कहा जाता है, और इसकी प्रकृति आवेशित कणों और उस सामग्री के साथ भिन्न होती है जिसके माध्यम से वे यात्रा कर रहे हैं। विद्युत धाराओं के उदाहरणों में धातु चालन सम्मिलित है, जहां इलेक्ट्रॉन विद्युत संवाहक जैसे धातु, और [[ इलेक्ट्रोलीज़ |इलेक्ट्रोलीज़]] के माध्यम से प्रवाहित होते हैं, जहां [[आयन]] (चार्ज [[परमाणु]]) तरल पदार्थों के माध्यम से, या [[प्लाज्मा]] जैसे विद्युत स्पार्क्स के माध्यम से प्रवाहित होते हैं। अपितु कण स्वयं पर्याप्त मात्रा में धीरे -धीरे आगे बढ़ सकते हैं, कभी-कभी एक औसत बहाव वेग के साथ केवल एक मिलीमीटर प्रति सेकंड के अंश उन्हें चलाने वाला विद्युत क्षेत्र स्वयं प्रकाश की गति के करीब फैलता है,<ref name=Duffin/>{{rp|17}} जिससे विद्युत संकेतों को तारों के साथ तेजी से निकलने में सक्षम बनाया जाता है।<ref>
{{Citation
{{Citation
| first = L.
| first = L.
Line 320: Line 320:
}}
}}
</ref>
</ref>
धारा कई अवलोकन योग्य प्रभावों का कारण बनता है, जो ऐतिहासिक रूप से इसकी उपस्थिति को पहचानने के साधन थे। उस पानी को वोल्टिक ढेर से धारा द्वारा विघटित किया जा सकता था, जिसे 1800 में विलियम निकोलसन (केमिस्ट) और [[एंथनी कार्लिसल]] द्वारा खोजा गया था, जिसे अब इलेक्ट्रोलिसिस के रूप में जाना जाता है। उनके कार्य को 1833 में माइकल फैराडे द्वारा अधिक विस्तारित किया गया था। विद्युत प्रतिरोध के माध्यम से धारा में स्थानीयकृत ऊष्मा का कारण बनता है, [[जेम्स प्रेस्कॉट जूल]] ने 1840 में गणितीय रूप से प्रभाव का अध्ययन किया।<ref name=Duffin/>{{rp|23–24}} धारा से संबंधित सबसे महत्वपूर्ण खोजों में से 1820 में हंस क्रिश्चियन ऑर्स्टेड द्वारा गलती से की गयी खोज भी थी , जब व्याख्यान तैयार करते समय, वह तार में चुंबकीय कम्पास की सुई को परेशान करने वाले तार में धारा को देखा।<ref name=berkson>
धारा कई अवलोकन योग्य प्रभावों का कारण बनता है, जो ऐतिहासिक रूप से इसकी उपस्थिति को पहचानने के साधन थे। उस पानी को वोल्टिक ढेर से धारा द्वारा विघटित किया जा सकता था, जिसे 1800 में विलियम निकोलसन (केमिस्ट) और [[एंथनी कार्लिसल]] द्वारा खोजा गया था, जिसे अब इलेक्ट्रोलिसिस के रूप में जाना जाता है। उनके कार्य को 1833 में माइकल फैराडे द्वारा अधिक विस्तारित किया गया था। विद्युत प्रतिरोध के माध्यम से धारा में स्थानीयकृत ऊष्मा का कारण बनता है, [[जेम्स प्रेस्कॉट जूल]] ने 1840 में गणितीय रूप से प्रभाव का अध्ययन किया।<ref name=Duffin/>{{rp|23–24}} धारा से संबंधित सबसे महत्वपूर्ण खोजों में से 1820 में हंस क्रिश्चियन ऑर्स्टेड द्वारा गलती से की गयी खोज भी थी , जब व्याख्यान तैयार करते समय, वह तार में चुंबकीय कम्पास की सुई को परेशान करने वाले तार में धारा को देखा।<ref name=berkson>
{{Citation
{{Citation
| first = William
| first = William
Line 329: Line 329:
| isbn = 0-7100-7626-6
| isbn = 0-7100-7626-6
| url = https://archive.org/details/fieldsofforcedev0000berk/page/370
| url = https://archive.org/details/fieldsofforcedev0000berk/page/370
}}</ref>{{rp|p=370}}{{efn|Accounts differ as to whether this was before, during, or after a lecture.}} और उन्होंने विद्युत चुम्बकत्व की खोज की थी, जो विद्युत और चुंबकत्व के बीच मौलिक संपर्क था । विद्युत चाप द्वारा उत्पन्न विद्युत चुम्बकीय उत्सर्जन का स्तर विद्युत चुम्बकीय हस्तक्षेप उत्पन्न करने के लिए पर्याप्त उच्च है, जो आसन्न उपकरणों के कार्यचालन के लिए हानिकारक हो सकता है।<ref>{{cite web | title = Lab Note #105 ''EMI Reduction – Unsuppressed vs. Suppressed'' | publisher = Arc Suppression Technologies | date = April 2011 | url = http://www.arcsuppressiontechnologies.com/arc-suppression-facts/lab-app-notes/ | access-date = March 7, 2012 | archive-date = March 5, 2016 | archive-url = https://web.archive.org/web/20160305123758/http://www.arcsuppressiontechnologies.com/arc-suppression-facts/lab-app-notes/ | url-status = live | mode=cs2}}</ref>
}}</ref>{{rp|p=370}}{{efn|Accounts differ as to whether this was before, during, or after a lecture.}} और उन्होंने विद्युत चुम्बकत्व की खोज की थी, जो विद्युत और चुंबकत्व के बीच मौलिक संपर्क था । विद्युत चाप द्वारा उत्पन्न विद्युत चुम्बकीय उत्सर्जन का स्तर विद्युत चुम्बकीय हस्तक्षेप उत्पन्न करने के लिए पर्याप्त उच्च है, जो आसन्न उपकरणों के कार्यचालन के लिए हानिकारक हो सकता है।<ref>{{cite web | title = Lab Note #105 ''EMI Reduction – Unsuppressed vs. Suppressed'' | publisher = Arc Suppression Technologies | date = April 2011 | url = http://www.arcsuppressiontechnologies.com/arc-suppression-facts/lab-app-notes/ | access-date = March 7, 2012 | archive-date = March 5, 2016 | archive-url = https://web.archive.org/web/20160305123758/http://www.arcsuppressiontechnologies.com/arc-suppression-facts/lab-app-notes/ | url-status = live | mode=cs2}}</ref>


अभियांत्रिकी या घरेलू अनुप्रयोगों में, धारा को अधिकांशतः प्रत्यक्ष धारा (डीसी) या वैकल्पिक धारा (एसी) के रूप में वर्णित किया जाता है। ये निबंधन संदर्भित करता हैं कि धारा किसी समय के साथ कैसे बदलती है। उदाहरण के लिए [[ एकदिश धारा | दिष्टधारा]] , जैसा कि धारा   [[बैटरी (बिजली)|('''बिजली''')]] '''एक बैटरी''' '''से'''  [[बैटरी (बिजली)|बैटरी]] द्वारा निर्मित होती है और अधिकांश इलेक्ट्रॉनिक उपकरणों द्वारा आवश्यक होती है, परिपथ के धनात्मक भाग से ऋणात्मक तक दिशात्मक प्रवाह है।<ref name="bird">
अभियांत्रिकी या घरेलू अनुप्रयोगों में, धारा को अधिकांशतः प्रत्यक्ष धारा (डीसी) या वैकल्पिक धारा (एसी) के रूप में वर्णित किया जाता है। ये निबंधन संदर्भित करता हैं कि धारा किसी समय के साथ कैसे बदलती है। उदाहरण के लिए [[ एकदिश धारा |दिष्टधारा]] , जैसा कि धारा [[बैटरी (बिजली)|बैटरी]] द्वारा निर्मित होती है और अधिकांश इलेक्ट्रॉनिक उपकरणों द्वारा आवश्यक होती है, परिपथ के धनात्मक भाग से ऋणात्मक तक दिशात्मक प्रवाह है।<ref name="bird">
{{citation
{{citation
| first = John | last = Bird
| first = John | last = Bird
Line 338: Line 338:
| year = 2007
| year = 2007
| isbn = 9781417505432}}
| isbn = 9781417505432}}
</ref>{{rp|11}} यदि, जैसा कि सबसे सामान्य है, तो यह प्रवाह इलेक्ट्रॉनों द्वारा किया जाता है, वे विपरीत दिशा में यात्रा करेंगे। प्रत्यावर्ती धारा कोई भी धारा है जो दिशा को बार -बार उलट देती है; लगभग सदैव यह ज्या तरंग का रूप लेती है।<ref name="bird" />{{rp|206–07}} प्रत्यावर्ती धारा इस प्रकार '''एक''' संवाहक के अंदर समय के साथ किसी भी शुद्ध दूरी को स्थानांतरित किए बिना आगे और पीछे स्पंदित होती है। प्रत्यावर्ती धारा का समय-औसत मान शून्य है, किंतु यह पहले एक दिशा में ऊर्जा प्रदान करती है और फिर विपरीत दिशा में प्रदान करती है ।प्रत्यावर्ती धारा विद्युत गुणों से प्रभावित होती है जो स्थिर अवस्था प्रत्यक्ष धारा, जैसे कि अधिष्ठापन और [[ समाई |सामर्थ्य]] के अनुसार नहीं देखी जाती है। ।<ref name="bird" />{{rp|223–25}} चूंकि ये गुण तब महत्वपूर्ण हो सकते हैं जब सर्किटरी को क्षणिक प्रतिक्रिया के अधीन किया जाता है, जैसे कि जब पहली बार सक्रिय हो।
</ref>{{rp|11}} यदि, जैसा कि सबसे सामान्य है, तो यह प्रवाह इलेक्ट्रॉनों द्वारा किया जाता है, वे विपरीत दिशा में यात्रा करेंगे। प्रत्यावर्ती धारा कोई भी धारा है जो दिशा को बार -बार उलट देती है; लगभग सदैव यह ज्या तरंग का रूप लेती है।<ref name="bird" />{{rp|206–07}} प्रत्यावर्ती धारा इस प्रकार संवाहक के अंदर समय के साथ किसी भी शुद्ध दूरी को स्थानांतरित किए बिना आगे और पीछे स्पंदित होती है। प्रत्यावर्ती धारा का समय-औसत मान शून्य है, किंतु यह पहले एक दिशा में ऊर्जा प्रदान करती है और फिर विपरीत दिशा में प्रदान करती है ।प्रत्यावर्ती धारा विद्युत गुणों से प्रभावित होती है जो स्थिर अवस्था प्रत्यक्ष धारा, जैसे कि अधिष्ठापन और [[ समाई |सामर्थ्य]] के अनुसार नहीं देखी जाती है। ।<ref name="bird" />{{rp|223–25}} चूंकि ये गुण तब महत्वपूर्ण हो सकते हैं जब सर्किटरी को क्षणिक प्रतिक्रिया के अधीन किया जाता है, जैसे कि जब पहली बार सक्रिय हो।


=== विद्युत क्षेत्र ===
=== विद्युत क्षेत्र ===
Line 344: Line 344:
{{See also|विद्युतस्थैतिकी}}
{{See also|विद्युतस्थैतिकी}}


इलेक्ट्रिक क्षेत्र ('''भौतिकी''') की अवधारणा को माइकल फैराडे द्वारा प्रस्तुत किया गया था। '''एक''' विद्युत क्षेत्र आवेशित निकाय द्वारा अंतरिक्ष में बनाया जाता है जो इसे घेरता है, और क्षेत्र के अंदर रखे गए किसी भी अन्य आवेशों पर बल का परिणाम होता है। विद्युत क्षेत्र दो आवेशों के बीच समान विधियों से कार्य करता है, जिस तरह से गुरुत्वाकर्षण क्षेत्र दो [[द्रव्यमान|द्रव्यमानों]] ों के बीच कार्य करता है, और इसकी तरह अनंत की ओर बढ़ता है और दूरी के साथ व्युत्क्रम वर्ग संबंध दिखाता है।<ref name=Umashankar/> चूंकि, यह महत्वपूर्ण अंतर है। गुरुत्वाकर्षण सदैव आकर्षण में कार्य करता है, दो द्रव्यमानों को एकसाथ आकर्षित करता है, अपितु विद्युत क्षेत्र के परिणामस्वरूप या तो आकर्षण या प्रतिकर्षण हो सकता है। चूंकि बड़े निकाय जैसे ग्रह सामान्यतः कोई शुद्ध आवेश वहन नहीं करते हैं, इसलिए एक निश्चित दूरी पर विद्युत क्षेत्र सामान्यतः शून्य होता है। इस प्रकार ब्रह्मांड की दूरियों पर गुरुत्वाकर्षण प्रमुख बल '''बहुत दुर्बल''' होने के अतिरिक्त '''ब्रह्मांड की  दूरियों पर''' बहुत दुर्बल '''प्रमुख बल''' है।<ref name=hawking/>
इलेक्ट्रिक क्षेत्र की अवधारणा को माइकल फैराडे द्वारा प्रस्तुत किया गया था। विद्युत क्षेत्र आवेशित निकाय द्वारा अंतरिक्ष में बनाया जाता है जो इसे घेरता है, और क्षेत्र के अंदर रखे गए किसी भी अन्य आवेशों पर बल का परिणाम होता है। विद्युत क्षेत्र दो आवेशों के बीच समान विधियों से कार्य करता है, जिस तरह से गुरुत्वाकर्षण क्षेत्र दो [[द्रव्यमान|द्रव्यमानों]] के बीच कार्य करता है, और इसकी तरह अनंत की ओर बढ़ता है और दूरी के साथ व्युत्क्रम वर्ग संबंध दिखाता है।<ref name=Umashankar/> चूंकि, यह महत्वपूर्ण अंतर है। गुरुत्वाकर्षण सदैव आकर्षण में कार्य करता है, दो द्रव्यमानों को एकसाथ आकर्षित करता है, अपितु विद्युत क्षेत्र के परिणामस्वरूप या तो आकर्षण या प्रतिकर्षण हो सकता है। चूंकि बड़े निकाय जैसे ग्रह सामान्यतः कोई शुद्ध आवेश वहन नहीं करते हैं, इसलिए एक निश्चित दूरी पर विद्युत क्षेत्र सामान्यतः शून्य होता है। इस प्रकार ब्रह्मांड की दूरियों पर गुरुत्वाकर्षण प्रमुख बल होने के अतिरिक्त बहुत दुर्बल है।<ref name=hawking/>


[[File:VFPt image charge plane horizontal.svg|thumb|एक विमान संवाहक के ऊपर सकारात्मकआवेश से निकलने वाली क्षेत्र रेखाएं]]एक विद्युत क्षेत्र सामान्यतः अंतरिक्ष में बदलता रहता है,{{efn|Almost all electric fields vary in space. An exception is the electric field surrounding a planar conductor of infinite extent, the field of which is uniform.}} और किसी भी बिंदु पर इसकी शक्ति को बल (प्रति यूनिट आवेश) के रूप में परिभाषित किया जाता है, जिसे उस बिंदु पर रखा जाने पर स्थिर, नगण्य आवेश द्वारा अनुभूत किया जाएगा।<ref name=uniphysics/>{{rp|469–70}} वैचारिक आवेश, जिसे '[[ परीक्षण प्रभार | परीक्षण प्रभार(परीक्षण आवेश)]]' कहा जाता है, अपने स्वयं के विद्युत क्षेत्र तथा मुख्य क्षेत्र को विचलन करने से रोकने के लिए विलुप्त हो जाना चाहिए और चुंबकीय क्षेत्रों के प्रभाव को रोकने के लिए भी स्थिर होना चाहिए। उदाहरण हेतु विद्युत क्षेत्र को बल के संदर्भ में परिभाषित किया गया है, और बल [[यूक्लिडियन वेक्टर]] है, जिसमें [[परिमाण (गणित)|परिमाण '''(गणित)''']] और [[दिशा (ज्यामिति)|दिशा '''(ज्यामिति)''']] दोनों होते हैं, इसलिए '''यह इस प्रकार है कि''' विद्युत क्षेत्र को वेक्टर क्षेत्र की भांति अनुसरण करते है।<ref name=uniphysics/>{{rp|469–70}}
[[File:VFPt image charge plane horizontal.svg|thumb|एक विमान संवाहक के ऊपर सकारात्मकआवेश से निकलने वाली क्षेत्र रेखाएं]]एक विद्युत क्षेत्र सामान्यतः अंतरिक्ष में बदलता रहता है,{{efn|Almost all electric fields vary in space. An exception is the electric field surrounding a planar conductor of infinite extent, the field of which is uniform.}} और किसी भी बिंदु पर इसकी शक्ति को बल (प्रति यूनिट आवेश) के रूप में परिभाषित किया जाता है, जिसे उस बिंदु पर रखा जाने पर स्थिर, नगण्य आवेश द्वारा अनुभूत किया जाएगा।<ref name=uniphysics/>{{rp|469–70}} वैचारिक आवेश, जिसे '[[ परीक्षण प्रभार | परीक्षण प्रभार(परीक्षण आवेश)]]' कहा जाता है, अपने स्वयं के विद्युत क्षेत्र तथा मुख्य क्षेत्र को विचलन करने से रोकने के लिए विलुप्त हो जाना चाहिए और चुंबकीय क्षेत्रों के प्रभाव को रोकने के लिए भी स्थिर होना चाहिए। उदाहरण हेतु विद्युत क्षेत्र को बल के संदर्भ में परिभाषित किया गया है, और बल [[यूक्लिडियन वेक्टर]] है, जिसमें [[परिमाण (गणित)|परिमाण]] और [[दिशा (ज्यामिति)|दिशा]] दोनों होते हैं, इसलिए विद्युत क्षेत्र को वेक्टर क्षेत्र की भांति अनुसरण करते है।<ref name=uniphysics/>{{rp|469–70}}
स्थिर आवेशों द्वारा बनाए गए विद्युत क्षेत्रों के अध्ययन को [[ इलेक्ट्रोस्टाटिक्स |विद्युतस्थैतिकी]] कहा जाता है। क्षेत्र को काल्पनिक रेखाओं के समूह द्वारा कल्पना की जा सकती है, जिसकी दिशा किसी भी बिंदु पर होती है, वह क्षेत्र के समान है। यह अवधारणा फैराडे द्वारा प्रस्तुत की गई थी,<ref name="elec_princ_p73">
स्थिर आवेशों द्वारा बनाए गए विद्युत क्षेत्रों के अध्ययन को [[ इलेक्ट्रोस्टाटिक्स |विद्युतस्थैतिकी]] कहा जाता है। क्षेत्र को काल्पनिक रेखाओं के समूह द्वारा कल्पना की जा सकती है, जिसकी दिशा किसी भी बिंदु पर होती है, वह क्षेत्र के समान है। यह अवधारणा फैराडे द्वारा प्रस्तुत की गई थी,<ref name="elec_princ_p73">
{{citation
{{citation
Line 353: Line 353:
| year = 1970
| year = 1970
| page = 73
| page = 73
| isbn = 0-582-42629-4}}</ref> जिसका शब्द 'बल की रेखा' अभी भी कभी -कभी उपयोग देखता है। क्षेत्र रेखाएं वे पथ हैं जो बिंदु सकारात्मक आवेश निर्माण की खोज करेंगे क्योंकि इसे क्षेत्र के अंदर स्थानांतरित करने के लिए वाध्य किया गया था; चूंकि वे कोई भौतिक अस्तित्व के साथ काल्पनिक अवधारणा हैं, और क्षेत्र रेखाओं के बीच सभी हस्तक्षेप करने वाले स्थान को अनुमति देता है।<ref name="elec_princ_p73"/> स्थिर शुल्कों से निकलने वाली क्षेत्र रेखाओं में कई प्रमुख गुण होते हैं: पहला, कि वे सकारात्मक आवेशों में उत्पन्न होते हैं और ऋणात्मक आवेश में समाप्त होते हैं; दूसरा, कि उन्हें समकोण पर किसी भी अच्छे संवाहक में प्रवेश करना चाहिए, और तीसरा, कि वे कभी भी विरोध नहीं कर सकते हैं और न ही खुद को बंद कर सकते हैं।<ref name=uniphysics/>{{rp|479}}
| isbn = 0-582-42629-4}}</ref> जिसका शब्द 'बल की रेखा' अभी भी कभी -कभी उपयोग देखता है। क्षेत्र रेखाएं वे पथ हैं जो बिंदु सकारात्मक आवेश निर्माण की खोज करेंगे क्योंकि इसे क्षेत्र के अंदर स्थानांतरित करने के लिए वाध्य किया गया था; चूंकि वे कोई भौतिक अस्तित्व के साथ काल्पनिक अवधारणा हैं, और क्षेत्र रेखाओं के बीच सभी हस्तक्षेप करने वाले स्थान को अनुमति देता है।<ref name="elec_princ_p73"/> स्थिर शुल्कों से निकलने वाली क्षेत्र रेखाओं में कई प्रमुख गुण होते हैं: पहला, कि वे सकारात्मक आवेशों में उत्पन्न होते हैं और ऋणात्मक आवेश में समाप्त होते हैं; दूसरा, कि उन्हें समकोण पर किसी भी अच्छे संवाहक में प्रवेश करना चाहिए, और तीसरा, कि वे कभी भी विरोध नहीं कर सकते हैं और न ही खुद को बंद कर सकते हैं।<ref name=uniphysics/>{{rp|479}}


निराधार संचालन करने वाला निकाय अपनी बाहरी सतह पर अपने सभी आवेश को वहन करता है। इसलिए क्षेत्र निकाय के अंदर सभी स्थानों पर आवेश 0 है।<ref name="Duffin" />{{rp|88}} यह [[फैराडे गुफ़ा|फैराडे केज]] का प्रचालन का सिद्धांत है, संवाहक धातु शेल जो इसके आंतरिक क्षेत्र को बाहर के विद्युत प्रभावों से अलग करता है।
निराधार संचालन करने वाला निकाय अपनी बाहरी सतह पर अपने सभी आवेश को वहन करता है। इसलिए क्षेत्र निकाय के अंदर सभी स्थानों पर आवेश 0 है।<ref name="Duffin" />{{rp|88}} यह [[फैराडे गुफ़ा|फैराडे केज]] का प्रचालन का सिद्धांत है, संवाहक धातु शेल जो इसके आंतरिक क्षेत्र को बाहर के विद्युत प्रभावों से अलग करता है।


[[उच्च वोल्टेज]] के उपकरण डिजाइन करते समय इलेक्ट्रोस्टैटिक्स के सिद्धांत महत्वपूर्ण हैं। उच्च-वोल्टेज उपकरण विद्युत क्षेत्र की शक्ति के लिए परिमित सीमा है जो किसी भी माध्यम से प्राप्त हो सकती है। इस बिंदु के विपरीत , विद्युत विभाजन होता है और विद्युत चाप आवेशित किए गए भागों के बीच फ्लैशओवर का कारण बनता है। उदाहरण के लिए, हवा, विद्युत क्षेत्र की शक्ति पर छोटे अंतरालों में चापती है जो 30 केवी प्रति सेंटीमीटर '''& nbsp''' से अधिक है; '''केवी प्रति सेंटीमीटर'''। बड़े अंतराल पर, इसकी टूटने की शक्ति (संभवतः 1 केवी प्रति सेंटीमीटर) दुर्बल होती है, '''संभवतः 1''' & nbsp; '''केवी प्रति सेंटीमीटर'''।<ref name="hv_eng">
[[उच्च वोल्टेज]] के उपकरण डिजाइन करते समय इलेक्ट्रोस्टैटिक्स के सिद्धांत महत्वपूर्ण हैं। उच्च-वोल्टेज उपकरण विद्युत क्षेत्र की शक्ति के लिए परिमित सीमा है जो किसी भी माध्यम से प्राप्त हो सकती है। इस बिंदु के विपरीत , विद्युत विभाजन होता है और विद्युत चाप आवेशित किए गए भागों के बीच फ्लैशओवर का कारण बनता है। उदाहरण के लिए, हवा, विद्युत क्षेत्र की शक्ति पर छोटे अंतरालों में चापती है जो 30 केवी प्रति सेंटीमीटर से अधिक है। बड़े अंतराल पर, इसकी टूटने की शक्ति (संभवतः 1 केवी प्रति सेंटीमीटर) दुर्बल होती है।<ref name="hv_eng">
{{Citation
{{Citation
| first1 = M.S.| last1 = Naidu
| first1 = M.S.| last1 = Naidu
Line 366: Line 366:
| year = 1982
| year = 1982
| isbn = 0-07-451786-4}}
| isbn = 0-07-451786-4}}
</ref>{{rp|p=2}} इस की सबसे अधिक दिखाई देने वाली प्राकृतिक घटना आकाशीय बिजली है, जब आवेश हवा के बढ़ते स्तंभों द्वारा बादलों में से अलग हो जाती है, और हवा में विद्युत क्षेत्र को बढ़ा देती है, तो यह सामना कर सकता है। एक बड़े बिजली के बादल का वोल्टेज 100 MV जितना अधिक हो सकता है और इसमें 250 kWh के रूप में बढ़िया ऊर्जा का निर्वहन होता है।<ref name="hv_eng" />{{rp|pp=201–02}}
</ref>{{rp|p=2}} इस की सबसे अधिक दिखाई देने वाली प्राकृतिक घटना आकाशीय बिजली है, जब आवेश हवा के बढ़ते स्तंभों द्वारा बादलों में से अलग हो जाती है, और हवा में विद्युत क्षेत्र को बढ़ा देती है, तो यह सामना कर सकता है। एक बड़े बिजली के बादल का वोल्टेज 100 MV जितना अधिक हो सकता है और इसमें 250 kWh के रूप में बढ़िया ऊर्जा का निर्वहन होता है।<ref name="hv_eng" />{{rp|pp=201–02}}


क्षेत्र की शक्ति पास की वस्तुओं का संचालन करने से बहुत प्रभावित होती है, और यह विशेष रूप से तीव्र है जब इसे धारदार नुकीली वस्तुओं के निकट वक्र निर्माण के लिए वाध्य किया जाता है। इस सिद्धांत का [[ बिजली का चालक |विद्युत संवाहक]] में शोषण किया जाता है, जिसमें से तेज स्पाइक विद्युत के स्ट्रोक को विकसित करने के लिए प्रोत्साहित करने का कार्य करता है, अतिरिक्त इसके कि वह इमारत की रक्षा के लिए कार्य करता है।<ref name="Nahin2002">{{citation|author=Paul J. Nahin|author-link=Paul J. Nahin|title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age|date=9 October 2002|publisher=JHU Press|isbn=978-0-8018-6909-9}}</ref>{{rp|155}}
क्षेत्र की शक्ति पास की वस्तुओं का संचालन करने से बहुत प्रभावित होती है, और यह विशेष रूप से तीव्र है जब इसे धारदार नुकीली वस्तुओं के निकट वक्र निर्माण के लिए वाध्य किया जाता है। इस सिद्धांत का [[ बिजली का चालक |विद्युत संवाहक]] में शोषण किया जाता है, जिसमें से तेज स्पाइक विद्युत के स्ट्रोक को विकसित करने के लिए प्रोत्साहित करने का कार्य करता है, अतिरिक्त इसके कि वह इमारत की रक्षा के लिए कार्य करता है।<ref name="Nahin2002">{{citation|author=Paul J. Nahin|author-link=Paul J. Nahin|title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age|date=9 October 2002|publisher=JHU Press|isbn=978-0-8018-6909-9}}</ref>{{rp|155}}
=== विद्युत क्षमता ===
=== विद्युत क्षमता ===
{{Main|विद्युत क्षमता}}
{{Main|विद्युत क्षमता}}
{{See also|वोल्टेज(विद्युत दाब)|बैटरी(विद्युत)}}
{{See also|वोल्टेज(विद्युत दाब)|बैटरी(विद्युत)}}
[[File:Panasonic-oxyride.jpg|thumb|alt=Two AA batteries each have a plus sign marked at one end। [[एए बैटरी]] की एक जोड़ी।+& Nbsp; साइन बैटरी टर्मिनलों के बीच संभावित अंतर की ध्रुवीयता को इंगित करता है।]]विद्युत क्षमता की अवधारणा को विद्युत क्षेत्र से निकटता से जोड़ा जाता है। एक विद्युत क्षेत्र के अंदर रखा गया छोटा आवेश बल का अनुभव करता है, और बल के खिलाफ उस बिंदु पर उस आवेश को लाया है,जिसके लिए [[यांत्रिक कार्य]] की आवश्यकता होती है। किसी भी बिंदु पर विद्युत क्षमता को अनंत से उस बिंदु तक अनंत से इकाई परीक्षण आवेश लाने के लिए आवश्यक ऊर्जा के रूप में परिभाषित किया जाता है। यह सामान्यतः वोल्ट में मापा जाता है, और वोल्ट वह क्षमता है जिसके लिए जूल को कार्य के लिए विस्तारित किया जाना चाहिए जिससे अनंत से कूलॉम का आवेश लाया जा सके।<ref name=uniphysics/>{{rp|494–98}} अपितु औपचारिक क्षमता की यह परिभाषा, '''अपितु औपचारिक''', बहुत न्यूनतम व्यावहारिक अनुप्रयोग है, और अधिक उपयोगी अवधारणा विद्युत संभावित अंतर है, और दो निर्दिष्ट बिंदुओं के बीच इकाई आवेश को स्थानांतरित करने के लिए आवश्यक ऊर्जा है। एक विद्युत क्षेत्र में विशेष गुण होता है कि यह [[रूढ़िवादी बल]] है, जिसका अर्थ है कि परीक्षण आवेश द्वारा लिया गया मार्ग अप्रासंगिक है: दो निर्दिष्ट बिंदुओं के बीच सभी पथ ही ऊर्जा विस्तारित करते हैं, और इस प्रकार संभावित अंतर के लिए अद्वितीय निधि कहा जा सकता है।<ref name=uniphysics/>{{rp|494–98}} वोल्ट को माप के लिए पसंद की इकाई के रूप में इतनी दृढ़ता से पहचाना जाता है और विद्युत संभावित अंतर का वर्णन है कि शब्द वोल्टेज अधिक प्रतिदिन के उपयोग को देखता है।
[[File:Panasonic-oxyride.jpg|thumb|alt=Two AA batteries each have a plus sign marked at one end। [[एए बैटरी]] की एक जोड़ी।+& Nbsp; साइन बैटरी टर्मिनलों के बीच संभावित अंतर की ध्रुवीयता को इंगित करता है।]]विद्युत क्षमता की अवधारणा को विद्युत क्षेत्र से निकटता से जोड़ा जाता है। एक विद्युत क्षेत्र के अंदर रखा गया छोटा आवेश बल का अनुभव करता है, और बल के खिलाफ उस बिंदु पर उस आवेश को लाया है,जिसके लिए [[यांत्रिक कार्य]] की आवश्यकता होती है। किसी भी बिंदु पर विद्युत क्षमता को अनंत से उस बिंदु तक अनंत से इकाई परीक्षण आवेश लाने के लिए आवश्यक ऊर्जा के रूप में परिभाषित किया जाता है। यह सामान्यतः वोल्ट में मापा जाता है, और वोल्ट वह क्षमता है जिसके लिए जूल को कार्य के लिए विस्तारित किया जाना चाहिए जिससे अनंत से कूलॉम का आवेश लाया जा सके।<ref name=uniphysics/>{{rp|494–98}} अपितु औपचारिक क्षमता की यह परिभाषा, बहुत न्यूनतम व्यावहारिक अनुप्रयोग है, और अधिक उपयोगी अवधारणा विद्युत संभावित अंतर है, और दो निर्दिष्ट बिंदुओं के बीच इकाई आवेश को स्थानांतरित करने के लिए आवश्यक ऊर्जा है। एक विद्युत क्षेत्र में विशेष गुण होता है कि यह [[रूढ़िवादी बल]] है, जिसका अर्थ है कि परीक्षण आवेश द्वारा लिया गया मार्ग अप्रासंगिक है: दो निर्दिष्ट बिंदुओं के बीच सभी पथ ही ऊर्जा विस्तारित करते हैं, और इस प्रकार संभावित अंतर के लिए अद्वितीय निधि कहा जा सकता है।<ref name=uniphysics/>{{rp|494–98}} वोल्ट को माप के लिए पसंद की इकाई के रूप में इतनी दृढ़ता से पहचाना जाता है और विद्युत संभावित अंतर का वर्णन है कि शब्द वोल्टेज अधिक प्रतिदिन के उपयोग को देखता है।


प्रायौगिक उद्देश्यों के लिए, सामान्य संदर्भ बिंदु को परिभाषित करना उपयोगी है, जिसमें क्षमता व्यक्त की जा सकती है और तुलना की जा सकती है। चूंकि यह अनंत पर हो सकता है, इसका बहुत अधिक उपयोगी उदाहरण [[पृथ्वी]] ही है, जिसे हर जगह समान क्षमता वाला माना जाता है। यह संदर्भ बिंदु स्वाभाविक रूप से '''नाम''' '''ग्राउंड''' ('''विद्युत''') या [[जमीन (बिजली)|पृथ्वी या जमीन]] नाम लेता है। पृथ्वी को सकारात्मक और ऋणात्मक आवेश की समान मात्रा का अनंत स्रोत माना जाता है, और इसलिए विद्युत रूप से अनावेशित और चार्ज ना करने योग्य है।<ref>
प्रायौगिक उद्देश्यों के लिए, सामान्य संदर्भ बिंदु को परिभाषित करना उपयोगी है, जिसमें क्षमता व्यक्त की जा सकती है और तुलना की जा सकती है। चूंकि यह अनंत पर हो सकता है, इसका बहुत अधिक उपयोगी उदाहरण [[पृथ्वी]] ही है, जिसे हर जगह समान क्षमता वाला माना जाता है। यह संदर्भ बिंदु स्वाभाविक रूप से [[जमीन (बिजली)|पृथ्वी या जमीन]] नाम लेता है। पृथ्वी को सकारात्मक और ऋणात्मक आवेश की समान मात्रा का अनंत स्रोत माना जाता है, और इसलिए विद्युत रूप से अनावेशित और चार्ज ना करने योग्य है।<ref>
{{Citation
{{Citation
| first = Raymond A. | last = Serway
| first = Raymond A. | last = Serway
Line 384: Line 384:
</ref>
</ref>


विद्युत विभव [[स्केलर (भौतिकी)|अदिश राशि]] है, अर्थात इसमें केवल परिमाण होता है परन्तु दिशा नहीं होती है। इसे ऊंचाई के अनुरूप देखा जा सकता है: जिस तरह '''एक''' मुक्त वस्तु '''एक''' गुरुत्वाकर्षण क्षेत्र के कारण ऊंचाई में अंतर के माध्यम से गिर जाएगी, उसी तरह एक विद्युत क्षेत्र के कारण '''होने वाले''' वोल्टेज में आवेश 'गिर' जाएगा।<ref>{{Citation
विद्युत विभव [[स्केलर (भौतिकी)|अदिश राशि]] है, अर्थात इसमें केवल परिमाण होता है परन्तु दिशा नहीं होती है। इसे ऊंचाई के अनुरूप देखा जा सकता है: जिस तरह मुक्त वस्तु गुरुत्वाकर्षण क्षेत्र के कारण ऊंचाई में अंतर के माध्यम से गिर जाएगी, उसी तरह एक विद्युत क्षेत्र के कारण वोल्टेज में आवेश 'गिर' जाएगा।<ref>{{Citation
| first1 = Sue
| first1 = Sue
| last1 = Saeli
| last1 = Saeli
Line 402: Line 402:
| archive-url = https://web.archive.org/web/20080216100859/http://physicsed.buffalostate.edu/pubs/PHY690/Saeli2004GEModels/older/ElectricAnalogies1Nov.doc
| archive-url = https://web.archive.org/web/20080216100859/http://physicsed.buffalostate.edu/pubs/PHY690/Saeli2004GEModels/older/ElectricAnalogies1Nov.doc
| url-status = live
| url-status = live
}}</ref> जैसा कि राहत मानचित्र समान ऊंचाई के [[समोच्च रेखा|समोच्च रेखाओं]] को दर्शाते हैं, समान क्षमता के बिंदुओं को चिह्नित करने वाली रेखाओं का समूह (जिसे [[समविभव]] के रूप में जाना जाता है) को इलेक्ट्रोस्टिक रूप से आवेशित किए गए वस्तु के निकट खींचा जा सकता है। सुसंगतता समकोण पर बल की सभी पंक्तियों को पार करती है। उन्हें विद्युत संवाहक की सतह के समानांतर भी होना चाहिए, अन्यथा यह बल का उत्पादन करेगा जो आवेश वाहक को सतह की क्षमता में भी स्थानांतरित करेगा।
}}</ref> जैसा कि राहत मानचित्र समान ऊंचाई के [[समोच्च रेखा|समोच्च रेखाओं]] को दर्शाते हैं, समान क्षमता के बिंदुओं को चिह्नित करने वाली रेखाओं का समूह (जिसे [[समविभव]] के रूप में जाना जाता है) को इलेक्ट्रोस्टिक रूप से आवेशित किए गए वस्तु के निकट खींचा जा सकता है। सुसंगतता समकोण पर बल की सभी पंक्तियों को पार करती है। उन्हें विद्युत संवाहक की सतह के समानांतर भी होना चाहिए, अन्यथा यह बल का उत्पादन करेगा जो आवेश वाहक को सतह की क्षमता में भी स्थानांतरित करेगा।


विद्युत क्षेत्र को औपचारिक रूप से प्रति यूनिट [[समविभव|विभव]] के बल के रूप में परिभाषित किया गया था, किन्तु क्षमता की अवधारणा अधिक उपयोगी और समकक्ष परिभाषा के लिए अनुमति देती है: विद्युत क्षेत्र विद्युत क्षमता का स्थानीय [[ढाल|ढाल(प्रवणता)]] है। यह सामान्यतः वोल्ट '''& nbsp'''; प्रति '''& nbsp'''; मीटर में व्यक्त किया जाता है, क्षेत्र की वेक्टर दिशा क्षमता की सबसे बड़ी ढलान की रेखा है, और जहां [[समविभव]] एकसाथ निकटतम होते है।<ref name="Duffin" />{{rp|60}}
विद्युत क्षेत्र को औपचारिक रूप से प्रति यूनिट [[समविभव|विभव]] के बल के रूप में परिभाषित किया गया था, किन्तु क्षमता की अवधारणा अधिक उपयोगी और समकक्ष परिभाषा के लिए अनुमति देती है: विद्युत क्षेत्र विद्युत क्षमता का स्थानीय [[ढाल|ढाल(प्रवणता)]] है। यह सामान्यतः वोल्ट/मीटर में व्यक्त किया जाता है, क्षेत्र की वेक्टर दिशा क्षमता की सबसे बड़ी ढलान की रेखा है, और जहां [[समविभव]] एकसाथ निकटतम होते है।<ref name="Duffin" />{{rp|60}}
=== विद्युत चुम्बक ===
=== विद्युत चुम्बक ===
{{Main|विद्युत चुम्बकों}}
{{Main|विद्युत चुम्बकों}}
[[File:Electromagnetism.svg|thumb|left|alt=A wire carries a current towards the reader।कंसेंट्रिक सर्कल तार के चारों ओर चुंबकीय क्षेत्र सर्कल एंटीक्लॉकवाइज का प्रतिनिधित्व करते हुए, जैसा कि पाठक द्वारा देखा गया है। एक वर्तमान के आसपास चुंबकीय क्षेत्र सर्कल]]1821 में ऑर्स्टेड ने खोज में कहा कि विद्युत प्रवाह को ले जाने वाले तार के सभी किनारों के निकट चुंबकीय क्षेत्र उपस्थित था, उसने संकेत दिया कि विद्युत और चुंबकत्व के बीच सीधा संबंध था। इसके अतिरिक्त, '''बातचीत''' गुरुत्वाकर्षण और इलेक्ट्रोस्टैटिक बलों से परस्पर क्रिया अलग थी,और तब प्रकृति के दो बलों को '''तब''' जाना जाता है। दिक्सूचक की सूई पर लगे बल ने इसे धारावाही तार की ओर या उससे दूर निर्देशित नहीं किया, किन्तु इसके लिए इसके समकोण पर कार्य किया।<ref name=berkson/>{{rp|p=370}} ओर्स्टेड के शब्द थे कि "विद्युत संघर्ष परिक्रामी तरीके से कार्य करता है।" बल धारा की दिशा पर भी निर्भर करता था, क्योंकि यदि प्रवाह उलटा होता है तो बल भी विपरीत कार्य करता है ।<ref>
[[File:Electromagnetism.svg|thumb|left|alt=A wire carries a current towards the reader।कंसेंट्रिक सर्कल तार के चारों ओर चुंबकीय क्षेत्र सर्कल एंटीक्लॉकवाइज का प्रतिनिधित्व करते हुए, जैसा कि पाठक द्वारा देखा गया है। एक वर्तमान के आसपास चुंबकीय क्षेत्र सर्कल]]1821 में ऑर्स्टेड ने खोज में कहा कि विद्युत प्रवाह को ले जाने वाले तार के सभी किनारों के निकट चुंबकीय क्षेत्र उपस्थित था, उसने संकेत दिया कि विद्युत और चुंबकत्व के बीच सीधा संबंध था। इसके अतिरिक्त, गुरुत्वाकर्षण और इलेक्ट्रोस्टैटिक बलों से परस्पर क्रिया अलग थी,और तब प्रकृति के दो बलों को जाना जाता है। दिक्सूचक की सूई पर लगे बल ने इसे धारावाही तार की ओर या उससे दूर निर्देशित नहीं किया, किन्तु इसके लिए इसके समकोण पर कार्य किया।<ref name=berkson/>{{rp|p=370}} ओर्स्टेड के शब्द थे कि "विद्युत संघर्ष परिक्रामी तरीके से कार्य करता है।" बल धारा की दिशा पर भी निर्भर करता था, क्योंकि यदि प्रवाह उलटा होता है तो बल भी विपरीत कार्य करता है ।<ref>
{{Citation
{{Citation
| first = Silvanus P. | last = Thompson
| first = Silvanus P. | last = Thompson
Line 416: Line 416:
| isbn = 1-4212-7387-X}}
| isbn = 1-4212-7387-X}}
</ref>
</ref>
ऑर्स्टेड ने अपनी खोज को पूरी तरह से नहीं समझा, किन्तु उन्होंने देखा कि प्रभाव पारस्परिक था: '''पर:''' धारा चुंबक पर बल लगाती है, और चुंबकीय क्षेत्र धारा पर बल लगाता है। एम्पीयर द्वारा इस घटना की और जांच की गई, जिन्होंने पाया कि दो समानांतर धारावाही तारों ने एक-दूसरे पर एक बल लगाया: एक ही दिशा में धाराओं का संचालन करने वाले दो तार एक-दूसरे की ओर आकर्षित होते हैं, किंतु विपरीत दिशाओं में धाराओं वाले तारों को अलग किया जाता है।<ref name="elec_princ_92-93">
ऑर्स्टेड ने अपनी खोज को पूरी तरह से नहीं समझा, किन्तु उन्होंने देखा कि प्रभाव पारस्परिक था: धारा चुंबक पर बल लगाती है, और चुंबकीय क्षेत्र धारा पर बल लगाता है। एम्पीयर द्वारा इस घटना की और जांच की गई, जिन्होंने पाया कि दो समानांतर धारावाही तारों ने एक-दूसरे पर एक बल लगाया: एक ही दिशा में धाराओं का संचालन करने वाले दो तार एक-दूसरे की ओर आकर्षित होते हैं, किंतु विपरीत दिशाओं में धाराओं वाले तारों को अलग किया जाता है।<ref name="elec_princ_92-93">
{{citation
{{citation
| last = Morely & Hughes
| last = Morely & Hughes
Line 435: Line 435:
</ref>
</ref>


1831 में फैराडे द्वारा प्रयोग से पता चला कि चुंबकीय क्षेत्र के लिए लंबवत चलने वाले तार के सिरों के मध्य '''के बीच''' संभावित अंतर विकसित किया। इस प्रक्रिया के आगे के विश्लेषण, जिसे [[इलेक्ट्रोमैग्नेटिक इंडक्शन|इलेक्ट्रोमैग्नेटिक इंडक्शन(विद्युत चुम्बकीय प्रेरण)]] के रूप में जाना जाता है, ने उसे सिद्धांत को बताने में सक्षम बनाया, जिसे अब फैराडे के प्रेरण के नियम के रूप में जाना जाता है, कि बंद परिपथ में प्रेरित संभावित अंतर लूप के माध्यम से [[चुंबकीय प्रवाह]] के परिवर्तन की दर के लिए आनुपातिक है। इस खोज के उपयोग ने उन्हें 1831 में पहले [[विद्युत जनरेटर]] का आविष्कार करने में सक्षम बनाया, जिसमें उन्होंने घूर्णन तांबे की डिस्क की यांत्रिक ऊर्जा को विद्युत ऊर्जा में बदल दिया।<ref name=iet_faraday/> फैराडे की डिस्क अकुशल थी और व्यावहारिक जनरेटर के रूप में इसका कोई उपयोग नहीं था, किन्तु इसने चुंबकत्व का उपयोग करके विद्युत शक्ति उत्पन्न करने की संभावना दिखाई, एक संभावना जो उन लोगों द्वारा ली जाएगी जो उसके काम से आगे बढ़ते है ।
1831 में फैराडे द्वारा प्रयोग से पता चला कि चुंबकीय क्षेत्र के लिए लंबवत चलने वाले तार के सिरों के मध्य संभावित अंतर विकसित किया। इस प्रक्रिया के आगे के विश्लेषण, जिसे [[इलेक्ट्रोमैग्नेटिक इंडक्शन|इलेक्ट्रोमैग्नेटिक इंडक्शन(विद्युत चुम्बकीय प्रेरण)]] के रूप में जाना जाता है, ने उसे सिद्धांत को बताने में सक्षम बनाया, जिसे अब फैराडे के प्रेरण के नियम के रूप में जाना जाता है, कि बंद परिपथ में प्रेरित संभावित अंतर लूप के माध्यम से [[चुंबकीय प्रवाह]] के परिवर्तन की दर के लिए आनुपातिक है। इस खोज के उपयोग ने उन्हें 1831 में पहले [[विद्युत जनरेटर]] का आविष्कार करने में सक्षम बनाया, जिसमें उन्होंने घूर्णन तांबे की डिस्क की यांत्रिक ऊर्जा को विद्युत ऊर्जा में बदल दिया।<ref name=iet_faraday/> फैराडे की डिस्क अकुशल थी और व्यावहारिक जनरेटर के रूप में इसका कोई उपयोग नहीं था, किन्तु इसने चुंबकत्व का उपयोग करके विद्युत शक्ति उत्पन्न करने की संभावना दिखाई, एक संभावना जो उन लोगों द्वारा ली जाएगी जो उसके काम से आगे बढ़ते है ।


=== इलेक्ट्रोकेमिस्ट्री(विद्युत रसायन) ===
=== इलेक्ट्रोकेमिस्ट्री(विद्युत रसायन) ===
Line 442: Line 442:
विद्युत का उत्पादन करने के लिए रासायनिक प्रतिक्रियाओं की क्षमता, और इसके विपरीत रासायनिक प्रतिक्रियाओं को संचालित करने के लिए बिजली की क्षमता के व्यापक उपयोग हैं।
विद्युत का उत्पादन करने के लिए रासायनिक प्रतिक्रियाओं की क्षमता, और इसके विपरीत रासायनिक प्रतिक्रियाओं को संचालित करने के लिए बिजली की क्षमता के व्यापक उपयोग हैं।


इलेक्ट्रोकैमिस्ट्री सदैव विद्युत का महत्वपूर्ण हिस्सा रही है। वोल्टिक ढेर के प्रारंभिक आविष्कार से [[इलेक्ट्रोकेमिकल सेल]] द्वारा कई अलग-अलग प्रकार की बैटरी, इलेक्ट्रोप्लेटिंग और इलेक्ट्रोलिसिस सेल में विकसित हुए हैं।[[ अल्युमीनियम | अल्युमीनियम]] इस तरह से विशाल मात्रा में उत्पादित होता है, और कई पोर्टेबल उपकरणों को पुनर्भृत(रिचार्जेबल) सेल का उपयोग करके विद्युत रूप से संचालित किया जाता है।
इलेक्ट्रोकैमिस्ट्री सदैव विद्युत का महत्वपूर्ण हिस्सा रही है। वोल्टिक ढेर के प्रारंभिक आविष्कार से [[इलेक्ट्रोकेमिकल सेल]] द्वारा कई अलग-अलग प्रकार की बैटरी, इलेक्ट्रोप्लेटिंग और इलेक्ट्रोलिसिस सेल में विकसित हुए हैं।[[ अल्युमीनियम | अल्युमीनियम]] इस तरह से विशाल मात्रा में उत्पादित होता है, और कई पोर्टेबल उपकरणों को पुनर्भृत(रिचार्जेबल) सेल का उपयोग करके विद्युत रूप से संचालित किया जाता है।


=== इलेक्ट्रिक परिपथ ===
=== इलेक्ट्रिक परिपथ ===
{{Main|विद्युत परिपथ}}
{{Main|विद्युत परिपथ}}
[[File:Ohms law voltage source.svg|thumb|एक मूलभूत विद्युत परिपथ।बाईं ओर वोल्टेज स्रोत V परिपथके चारों ओर धारा (विद्युत) को चलाता है, प्रतिरोधक आर में [[विद्युत ऊर्जा]] प्रदान करता है। रोकनेवाला से, धारा स्रोत पर लौटता है, परिपथको पूरा करता है।]]एक इलेक्ट्रिक परिपथ और इलेक्ट्रिक घटकों का परस्पर संबंध है जैसे कि इलेक्ट्रिक आवेश को बंद पथ (एक परिपथ) के साथ सामान्यतः कुछ उपयोगी कार्य करने के लिए प्रवाहित किया जाता है।  
[[File:Ohms law voltage source.svg|thumb|एक मूलभूत विद्युत परिपथ।बाईं ओर वोल्टेज स्रोत V परिपथके चारों ओर धारा को चलाता है, प्रतिरोधक आर में [[विद्युत ऊर्जा]] प्रदान करता है। रोकनेवाला से, धारा स्रोत पर लौटता है, परिपथको पूरा करता है।]]एक इलेक्ट्रिक परिपथ और इलेक्ट्रिक घटकों का परस्पर संबंध है जैसे कि इलेक्ट्रिक आवेश को बंद पथ (एक परिपथ) के साथ सामान्यतः कुछ उपयोगी कार्य करने के लिए प्रवाहित किया जाता है।  


''', सामान्यतः कुछ उपयोगी कार्य करने के लिए।'''
एक इलेक्ट्रिक परिपथ में घटक कई रूप ले सकते हैं, जिसमें प्रतिरोधों, [[ संधारित्र |संधारित्र]] , [[ बदलना |स्विच]] , ट्रांसफार्मर और इलेक्ट्रॉनिक्स जैसे तत्व सम्मिलित हो सकते हैं।[[ विद्युत सर्किट | विद्युत परिपथ]] में [[सक्रिय घटक]] होते हैं, सामान्यतः अर्धचालक होते हैं, और जो सामान्यतः [[रैखिक|गैर-रैखिक]] व्यवहार को प्रदर्शित करते हैं, जिसमें जटिल विश्लेषण की आवश्यकता होती है। सबसे सरल विद्युत घटक वे हैं जिन्हें निष्क्रिय (अभियांत्रिकी) और रैखिक कहा जाता है: अपितु वे अस्थायी रूप से ऊर्जा को स्टोर कर सकते हैं, उनमें इसका कोई स्रोत नहीं है, और उत्तेजनाओं के लिए रैखिक प्रतिक्रियाएं प्रदर्शित करते हैं।<ref name="Alexander">{{Citation | last1 = Alexander | first1 = Charles | last2 = Sadiku | first2 = Matthew | title = Fundamentals of Electric Circuits | publisher = McGraw-Hill | year = 2006 | edition = 3, revised |isbn = 9780073301150}}</ref>{{rp|15–16}}


एक इलेक्ट्रिक परिपथ में घटक कई रूप ले सकते हैं, जिसमें प्रतिरोधों, [[ संधारित्र |संधारित्र]] , [[ बदलना |स्विच]] , ट्रांसफार्मर और इलेक्ट्रॉनिक्स जैसे तत्व सम्मिलित हो सकते हैं।[[ विद्युत सर्किट | विद्युत परिपथ]] में [[सक्रिय घटक]] होते हैं, सामान्यतः अर्धचालक होते हैं, और जो  सामान्यतः [[रैखिक|गैर-रैखिक]] व्यवहार को प्रदर्शित करते हैं, जिसमें जटिल विश्लेषण की आवश्यकता होती है। सबसे सरल विद्युत घटक वे हैं जिन्हें निष्क्रिय  (अभियांत्रिकी) और रैखिक कहा जाता है: अपितु वे अस्थायी रूप से ऊर्जा को स्टोर कर सकते हैं, उनमें इसका कोई स्रोत नहीं है, और उत्तेजनाओं के लिए रैखिक प्रतिक्रियाएं प्रदर्शित करते हैं।<ref name="Alexander">{{Citation | last1 = Alexander | first1 = Charles | last2 = Sadiku | first2 = Matthew | title = Fundamentals of Electric Circuits | publisher = McGraw-Hill | year = 2006 | edition = 3, revised |isbn = 9780073301150}}</ref>{{rp|15–16}}
प्रतिरोधी संभवतः निष्क्रिय परिपथ तत्वों का सबसे सरल रूप है: जैसा कि इसके नाम से पता चलता है, यह विद्युत प्रतिरोध के माध्यम से धारा, गर्मी के रूप में इसकी ऊर्जा को भंग कर देती है। प्रतिरोध संवाहक के माध्यम से आवेश की गति का परिणाम है: उदाहरण के लिए,धातुओं में प्रतिरोध मुख्य रूप से इलेक्ट्रॉनों और आयनों के बीच टकराव के कारण होता है।[[ओम]] का नियम परिपथ सिद्धांत का मूलभूत नियम है, जिसमें कहा गया है कि प्रतिरोध से निकलना धारा में इसके संभावित अंतर के लिए सीधे आनुपातिक है। अधिकांश सामग्रियों का प्रतिरोध तापमान और धाराओं की सीमा पर अपेक्षाकृत स्थिर है , इन निबंधनों के अनुसार सामग्री को 'ओमिक' के रूप में जाना जाता है। ओम, प्रतिरोध की इकाई, को जॉर्ज ओम के सम्मान में नामित किया गया था, और ग्रीक अक्षर ω द्वारा इसका प्रतीक है।1ω वह प्रतिरोध है जो 1 amp के धारा के उत्तर में 1 वोल्ट के संभावित अंतर का उत्पादन करेगा।<ref name="Alexander" />{{rp|30–35}}


प्रतिरोधी संभवतः निष्क्रिय परिपथ तत्वों का सबसे सरल रूप है: जैसा कि इसके नाम से पता चलता है, यह विद्युत प्रतिरोध के माध्यम से धारा, गर्मी के रूप में इसकी ऊर्जा को भंग कर देती है। प्रतिरोध संवाहक के माध्यम से आवेश की गति का परिणाम है: '''धातुओं''' '''में''', उदाहरण के लिए,धातुओं में प्रतिरोध मुख्य रूप से इलेक्ट्रॉनों और आयनों के बीच टकराव के कारण होता है।[[ओम]] का नियम परिपथ सिद्धांत का मूलभूत नियम है, जिसमें कहा गया है कि प्रतिरोध से निकलना धारा में इसके संभावित अंतर के लिए सीधे आनुपातिक है। अधिकांश सामग्रियों का प्रतिरोध तापमान और धाराओं की सीमा पर अपेक्षाकृत स्थिर है , इन निबंधनों के अनुसार सामग्री को 'ओमिक' के रूप में जाना जाता है। ओम, प्रतिरोध की इकाई, को जॉर्ज ओम के सम्मान में नामित किया गया था, और ग्रीक अक्षर ω द्वारा इसका प्रतीक है।1 '''&''' '''nbsp'''; ω वह प्रतिरोध है जो 1 amp के धारा के उत्तर में 1 वोल्ट के संभावित अंतर का उत्पादन करेगा।<ref name="Alexander" />{{rp|30–35}}
संधारित्र लेडेन जार का विकास है और ऐसा उपकरण है जो आवेश को स्टोर कर सकता है, और इस तरह परिणामी क्षेत्र में विद्युत ऊर्जा को संग्रहीत कर सकता है। इसमें पतली [[इन्सुलेटर (बिजली)|इन्सुलेटर डाइलेक्ट्रिक परत]] द्वारा अलग किए गए दो संचालन प्लेटें होती हैं;व्यवहार में, पतली धातु के झगड़े को साथ कुंडलित किया जाता है, जिससे प्रति यूनिट मात्रा में सतह क्षेत्र बढ़ जाता है और इसलिए इसमें धारिता उत्पन्न होती है। धारिता की इकाई माइकल फैराडे के नाम पर नामित [[अंगुली की छाप|फैराड]] है, और प्रतीक ''F'' को दिया गया है: 1 फैराड वह धारिता है जो 1 वोल्ट के संभावित अंतर को विकसित करता है जब यह 1 कूलॉम का आवेश संग्रहीत करता है।वोल्टेज की आपूर्ति से जुड़ा संधारित्र प्रारंभ में धारा का कारण बनता है क्योंकि यह आवेश जमा करता है; यह धारा समय में क्षय हो जाएगा क्योंकि संधारित्र भरता है, अंततः शून्य पर गिर जाता है। संधारित्र इसलिए स्थिर स्थिति की अनुमति नहीं देगा, किंतु इसे अवरुद्ध करता है।<ref name="Alexander" />{{rp|216–20}}


संधारित्र लेडेन जार का विकास है और ऐसा  उपकरण है जो आवेश को स्टोर कर सकता है, और इस तरह परिणामी क्षेत्र में विद्युत ऊर्जा को संग्रहीत कर सकता है। इसमें पतली [[इन्सुलेटर (बिजली)|इन्सुलेटर डाइलेक्ट्रिक परत]] '''डाइलेक्ट्रिक परत''' द्वारा अलग किए गए दो संचालन प्लेटें होती हैं;व्यवहार में, पतली धातु के झगड़े को साथ कुंडलित किया जाता है, जिससे प्रति यूनिट मात्रा में सतह क्षेत्र बढ़ जाता है और इसलिए इसमें  धारिता उत्पन्न  होती है। धारिता की इकाई माइकल फैराडे के नाम पर नामित [[अंगुली की छाप|फैराड]] है, और प्रतीक ''F'' को दिया गया है: 1 फैराड वह  धारिता है जो  1 वोल्ट के संभावित अंतर को विकसित करता है जब यह 1 कूलॉम का आवेश संग्रहीत करता है।वोल्टेज की आपूर्ति से जुड़ा संधारित्र प्रारंभ में धारा का कारण बनता है क्योंकि यह आवेश जमा करता है; यह धारा समय में क्षय हो जाएगा क्योंकि संधारित्र भरता है, अंततः शून्य पर गिर जाता है। संधारित्र इसलिए स्थिर स्थिति की अनुमति नहीं देगा, किंतु इसे अवरुद्ध करता है।<ref name="Alexander" />{{rp|216–20}}
[[प्रारंभ करनेवाला|प्रेरित्र]] संवाहक है, सामान्यतः तार की कुंडल, जो इसके माध्यम से धारा के उत्तर में चुंबकीय क्षेत्र में ऊर्जा संग्रहीत करता है। जब धारा बदलता है, तो चुंबकीय क्षेत्र भी बदलता है, विद्युत चुम्बकीय प्रेरण संवाहक के सिरों के बीच वोल्टेज को उत्पन्न करता है। प्रेरित वोल्टेज धारा के समय व्युत्पन्न के लिए आनुपातिक है। आनुपातिकता के स्थिरांक को अधिष्ठापन कहा जाता है। अधिष्ठापन की इकाई [[ हेनरी (इकाई) |हेनरी]] है, जिसका नाम [[जोसेफ हेनरी]] के नाम पर है, जो फैराडे के समकालीन हैं। 1 हेनरी अधिष्ठापन है जो 1 वोल्ट के संभावित अंतर को प्रेरित करेगा यदि इसके माध्यम से धारा एम्पीयर प्रति सेकंड की दर से बदलता है। प्रेरित्र का व्यवहार कुछ संधारित्र के लिए विपरीत होता है: यह स्वतंत्र रूप से अपरिवर्तनीय धारा की अनुमति देगा, किन्तु तेजी से बदलते का विरोध करता है।<ref name="Alexander" />{{rp|226–29}}
 
[[प्रारंभ करनेवाला|प्रेरित्र]] संवाहक है, सामान्यतः तार की कुंडल, जो इसके माध्यम से धारा के उत्तर में चुंबकीय क्षेत्र में ऊर्जा संग्रहीत करता है। जब धारा बदलता है, तो चुंबकीय क्षेत्र भी बदलता है, विद्युत चुम्बकीय प्रेरण संवाहक के सिरों के बीच वोल्टेज को उत्पन्न करता है। प्रेरित वोल्टेज धारा के समय व्युत्पन्न के लिए आनुपातिक है। आनुपातिकता के स्थिरांक को अधिष्ठापन कहा जाता है। अधिष्ठापन की इकाई [[ हेनरी (इकाई) |हेनरी ('''इकाई''')]] है, जिसका नाम [[जोसेफ हेनरी]] के नाम पर है, जो फैराडे के समकालीन हैं। 1 हेनरी अधिष्ठापन है जो 1 वोल्ट के संभावित अंतर को प्रेरित करेगा यदि इसके माध्यम से धारा एम्पीयर प्रति सेकंड की दर से बदलता है। प्रेरित्र का व्यवहार कुछ संधारित्र के लिए विपरीत होता है: यह स्वतंत्र रूप से अपरिवर्तनीय धारा की अनुमति देगा, किन्तु तेजी से बदलते का विरोध करता है।<ref name="Alexander" />{{rp|226–29}}
=== इलेक्ट्रिक पावर(विद्युत शक्ति) ===
=== इलेक्ट्रिक पावर(विद्युत शक्ति) ===
{{main|विद्युत शक्ति}}
{{main|विद्युत शक्ति}}
इलेक्ट्रिक पावर वह दर है जिस पर [[ विद्युत ऊर्जा |विद्युत ऊर्जा]] को इलेक्ट्रिक परिपथ द्वारा स्थानांतरित किया जाता है।पावर (भौतिकी) की एसआई इकाई वाट ('''यूनिट'''), प्रति [[ दूसरा |जूल/सेकंड]] '''जूल''' है।
इलेक्ट्रिक पावर वह दर है जिस पर [[ विद्युत ऊर्जा |विद्युत ऊर्जा]] को इलेक्ट्रिक परिपथ द्वारा स्थानांतरित किया जाता है। पावर की एसआई इकाई वाट , [[ दूसरा |जूल/सेकंड]] है।


विद्युत(भौतिकी) की तरह इलेक्ट्रिक पावर, कार्य करने की दर (विद्युत), वाट्स में मापा जाता है, [[और]] अक्षर पी द्वारा प्रतिनिधित्व किया जाता है। वाट्स शब्द का उपयोग बोलचाल में किया जाता है, जिसका अर्थ है वाट्स में विद्युत शक्ति का कारण है।एक विद्युत प्रवाह द्वारा उत्पादित वाट्स में इलेक्ट्रिक पावर मैं q कूलॉम केआवेश से युक्त होता है, जो हर टी सेकंड में विद्युत क्षमता (वोल्टेज) अंतर से निकलता है
विद्युत की तरह इलेक्ट्रिक पावर, कार्य करने की दर , वाट्स में मापा जाता है, [[और]] अक्षर पी द्वारा प्रतिनिधित्व किया जाता है। वाट्स शब्द का उपयोग बोलचाल में किया जाता है, जिसका अर्थ है वाट्स में विद्युत शक्ति का कारण है।एक विद्युत प्रवाह द्वारा उत्पादित वाट्स में इलेक्ट्रिक पावर मैं q कूलॉम केआवेश से युक्त होता है, जो हर टी सेकंड में विद्युत क्षमता (वोल्टेज) अंतर से निकलता है
:<math>P = \text{work done per unit time} = \frac {QV}{t} = IV \,</math>
:<math>P = \text{work done per unit time} = \frac {QV}{t} = IV \,</math>
कहाँ पे
कहाँ पे

Revision as of 03:27, 16 February 2023

विद्युत और शहरी प्रकाश व्यवस्था विद्युत के कुछ सबसे नाटकीय प्रभाव हैंl

विद्युत भौतिकी की घटना का समूह है, जो कि विद्युत आवेश के गुण है, जिसमें विद्युत क्षेत्र आवेश के भी गुण है। विद्युत चुंबकत्व से संबंधित है, दोनों इलेक्ट्रोमैग्नेटिज्म(विद्युत चुम्बकत्व) की घटना का हिस्सा हैं, जैसा कि मैक्सवेल के समीकरणों द्वारा वर्णित है। विभिन्न सामान्य घटनाएं विद्युत से संबंधित हैं, जिनमें विद्युत, स्थैतिक बिजली, विद्युतीय ऊष्मा , विद्युत का निर्वहन और कई अन्य सम्मिलित हैं।

इसमें विद्युत के आवेश की उपस्थिति होती है , जो या तो सकारात्मक या ऋणात्मक हो सकता है, यह विद्युत अभियन्त्रण का उत्पादन करती है। विद्युत आवेशों की आवागमन विद्युत प्रवाह के रूप में होता है और जो चुंबकीय क्षेत्र का उत्पादन करता है।

जब आवेश को गैर-शून्य विद्युत क्षेत्र के साथ किसी स्थान पर रखा जाये , तो बल उस पर कार्य करेगा। इस बल की भयावहता कूलॉम के नियम द्वारा दी गई है। यदि आवेश चलता है, तो विद्युत क्षेत्र इलेक्ट्रिक आवेश पर कार्य कर रहा होगा। इस प्रकार हम अंतरिक्ष में निश्चित बिंदु पर विद्युत क्षमता की बात कर सकते हैं, जो किसी बाहरी एजेंट द्वारा किए गए कार्य के बराबर है, जो किसी भी त्वरण के बिना उस बिंदु पर इच्छानुसार चुने गए संदर्भ बिंदु से सकारात्मकआवेश की इकाई को ले जाता है और यह सामान्यतः वोल्ट में मापा जाता है।

विद्युत कई आधुनिक प्रौद्योगिकियों के केंद्र में है, जिसका उपयोग किया जा रहा है:

  • इलेक्ट्रिक पावर जहां इलेक्ट्रिक धारा का उपयोग उपकरणों को सक्रिय करने के लिए किया जाता है;
  • इलेक्ट्रानिक्स जो विद्युत परिपथ से संबंधित है जिसमें सक्रिय विद्युत घटक जैसे कि वैक्यूम ट्यूब, ट्रांजिस्टर, डायोड और एकीकृत परिपथ, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियां सम्मिलित है ।

प्राचीनता के बाद से विद्युत घटनाओं का अध्ययन किया गया है, चूंकि सैद्धांतिक समझ में प्रगति सत्रहवीं और अठारहवीं शताब्दी तक धीमी रही। विद्युत चुम्बकत्व का सिद्धांत 19 वीं शताब्दी में विकसित किया गया था, और उस सदी के अंत तक विद्युत अभियांत्रिकी द्वारा औद्योगिक और आवासीय उपयोग के लिए विद्युत(बिजली) रखा जा रहा था । इस समय विद्युत प्रौद्योगिकी में तेजी से विस्तार ने उद्योग और समाज को बदल दिया, जो दूसरी औद्योगिक क्रांति के लिए प्रेरक शक्ति बन गया। विद्युत की असाधारण बहुमुखी प्रतिभा का कारण है कि इसे लगभग असीम समूह अनुप्रयोगों में रखा जा सकता है जिसमें पावर, एचवीएसी, विद्युत प्रकाश , दूरसंचार और गणना सम्मिलित हैं। विद्युत शक्ति अब आधुनिक औद्योगिक समाज की रीढ़ है।[1]

इतिहास

A bust of a bearded man with dishevelled hair
थेल्स, विद्युत में सबसे पहले ज्ञात शोधकर्ता

विद्युत का कोई भी ज्ञान अस्तित्व में आने से बहुत पहले, लोगों को विद्युत मछली(इलेक्ट्रिक फिश) से झटके के बारे में पता था। 28 वीं शताब्दी ईसा पूर्व से डेटिंग वाले प्राचीन मिस्र के ग्रंथों ने इन मछलियों को नील नदी के गड़गड़ाहट के रूप में संदर्भित किया, और उन्हें अन्य सभी मछलियों के संरक्षक के रूप में वर्णित किया। इलेक्ट्रिक फिश को बाद में मध्ययुगीन इस्लामिक वर्ल्ड एंड इस्लामिक मेडिसिन में प्राचीन ग्रीक, रोमन साम्राज्य और विज्ञान द्वारा बाद में मिलेनिया की सूचना दी गई थी।[2] कई प्राचीन लेखकों, जैसे कि प्लिनी द एल्डर और स्क्रिबोनियस लार्गस ने इलेक्ट्रिक कैटफ़िश और इलेक्ट्रिक किरणों द्वारा वितरित विद्युत के झटकों के सुन्न प्रभाव को प्रमाणित किया, और जानते थे कि इस विद्युत के झटका वस्तुओं के संचालन के साथ यात्रा कर सकते हैं।[3] गाउट या सिरदर्द जैसी बीमारियों वाले मरीजों को इस उम्मीद में इलेक्ट्रिक फिश को छूने के लिए निर्देशित किया गया था कि शक्तिशाली झटका उन्हें ठीक कर सकता है।[4]

भूमध्य सागर के चारों ओर प्राचीन संस्कृतियों को पता था कि कुछ वस्तुएं, जैसे कि एम्बर की छड़ें, पंख जैसी हल्की वस्तुओं को आकर्षित करने के लिए बिल्ली के फर के साथ रगड़ी जा सकती हैं। मिलेटस के. थेल्स ने 600 ईसा पूर्व के निकट स्थैतिक विद्युत पर अवलोकन की श्रृंखला बनाई, जिसमें से उनका मानना था कि मैग्नेटाइट जैसे खनिजों के विपरीत घर्षण ने एम्बर को चुंबकीय बना दिया, जिसमें कोई रगड़ की आवश्यकता नहीं थी।[5][6][7][8] थेल्स का यह मानना गलत था कि आकर्षण एक चुंबकीय प्रभाव के कारण था, लेकिन बाद में विज्ञान चुंबकत्व और विद्युत के बीच एक कड़ी साबित होगा। एक विवादास्पद सिद्धांत के अनुसार, 1936 में बगदाद बैटरी की खोज के आधार पर, पार्थियन लोगों को विद्युत आवरण का ज्ञान हो सकता है, जो विद्युत उत्पन्न करने वाले सेल(गैल्वेनिक सेल) जैसा दिखता है, चूंकि यह अनिश्चित है कि क्या कलाकृति विद्युत प्रकृति की थी।[9]

A halfएक गंजे का चित्रण, तीन-टुकड़ा सूट में कुछ हद तक आदमी।18 वीं शताब्दी में बिजली पर व्यापक शोध किया गया, जैसा कि जोसेफ प्रीस्टले (1767) के इतिहास और बिजली की वर्तमान स्थिति द्वारा प्रलेखित किया गया था, जिसके साथ फ्रैंकलिन ने विस्तारित पत्राचार किया।

1600 तक सहस्राब्दियों तक विद्युत एक बौद्धिक जिज्ञासा से थोड़ी अधिक बनी रही, जब अंग्रेजी वैज्ञानिक विलियम गिल्बर्ट (खगोलविद) ने डी मैगेट(डे मैग्नेटे) को लिखा था, जिसमें उन्होंने विद्युत और चुंबकत्व का सावधानीपूर्वक अध्ययन किया, जो एम्बर को रगड़ने से उत्पन्न स्थिर विद्युत से लॉस्टस्टोन प्रभाव को अलग किया ।[5] उन्होंने रगड़ने के बाद छोटी वस्तुओं को आकर्षित करने के गुण को संदर्भित करने के लिए नया लैटिन शब्द इलेक्ट्रीकस(एम्बर या एम्बर की तरह, एम्बर के लिए, एलेक्ट्रॉन, एम्बर के लिए प्राचीन ग्रीक शब्द) को गढ़ा।[10] इस एसोसिएशन ने अंग्रेजी शब्द "इलेक्ट्रिक" और "विद्युत" को जन्म दिया, जिसने 1646 के थॉमस ब्राउन के स्यूडोडोक्सिया एपिडेमिका में प्रिंट में अपनी पहली उपस्थिति दर्ज की।[11]

आगे का कार्य 17वीं और 18वीं शताब्दी के प्रारंभ में ओटो वॉन गुरिके, रॉबर्ट बॉयल, स्टीफन ग्रे (वैज्ञानिक) और सी.एफ.डू. फे द्वारा आयोजित किया गया था।[12] बाद में 18 वीं शताब्दी में, बेंजामिन फ्रैंकलिन ने विद्युत में व्यापक शोध किया, अपने कार्य को निधि देने के लिए अपनी संपति बेच दी। जून 1752 में उन्हें एक नम पतंग के तार के नीचे एक धातु की कुंजी संलग्न करने के लिए प्रतिष्ठित किया गया था और पतंग को तूफानी आकाश में उड़ाया गया था।[13] चाभी से उसके हाथ के पिछले हिस्से तक उछलती हुई चिंगारी के एक क्रम ने दिखाया कि बिजली वास्तव में प्रकृति में विद्युत थी।[14] उन्होंने सकारात्मक और ऋणात्मक दोनों आवेशों वाली बिजली के संदर्भ में बड़ी मात्रा में विद्युत आवेश को संग्रहीत करने के लिए एक उपकरण के रूप में लेडेन जार के स्पष्ट रूप से विरोधाभासी व्यवहार की भी व्याख्या की।[15] [12]

Halfएक अंधेरे सूट की खोजों में एक आदमी की लम्बाई पोर्ट्रेट ऑयल पेंटिंग ने इलेक्ट्रिक मोटर प्रौद्योगिकी की नींव का गठन किया
माइकल फैराडे की खोजों ने इलेक्ट्रिक मोटर प्रौद्योगिकी की नींव रखी

1775 में, ह्यूग विलियमसन ने विद्युत ईल द्वारा दिए गए झटके पर रॉयल सोसाइटी को प्रयोगों की श्रृंखला की सूचना दी;[16] उसी वर्ष सर्जन और शरीर रचनाविद जॉन हंटर (सर्जन) ने मछली के विद्युत अंगों की संरचना का वर्णन किया।[17][18] 1791 में, लुइगी गालवानी ने बायोइलेक्ट्रोमैग्नेटिक्स(जैव विद्युत चुम्बकीय) की अपनी खोज प्रकाशित की, यह दर्शाते हुए कि विद्युत वह माध्यम थी जिसके द्वारा न्यूरॉन्स मांसपेशियों को संकेत देते थे।[19][20][12] जस्ता और तांबे की वैकल्पिक परतों से बनी 1800 के एलेसेंड्रो वोल्टा की बैटरी, या वोल्टिक पाइल, ने वैज्ञानिकों को पहले उपयोग की जाने वाली इलेक्ट्रोस्टैटिक मशीनों की तुलना में विद्युत ऊर्जा का अधिक विश्वसनीय स्रोत प्रदान करती है ।[19][20] विद्युत चुम्बकत्व की पहचान, विद्युत और चुंबकीय घटनाओं की एकता, हंस क्रिश्चियन एस्टड और आंद्रे-मैरी अम्पेयर के कारण 1819-1820 में जानकारी में आया ।माइकल फैराडे ने 1821 में विद्युत की मोटर का आविष्कार किया, और जॉर्ज ओम ने गणितीय रूप से 1827 में विद्युत परिपथ का विश्लेषण किया।[20] विशेष रूप से 1861 और 1862 में "बल की भौतिक रेखाओं पर" विद्युत और चुंबकत्व(और प्रकाश) निश्चित रूप से जेम्स क्लर्क मैक्सवेल द्वारा जुड़े हुए थे। [21]: 148 

अपितु 19 वीं शताब्दी की प्रारंभ में विद्युत विज्ञान में तेजी से प्रगति देखी गई थी, 19 वीं शताब्दी के उत्तरार्ध में इलेक्ट्रिकल अभियांत्रिकी में सबसे बड़ी प्रगति दिखाई दी। अलेक्जेंडर ग्राहम बेल, ओटो ब्लाथी, थॉमस एडिसन, गैलीलियो फेरारिस, ओलिवर हीविसाइड, एनोस जेडलिक, विलियम थॉमसन, प्रथम बैरन केल्विन, चार्ल्स अल्गर्नन पार्सन्स, वर्नर वॉन सीमेंस, जोसेफ स्वान, रेजिनाल्ड फेसेन्डेन, निकोला टेस्ला और जॉर्ज वेस्टिंगहाउस ऐसे लोगों के माध्यम से विद्युत वैज्ञानिक-जिज्ञासा से आधुनिक-जीवन के लिए आवश्यक उपकरण में बदल गई।

1887 में, हेनरिक हर्ट्ज[22]: 843–44 [23] ने पता लगाया कि पराबैंगनी प्रकाश से प्रदीप्त इलेक्ट्रोड विद्युत की चिंगारीयां अधिक आसानी से बनाते हैं। 1905 में, अल्बर्ट आइंस्टीन ने पेपर प्रकाशित किया, जिसमें प्रकाश विद्युत प्रभाव से प्रायोगिक डेटा को असतत मात्रा वाले पैकेटों में ले जाने वाली प्रकाश ऊर्जा के परिणाम के रूप में समझाया गया, इलेक्ट्रॉनों को सक्रिय किया, इस खोज के कारण क्वांटम क्रांति हुई।आइंस्टीन को 1921 में फोटोइलेक्ट्रिक प्रभाव के नियम की खोज के लिए भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया था।[24] फोटोइलेक्ट्रिक प्रभाव को फोटोसेल में भी नियोजित किया जाता है जैसे कि सौर पैनलों में पाया जा सकता है और इसका उपयोग अधिकांशतः विद्युत को व्यावसायिक रूप से बनाने के लिए किया जाता है।

पहला ठोस-अवस्था इलेक्ट्रॉनिक्स (सॉलिड-स्टेट उपकरण) कैट-व्हिस्कर डिटेक्टर था जिसका उपयोग पहली बार 1900 के दशक में रेडियो रिसीवर में किया गया था।संपर्क जंक्शन प्रभाव द्वारा रेडियो सिग्नल का पता लगाने के लिए ठोस क्रिस्टल (जैसे कि जर्मेनियम क्रिस्टल) के संपर्क में व्हिस्कर(मूंछ के समान) जैसे तार को हल्के से रखा जाता है।[25] ठोस-अवस्था घटक में, विद्युत प्रवाह ठोस तत्वों और यौगिकों तक सीमित है जो विशेष रूप से इसे स्विच करने और इसे बढ़ाने के लिए अभियांत्रिक हैं। धारा प्रवाह को दो रूपों में समझा जा सकता है: ऋणात्मक रूप से आवेशित इलेक्ट्रॉनों के रूप में, और सकारात्मक रूप से आवेशित इलेक्ट्रॉन की कमियों को इलेक्ट्रॉन होल कहा जाता है।इन आवेशों और छेदों को क्वांटम भौतिकी के संदर्भ में समझा जाता है। निर्माण सामग्री सबसे अधिक बार क्रिस्टलीय अर्धचालक होती है।[26][27]

सॉलिड-स्टेट इलेक्ट्रॉनिक्स ट्रांजिस्टर विधि के उद्भव के साथ अपने आप में आ गए।पहला वर्किंग ट्रांजिस्टर, जर्मेनियम-आधारित बिंदु-संपर्क ट्रांजिस्टर , का आविष्कार जॉन बार्डीन और वाल्टर हाउसर ब्रेटेन ने 1947 में बेल लैब्स में किया था,[28] इसके बाद 1948 में द्विध्रुवी जंक्शन ट्रांजिस्टर का आविष्कार किया गया था।[29]

अवधारणाएं

इलेक्ट्रिक चार्ज(विद्युत आवेश)

A clear glass dome has an external electrode which connects through the glass to a pair of gold leaves।एक चार्ज रॉड बाहरी इलेक्ट्रोड को छूता है और पत्तियों को पीछे छोड़ देता है। एक सोने की सोने की पत्ती विद्युत पर चार्ज होता है।

आवेश की उपस्थिति इलेक्ट्रोस्टैटिक बल को जन्म देती है: आवेश एक दूसरे पर बल को बढ़ाने का कार्य करते हैं, ऐसा प्रभाव जो पुरातनता में ज्ञात था, चूंकि इसे समझा नहीं गया था।[22]: 457  एक महीन धागे से लटकी एक हल्की गेंद को कांच की छड़ से छूकर आवेशित किया जा सकता है जिसे स्वयं एक कपड़े से रगड़ कर आवेशित किया गया है। यदि एक समान गेंद को एक ही कांच की छड़ से आवेशित किया जाता है, तो यह पाया जाता है कि यह पहले को पीछे हटाती है, क्योंकि आवेश दो गेंदों को अलग करने के लिए कार्य करता है। दो गेंदें जो रगड़ एम्बर रॉड के साथ आवेशित की जाती हैं, एक-दूसरे को प्रतिकर्षित कर देती हैं। चूंकि,यदि एक गेंद को कांच की छड़ से और दूसरी को एम्बर की छड़ से आवेश किया जाता है, तो दोनों गेंदें एक दूसरे को आकर्षित करती हैं। इन घटनाओं की जांच अठारहवीं शताब्दी के उत्तरार्ध में चार्ल्स-ऑगस्टिन डी. कूलम्ब द्वारा की गई थी, जिन्होंने यह अनुमान लगाया था कि आवेश स्वयं को दो विरोधी रूपों में प्रकट करता है। इस खोज ने प्रसिद्ध स्वयंसिद्ध का नेतृत्व किया जिससे यह पता चला कि समान-आवेशित वस्तुएं प्रतिकर्षित करती हैं और विपरीत-आवेशित वस्तुएं आकर्षित करती हैं।।[22]

बल स्वयं आवेशित कणों पर कार्य करता है, इसलिए आवेश की एक संवाहक सतह पर यथासंभव समान रूप से फैलने की प्रवृत्ति होती है। विद्युत चुम्बकीय बल का परिमाण, चाहे आकर्षक हो या प्रतिकारक, कूलम्ब के नियम द्वारा दिया जाता है, जो बल को आवेशों के उत्पाद से संबंधित करता है और उनके बीच की दूरी के लिए व्युत्क्रम-वर्ग संबंध रखता है।[30][31]: 35  विद्युत चुम्बकीय बल बहुत शक्तिशाली है, मजबूत अंतःक्रिया की शक्ति में दूसरा,[32] किन्तु उस बल के विपरीत यह सभी दूरी पर संचालित होता है।[33] बहुत दुर्बल गुरुत्वाकर्षण बल की तुलना में,दो इलेक्ट्रॉनों को अलग करने वाला विद्युत चुम्बकीय बल उन्हें एक साथ खींचने वाले गुरुत्वाकर्षण आकर्षण का 1042 गुना है।[34]

आवेश कुछ प्रकार के उप -परमाणु कणों से उत्पन्न होता है, जिनमें से सबसे परिचित वाहक इलेक्ट्रॉन और प्रोटॉन हैं। इलेक्ट्रिक आवेश विद्युत चुम्बकीय बल को जन्म देता है और उसके साथ परस्पर क्रिया करता है, जो प्रकृति के चार मूलभूत बलों में से है। प्रयोग द्वारा आवेश को संरक्षित मात्रा के रूप में दिखाया जाता है, अर्थात्, विद्युत रूप से पृथक प्रणाली के अंदर शुद्ध आवेश सदैव उस प्रणाली के अंदर होने वाले किसी भी परिवर्तन की परवाह किए बिना स्थिर रहेगा।[35] प्रणाली के अंदर,आवेश को निकायों के बीच, या तो सीधे संपर्क द्वारा, या संवाहक सामग्री, जैसे कि तार के साथ पारित करके स्थानांतरित किया जा सकता है।[31]: 2–5  अनौपचारिक शब्द स्थैतिक विद्युत निकाय पर आवेश की शुद्ध उपस्थिति (या 'असंतुलन') को संदर्भित करती है, सामान्यतः यह तब होती है जब अलग-अलग सामग्रियों को एक साथ रगड़ कर आवेश को एक से दूसरे में स्थानांतरित किया जाता है।

इलेक्ट्रॉनों और प्रोटॉन परआ वेश चिह्न के विपरीत होता है, इसलिए आवेश की मात्रा को ऋणात्मक या धनात्मक होने के रूप में व्यक्त किया जा सकता है। परिपाटी द्वारा, इलेक्ट्रॉनों द्वारा वहन किए जाने वाले आवेश को ऋणात्मक माना जाता है, और प्रोटॉन धनात्मक द्वारा, प्रथा जो बेंजामिन फ्रैंकलिन के कार्य से उत्पन्न हुई थी ।[36] आवेश की मात्रा को सामान्यतः प्रतीक q दिया जाता है और कूलॉम में व्यक्त किया जाता है;[37] प्रत्येक इलेक्ट्रॉन लगभग −1.6022×10−19 कूलॉम का ही आवेश वहन करता है । प्रोटॉन का आवेश बराबर और विपरीत होता है, और इस प्रकार +1.6022×10−19 कूलॉम होता है। आवेश न केवल पदार्थ द्वारा, किंतु प्रतिकण द्वारा भी धारण किया जाता है, प्रत्येक एंटीपार्टिकल अपने संबंधित कण के बराबर और विपरीत आवेश रखता है।[38]

आवेश को कई तरीकों से मापा जा सकता है, एक प्रारंभिक उपकरण सोने की पत्ती वाला इलेक्ट्रोस्कोप है, जो चूंकि अभी भी कक्षा प्रदर्शनों के लिए उपयोग में है, इलेक्ट्रॉनिक विद्युतमापी द्वारा प्रतिस्थापित किया गया है।[31]: 2–5 

इलेक्ट्रिक करंट(विद्युत धारा)

इलेक्ट्रिक आवेश की गति को विद्युत प्रवाह के रूप में जाना जाता है, जिसकी तीव्रता सामान्यतः एम्पेयर में मापी जाती है। धारा में कोई भी गतिमान आवेशित कण हो सकते हैं; सामान्यतः ये इलेक्ट्रॉन होते हैं, किन्तु गति में कोई भी आवेश एक धारा का निर्माण करता है। विद्युत प्रवाह कुछ चीजों, विद्युत संवाहकों के माध्यम से प्रवाहित हो सकता है, लेकिन एक विद्युत इन्सुलेटर के माध्यम से प्रवाहित नहीं होगा।[39]

ऐतिहासिक परिपाटी द्वारा, सकारात्मक धारा को प्रवाह की ही दिशा के रूप में परिभाषित किया जाता है, जैसा कि किसी भी सकारात्मक आवेश में होता है, या परिपथ के सबसे सकारात्मक भाग से सबसे ऋणात्मक भाग तक प्रवाहित होता है। इन विधियों से परिभाषित धारा को पारंपरिक धारा कहा जाता है।एक इलेक्ट्रीक परिपथ के चारों ओर ऋणात्मक रूप से आवेशित किए गए इलेक्ट्रॉनों की गति, धारा के सबसे परिचित रूपों में से एक है , इस प्रकार यह आवेश इलेक्ट्रॉनों के विपरीत दिशा में सकारात्मक माना जाता है।[40] चूंकि, स्थितियों के आधार पर, एक विद्युत प्रवाह में आवेशित कणों का प्रवाह किसी भी दिशा में, या यहाँ तक कि दोनों दिशाओं में एक साथ हो सकता है। इस स्थिति को सरल बनाने के लिए सकारात्मक-से-नकारात्मक परिपाटी का व्यापक रूप से उपयोग किया जाता है।

Two metal wires form an inverted V shape।एक अंधा उज्ज्वल नारंगी-सफेद इलेक्ट्रिक चाप उनके सुझावों के बीच बहता है।विद्युत प्रवाह का एक ऊर्जावान प्रदर्शन प्रदान करता है

जिस प्रक्रिया से विद्युत धारा सामग्री से होकर निकलता है, उसे विद्युत चालन कहा जाता है, और इसकी प्रकृति आवेशित कणों और उस सामग्री के साथ भिन्न होती है जिसके माध्यम से वे यात्रा कर रहे हैं। विद्युत धाराओं के उदाहरणों में धातु चालन सम्मिलित है, जहां इलेक्ट्रॉन विद्युत संवाहक जैसे धातु, और इलेक्ट्रोलीज़ के माध्यम से प्रवाहित होते हैं, जहां आयन (चार्ज परमाणु) तरल पदार्थों के माध्यम से, या प्लाज्मा जैसे विद्युत स्पार्क्स के माध्यम से प्रवाहित होते हैं। अपितु कण स्वयं पर्याप्त मात्रा में धीरे -धीरे आगे बढ़ सकते हैं, कभी-कभी एक औसत बहाव वेग के साथ केवल एक मिलीमीटर प्रति सेकंड के अंश उन्हें चलाने वाला विद्युत क्षेत्र स्वयं प्रकाश की गति के करीब फैलता है,[31]: 17  जिससे विद्युत संकेतों को तारों के साथ तेजी से निकलने में सक्षम बनाया जाता है।[41]

धारा कई अवलोकन योग्य प्रभावों का कारण बनता है, जो ऐतिहासिक रूप से इसकी उपस्थिति को पहचानने के साधन थे। उस पानी को वोल्टिक ढेर से धारा द्वारा विघटित किया जा सकता था, जिसे 1800 में विलियम निकोलसन (केमिस्ट) और एंथनी कार्लिसल द्वारा खोजा गया था, जिसे अब इलेक्ट्रोलिसिस के रूप में जाना जाता है। उनके कार्य को 1833 में माइकल फैराडे द्वारा अधिक विस्तारित किया गया था। विद्युत प्रतिरोध के माध्यम से धारा में स्थानीयकृत ऊष्मा का कारण बनता है, जेम्स प्रेस्कॉट जूल ने 1840 में गणितीय रूप से प्रभाव का अध्ययन किया।[31]: 23–24  धारा से संबंधित सबसे महत्वपूर्ण खोजों में से 1820 में हंस क्रिश्चियन ऑर्स्टेड द्वारा गलती से की गयी खोज भी थी , जब व्याख्यान तैयार करते समय, वह तार में चुंबकीय कम्पास की सुई को परेशान करने वाले तार में धारा को देखा।[21]: 370 [lower-alpha 1] और उन्होंने विद्युत चुम्बकत्व की खोज की थी, जो विद्युत और चुंबकत्व के बीच मौलिक संपर्क था । विद्युत चाप द्वारा उत्पन्न विद्युत चुम्बकीय उत्सर्जन का स्तर विद्युत चुम्बकीय हस्तक्षेप उत्पन्न करने के लिए पर्याप्त उच्च है, जो आसन्न उपकरणों के कार्यचालन के लिए हानिकारक हो सकता है।[42]

अभियांत्रिकी या घरेलू अनुप्रयोगों में, धारा को अधिकांशतः प्रत्यक्ष धारा (डीसी) या वैकल्पिक धारा (एसी) के रूप में वर्णित किया जाता है। ये निबंधन संदर्भित करता हैं कि धारा किसी समय के साथ कैसे बदलती है। उदाहरण के लिए दिष्टधारा , जैसा कि धारा बैटरी द्वारा निर्मित होती है और अधिकांश इलेक्ट्रॉनिक उपकरणों द्वारा आवश्यक होती है, परिपथ के धनात्मक भाग से ऋणात्मक तक दिशात्मक प्रवाह है।[43]: 11  यदि, जैसा कि सबसे सामान्य है, तो यह प्रवाह इलेक्ट्रॉनों द्वारा किया जाता है, वे विपरीत दिशा में यात्रा करेंगे। प्रत्यावर्ती धारा कोई भी धारा है जो दिशा को बार -बार उलट देती है; लगभग सदैव यह ज्या तरंग का रूप लेती है।[43]: 206–07  प्रत्यावर्ती धारा इस प्रकार संवाहक के अंदर समय के साथ किसी भी शुद्ध दूरी को स्थानांतरित किए बिना आगे और पीछे स्पंदित होती है। प्रत्यावर्ती धारा का समय-औसत मान शून्य है, किंतु यह पहले एक दिशा में ऊर्जा प्रदान करती है और फिर विपरीत दिशा में प्रदान करती है ।प्रत्यावर्ती धारा विद्युत गुणों से प्रभावित होती है जो स्थिर अवस्था प्रत्यक्ष धारा, जैसे कि अधिष्ठापन और सामर्थ्य के अनुसार नहीं देखी जाती है। ।[43]: 223–25  चूंकि ये गुण तब महत्वपूर्ण हो सकते हैं जब सर्किटरी को क्षणिक प्रतिक्रिया के अधीन किया जाता है, जैसे कि जब पहली बार सक्रिय हो।

विद्युत क्षेत्र

इलेक्ट्रिक क्षेत्र की अवधारणा को माइकल फैराडे द्वारा प्रस्तुत किया गया था। विद्युत क्षेत्र आवेशित निकाय द्वारा अंतरिक्ष में बनाया जाता है जो इसे घेरता है, और क्षेत्र के अंदर रखे गए किसी भी अन्य आवेशों पर बल का परिणाम होता है। विद्युत क्षेत्र दो आवेशों के बीच समान विधियों से कार्य करता है, जिस तरह से गुरुत्वाकर्षण क्षेत्र दो द्रव्यमानों के बीच कार्य करता है, और इसकी तरह अनंत की ओर बढ़ता है और दूरी के साथ व्युत्क्रम वर्ग संबंध दिखाता है।[33] चूंकि, यह महत्वपूर्ण अंतर है। गुरुत्वाकर्षण सदैव आकर्षण में कार्य करता है, दो द्रव्यमानों को एकसाथ आकर्षित करता है, अपितु विद्युत क्षेत्र के परिणामस्वरूप या तो आकर्षण या प्रतिकर्षण हो सकता है। चूंकि बड़े निकाय जैसे ग्रह सामान्यतः कोई शुद्ध आवेश वहन नहीं करते हैं, इसलिए एक निश्चित दूरी पर विद्युत क्षेत्र सामान्यतः शून्य होता है। इस प्रकार ब्रह्मांड की दूरियों पर गुरुत्वाकर्षण प्रमुख बल होने के अतिरिक्त बहुत दुर्बल है।[34]

एक विमान संवाहक के ऊपर सकारात्मकआवेश से निकलने वाली क्षेत्र रेखाएं

एक विद्युत क्षेत्र सामान्यतः अंतरिक्ष में बदलता रहता है,[lower-alpha 2] और किसी भी बिंदु पर इसकी शक्ति को बल (प्रति यूनिट आवेश) के रूप में परिभाषित किया जाता है, जिसे उस बिंदु पर रखा जाने पर स्थिर, नगण्य आवेश द्वारा अनुभूत किया जाएगा।[22]: 469–70  वैचारिक आवेश, जिसे ' परीक्षण प्रभार(परीक्षण आवेश)' कहा जाता है, अपने स्वयं के विद्युत क्षेत्र तथा मुख्य क्षेत्र को विचलन करने से रोकने के लिए विलुप्त हो जाना चाहिए और चुंबकीय क्षेत्रों के प्रभाव को रोकने के लिए भी स्थिर होना चाहिए। उदाहरण हेतु विद्युत क्षेत्र को बल के संदर्भ में परिभाषित किया गया है, और बल यूक्लिडियन वेक्टर है, जिसमें परिमाण और दिशा दोनों होते हैं, इसलिए विद्युत क्षेत्र को वेक्टर क्षेत्र की भांति अनुसरण करते है।[22]: 469–70 

स्थिर आवेशों द्वारा बनाए गए विद्युत क्षेत्रों के अध्ययन को विद्युतस्थैतिकी कहा जाता है। क्षेत्र को काल्पनिक रेखाओं के समूह द्वारा कल्पना की जा सकती है, जिसकी दिशा किसी भी बिंदु पर होती है, वह क्षेत्र के समान है। यह अवधारणा फैराडे द्वारा प्रस्तुत की गई थी,[44] जिसका शब्द 'बल की रेखा' अभी भी कभी -कभी उपयोग देखता है। क्षेत्र रेखाएं वे पथ हैं जो बिंदु सकारात्मक आवेश निर्माण की खोज करेंगे क्योंकि इसे क्षेत्र के अंदर स्थानांतरित करने के लिए वाध्य किया गया था; चूंकि वे कोई भौतिक अस्तित्व के साथ काल्पनिक अवधारणा हैं, और क्षेत्र रेखाओं के बीच सभी हस्तक्षेप करने वाले स्थान को अनुमति देता है।[44] स्थिर शुल्कों से निकलने वाली क्षेत्र रेखाओं में कई प्रमुख गुण होते हैं: पहला, कि वे सकारात्मक आवेशों में उत्पन्न होते हैं और ऋणात्मक आवेश में समाप्त होते हैं; दूसरा, कि उन्हें समकोण पर किसी भी अच्छे संवाहक में प्रवेश करना चाहिए, और तीसरा, कि वे कभी भी विरोध नहीं कर सकते हैं और न ही खुद को बंद कर सकते हैं।[22]: 479 

निराधार संचालन करने वाला निकाय अपनी बाहरी सतह पर अपने सभी आवेश को वहन करता है। इसलिए क्षेत्र निकाय के अंदर सभी स्थानों पर आवेश 0 है।[31]: 88  यह फैराडे केज का प्रचालन का सिद्धांत है, संवाहक धातु शेल जो इसके आंतरिक क्षेत्र को बाहर के विद्युत प्रभावों से अलग करता है।

उच्च वोल्टेज के उपकरण डिजाइन करते समय इलेक्ट्रोस्टैटिक्स के सिद्धांत महत्वपूर्ण हैं। उच्च-वोल्टेज उपकरण विद्युत क्षेत्र की शक्ति के लिए परिमित सीमा है जो किसी भी माध्यम से प्राप्त हो सकती है। इस बिंदु के विपरीत , विद्युत विभाजन होता है और विद्युत चाप आवेशित किए गए भागों के बीच फ्लैशओवर का कारण बनता है। उदाहरण के लिए, हवा, विद्युत क्षेत्र की शक्ति पर छोटे अंतरालों में चापती है जो 30 केवी प्रति सेंटीमीटर से अधिक है। बड़े अंतराल पर, इसकी टूटने की शक्ति (संभवतः 1 केवी प्रति सेंटीमीटर) दुर्बल होती है।[45]: 2  इस की सबसे अधिक दिखाई देने वाली प्राकृतिक घटना आकाशीय बिजली है, जब आवेश हवा के बढ़ते स्तंभों द्वारा बादलों में से अलग हो जाती है, और हवा में विद्युत क्षेत्र को बढ़ा देती है, तो यह सामना कर सकता है। एक बड़े बिजली के बादल का वोल्टेज 100 MV जितना अधिक हो सकता है और इसमें 250 kWh के रूप में बढ़िया ऊर्जा का निर्वहन होता है।[45]: 201–02 

क्षेत्र की शक्ति पास की वस्तुओं का संचालन करने से बहुत प्रभावित होती है, और यह विशेष रूप से तीव्र है जब इसे धारदार नुकीली वस्तुओं के निकट वक्र निर्माण के लिए वाध्य किया जाता है। इस सिद्धांत का विद्युत संवाहक में शोषण किया जाता है, जिसमें से तेज स्पाइक विद्युत के स्ट्रोक को विकसित करने के लिए प्रोत्साहित करने का कार्य करता है, अतिरिक्त इसके कि वह इमारत की रक्षा के लिए कार्य करता है।[46]: 155 

विद्युत क्षमता

Two AA batteries each have a plus sign marked at one end। एए बैटरी की एक जोड़ी।+& Nbsp; साइन बैटरी टर्मिनलों के बीच संभावित अंतर की ध्रुवीयता को इंगित करता है।

विद्युत क्षमता की अवधारणा को विद्युत क्षेत्र से निकटता से जोड़ा जाता है। एक विद्युत क्षेत्र के अंदर रखा गया छोटा आवेश बल का अनुभव करता है, और बल के खिलाफ उस बिंदु पर उस आवेश को लाया है,जिसके लिए यांत्रिक कार्य की आवश्यकता होती है। किसी भी बिंदु पर विद्युत क्षमता को अनंत से उस बिंदु तक अनंत से इकाई परीक्षण आवेश लाने के लिए आवश्यक ऊर्जा के रूप में परिभाषित किया जाता है। यह सामान्यतः वोल्ट में मापा जाता है, और वोल्ट वह क्षमता है जिसके लिए जूल को कार्य के लिए विस्तारित किया जाना चाहिए जिससे अनंत से कूलॉम का आवेश लाया जा सके।[22]: 494–98  अपितु औपचारिक क्षमता की यह परिभाषा, बहुत न्यूनतम व्यावहारिक अनुप्रयोग है, और अधिक उपयोगी अवधारणा विद्युत संभावित अंतर है, और दो निर्दिष्ट बिंदुओं के बीच इकाई आवेश को स्थानांतरित करने के लिए आवश्यक ऊर्जा है। एक विद्युत क्षेत्र में विशेष गुण होता है कि यह रूढ़िवादी बल है, जिसका अर्थ है कि परीक्षण आवेश द्वारा लिया गया मार्ग अप्रासंगिक है: दो निर्दिष्ट बिंदुओं के बीच सभी पथ ही ऊर्जा विस्तारित करते हैं, और इस प्रकार संभावित अंतर के लिए अद्वितीय निधि कहा जा सकता है।[22]: 494–98  वोल्ट को माप के लिए पसंद की इकाई के रूप में इतनी दृढ़ता से पहचाना जाता है और विद्युत संभावित अंतर का वर्णन है कि शब्द वोल्टेज अधिक प्रतिदिन के उपयोग को देखता है।

प्रायौगिक उद्देश्यों के लिए, सामान्य संदर्भ बिंदु को परिभाषित करना उपयोगी है, जिसमें क्षमता व्यक्त की जा सकती है और तुलना की जा सकती है। चूंकि यह अनंत पर हो सकता है, इसका बहुत अधिक उपयोगी उदाहरण पृथ्वी ही है, जिसे हर जगह समान क्षमता वाला माना जाता है। यह संदर्भ बिंदु स्वाभाविक रूप से पृथ्वी या जमीन नाम लेता है। पृथ्वी को सकारात्मक और ऋणात्मक आवेश की समान मात्रा का अनंत स्रोत माना जाता है, और इसलिए विद्युत रूप से अनावेशित और चार्ज ना करने योग्य है।[47]

विद्युत विभव अदिश राशि है, अर्थात इसमें केवल परिमाण होता है परन्तु दिशा नहीं होती है। इसे ऊंचाई के अनुरूप देखा जा सकता है: जिस तरह मुक्त वस्तु गुरुत्वाकर्षण क्षेत्र के कारण ऊंचाई में अंतर के माध्यम से गिर जाएगी, उसी तरह एक विद्युत क्षेत्र के कारण वोल्टेज में आवेश 'गिर' जाएगा।[48] जैसा कि राहत मानचित्र समान ऊंचाई के समोच्च रेखाओं को दर्शाते हैं, समान क्षमता के बिंदुओं को चिह्नित करने वाली रेखाओं का समूह (जिसे समविभव के रूप में जाना जाता है) को इलेक्ट्रोस्टिक रूप से आवेशित किए गए वस्तु के निकट खींचा जा सकता है। सुसंगतता समकोण पर बल की सभी पंक्तियों को पार करती है। उन्हें विद्युत संवाहक की सतह के समानांतर भी होना चाहिए, अन्यथा यह बल का उत्पादन करेगा जो आवेश वाहक को सतह की क्षमता में भी स्थानांतरित करेगा।

विद्युत क्षेत्र को औपचारिक रूप से प्रति यूनिट विभव के बल के रूप में परिभाषित किया गया था, किन्तु क्षमता की अवधारणा अधिक उपयोगी और समकक्ष परिभाषा के लिए अनुमति देती है: विद्युत क्षेत्र विद्युत क्षमता का स्थानीय ढाल(प्रवणता) है। यह सामान्यतः वोल्ट/मीटर में व्यक्त किया जाता है, क्षेत्र की वेक्टर दिशा क्षमता की सबसे बड़ी ढलान की रेखा है, और जहां समविभव एकसाथ निकटतम होते है।[31]: 60 

विद्युत चुम्बक

A wire carries a current towards the reader।कंसेंट्रिक सर्कल तार के चारों ओर चुंबकीय क्षेत्र सर्कल एंटीक्लॉकवाइज का प्रतिनिधित्व करते हुए, जैसा कि पाठक द्वारा देखा गया है। एक वर्तमान के आसपास चुंबकीय क्षेत्र सर्कल

1821 में ऑर्स्टेड ने खोज में कहा कि विद्युत प्रवाह को ले जाने वाले तार के सभी किनारों के निकट चुंबकीय क्षेत्र उपस्थित था, उसने संकेत दिया कि विद्युत और चुंबकत्व के बीच सीधा संबंध था। इसके अतिरिक्त, गुरुत्वाकर्षण और इलेक्ट्रोस्टैटिक बलों से परस्पर क्रिया अलग थी,और तब प्रकृति के दो बलों को जाना जाता है। दिक्सूचक की सूई पर लगे बल ने इसे धारावाही तार की ओर या उससे दूर निर्देशित नहीं किया, किन्तु इसके लिए इसके समकोण पर कार्य किया।[21]: 370  ओर्स्टेड के शब्द थे कि "विद्युत संघर्ष परिक्रामी तरीके से कार्य करता है।" बल धारा की दिशा पर भी निर्भर करता था, क्योंकि यदि प्रवाह उलटा होता है तो बल भी विपरीत कार्य करता है ।[49]

ऑर्स्टेड ने अपनी खोज को पूरी तरह से नहीं समझा, किन्तु उन्होंने देखा कि प्रभाव पारस्परिक था: धारा चुंबक पर बल लगाती है, और चुंबकीय क्षेत्र धारा पर बल लगाता है। एम्पीयर द्वारा इस घटना की और जांच की गई, जिन्होंने पाया कि दो समानांतर धारावाही तारों ने एक-दूसरे पर एक बल लगाया: एक ही दिशा में धाराओं का संचालन करने वाले दो तार एक-दूसरे की ओर आकर्षित होते हैं, किंतु विपरीत दिशाओं में धाराओं वाले तारों को अलग किया जाता है।[50] अंतःक्रिया चुंबकीय क्षेत्र द्वारा मध्यस्थता की जाती है जो प्रत्येक धारा उत्पन्न करती है और एम्पीयर की अंतर्राष्ट्रीय परिभाषा के लिए आधार बनाती है।[50]

A cut-एक छोटे इलेक्ट्रिक मोटर का आरेख। इलेक्ट्रिक मोटर इलेक्ट्रोमैग्नेटिज्म का एक महत्वपूर्ण प्रभाव का शोषण करता है: एक चुंबकीय क्षेत्र के माध्यम से एक वर्तमान क्षेत्र और वर्तमान दोनों के लिए समकोण पर एक बल का अनुभव करता है

चुंबकीय क्षेत्रों और धाराओं के बीच का यह संबंध अत्यधिक महत्वपूर्ण है, इसके कारण 1821 में माइकल फैराडे के इलेक्ट्रिक मोटर के आविष्कार के लिए नेतृत्व किया गया। फैराडे के होमोपोलर मोटर(एकध्रुवीय इंजन) में पारे के पूल में बैठे स्थायी चुंबक सम्मिलित थे। चुंबक के ऊपर धुरी से निलंबित तार के माध्यम से धारा की अनुमति दी गई थी और पारा में डूबा गया था। चुंबक ने तार पर स्पर्शरेखा बल लगाया, जिससे यह चुंबक के चारों ओर घेरे को तब तक सर्कल कर दिया जब तक कि धारा को बनाए रखा गया।[51]

1831 में फैराडे द्वारा प्रयोग से पता चला कि चुंबकीय क्षेत्र के लिए लंबवत चलने वाले तार के सिरों के मध्य संभावित अंतर विकसित किया। इस प्रक्रिया के आगे के विश्लेषण, जिसे इलेक्ट्रोमैग्नेटिक इंडक्शन(विद्युत चुम्बकीय प्रेरण) के रूप में जाना जाता है, ने उसे सिद्धांत को बताने में सक्षम बनाया, जिसे अब फैराडे के प्रेरण के नियम के रूप में जाना जाता है, कि बंद परिपथ में प्रेरित संभावित अंतर लूप के माध्यम से चुंबकीय प्रवाह के परिवर्तन की दर के लिए आनुपातिक है। इस खोज के उपयोग ने उन्हें 1831 में पहले विद्युत जनरेटर का आविष्कार करने में सक्षम बनाया, जिसमें उन्होंने घूर्णन तांबे की डिस्क की यांत्रिक ऊर्जा को विद्युत ऊर्जा में बदल दिया।[51] फैराडे की डिस्क अकुशल थी और व्यावहारिक जनरेटर के रूप में इसका कोई उपयोग नहीं था, किन्तु इसने चुंबकत्व का उपयोग करके विद्युत शक्ति उत्पन्न करने की संभावना दिखाई, एक संभावना जो उन लोगों द्वारा ली जाएगी जो उसके काम से आगे बढ़ते है ।

इलेक्ट्रोकेमिस्ट्री(विद्युत रसायन)

इटली के भौतिक विज्ञानी एलेसेंड्रो वोल्टा ने 19 वीं शताब्दी की प्रारंभ में फ्रांस के फ्रांस के सम्राट नेपोलियन I को अपनी बैटरी (विद्युत) दिखाते हुए।

विद्युत का उत्पादन करने के लिए रासायनिक प्रतिक्रियाओं की क्षमता, और इसके विपरीत रासायनिक प्रतिक्रियाओं को संचालित करने के लिए बिजली की क्षमता के व्यापक उपयोग हैं।

इलेक्ट्रोकैमिस्ट्री सदैव विद्युत का महत्वपूर्ण हिस्सा रही है। वोल्टिक ढेर के प्रारंभिक आविष्कार से इलेक्ट्रोकेमिकल सेल द्वारा कई अलग-अलग प्रकार की बैटरी, इलेक्ट्रोप्लेटिंग और इलेक्ट्रोलिसिस सेल में विकसित हुए हैं। अल्युमीनियम इस तरह से विशाल मात्रा में उत्पादित होता है, और कई पोर्टेबल उपकरणों को पुनर्भृत(रिचार्जेबल) सेल का उपयोग करके विद्युत रूप से संचालित किया जाता है।

इलेक्ट्रिक परिपथ

एक मूलभूत विद्युत परिपथ।बाईं ओर वोल्टेज स्रोत V परिपथके चारों ओर धारा को चलाता है, प्रतिरोधक आर में विद्युत ऊर्जा प्रदान करता है। रोकनेवाला से, धारा स्रोत पर लौटता है, परिपथको पूरा करता है।

एक इलेक्ट्रिक परिपथ और इलेक्ट्रिक घटकों का परस्पर संबंध है जैसे कि इलेक्ट्रिक आवेश को बंद पथ (एक परिपथ) के साथ सामान्यतः कुछ उपयोगी कार्य करने के लिए प्रवाहित किया जाता है।

एक इलेक्ट्रिक परिपथ में घटक कई रूप ले सकते हैं, जिसमें प्रतिरोधों, संधारित्र , स्विच , ट्रांसफार्मर और इलेक्ट्रॉनिक्स जैसे तत्व सम्मिलित हो सकते हैं। विद्युत परिपथ में सक्रिय घटक होते हैं, सामान्यतः अर्धचालक होते हैं, और जो सामान्यतः गैर-रैखिक व्यवहार को प्रदर्शित करते हैं, जिसमें जटिल विश्लेषण की आवश्यकता होती है। सबसे सरल विद्युत घटक वे हैं जिन्हें निष्क्रिय (अभियांत्रिकी) और रैखिक कहा जाता है: अपितु वे अस्थायी रूप से ऊर्जा को स्टोर कर सकते हैं, उनमें इसका कोई स्रोत नहीं है, और उत्तेजनाओं के लिए रैखिक प्रतिक्रियाएं प्रदर्शित करते हैं।[52]: 15–16 

प्रतिरोधी संभवतः निष्क्रिय परिपथ तत्वों का सबसे सरल रूप है: जैसा कि इसके नाम से पता चलता है, यह विद्युत प्रतिरोध के माध्यम से धारा, गर्मी के रूप में इसकी ऊर्जा को भंग कर देती है। प्रतिरोध संवाहक के माध्यम से आवेश की गति का परिणाम है: उदाहरण के लिए,धातुओं में प्रतिरोध मुख्य रूप से इलेक्ट्रॉनों और आयनों के बीच टकराव के कारण होता है।ओम का नियम परिपथ सिद्धांत का मूलभूत नियम है, जिसमें कहा गया है कि प्रतिरोध से निकलना धारा में इसके संभावित अंतर के लिए सीधे आनुपातिक है। अधिकांश सामग्रियों का प्रतिरोध तापमान और धाराओं की सीमा पर अपेक्षाकृत स्थिर है , इन निबंधनों के अनुसार सामग्री को 'ओमिक' के रूप में जाना जाता है। ओम, प्रतिरोध की इकाई, को जॉर्ज ओम के सम्मान में नामित किया गया था, और ग्रीक अक्षर ω द्वारा इसका प्रतीक है।1ω वह प्रतिरोध है जो 1 amp के धारा के उत्तर में 1 वोल्ट के संभावित अंतर का उत्पादन करेगा।[52]: 30–35 

संधारित्र लेडेन जार का विकास है और ऐसा उपकरण है जो आवेश को स्टोर कर सकता है, और इस तरह परिणामी क्षेत्र में विद्युत ऊर्जा को संग्रहीत कर सकता है। इसमें पतली इन्सुलेटर डाइलेक्ट्रिक परत द्वारा अलग किए गए दो संचालन प्लेटें होती हैं;व्यवहार में, पतली धातु के झगड़े को साथ कुंडलित किया जाता है, जिससे प्रति यूनिट मात्रा में सतह क्षेत्र बढ़ जाता है और इसलिए इसमें धारिता उत्पन्न होती है। धारिता की इकाई माइकल फैराडे के नाम पर नामित फैराड है, और प्रतीक F को दिया गया है: 1 फैराड वह धारिता है जो 1 वोल्ट के संभावित अंतर को विकसित करता है जब यह 1 कूलॉम का आवेश संग्रहीत करता है।वोल्टेज की आपूर्ति से जुड़ा संधारित्र प्रारंभ में धारा का कारण बनता है क्योंकि यह आवेश जमा करता है; यह धारा समय में क्षय हो जाएगा क्योंकि संधारित्र भरता है, अंततः शून्य पर गिर जाता है। संधारित्र इसलिए स्थिर स्थिति की अनुमति नहीं देगा, किंतु इसे अवरुद्ध करता है।[52]: 216–20 

प्रेरित्र संवाहक है, सामान्यतः तार की कुंडल, जो इसके माध्यम से धारा के उत्तर में चुंबकीय क्षेत्र में ऊर्जा संग्रहीत करता है। जब धारा बदलता है, तो चुंबकीय क्षेत्र भी बदलता है, विद्युत चुम्बकीय प्रेरण संवाहक के सिरों के बीच वोल्टेज को उत्पन्न करता है। प्रेरित वोल्टेज धारा के समय व्युत्पन्न के लिए आनुपातिक है। आनुपातिकता के स्थिरांक को अधिष्ठापन कहा जाता है। अधिष्ठापन की इकाई हेनरी है, जिसका नाम जोसेफ हेनरी के नाम पर है, जो फैराडे के समकालीन हैं। 1 हेनरी अधिष्ठापन है जो 1 वोल्ट के संभावित अंतर को प्रेरित करेगा यदि इसके माध्यम से धारा एम्पीयर प्रति सेकंड की दर से बदलता है। प्रेरित्र का व्यवहार कुछ संधारित्र के लिए विपरीत होता है: यह स्वतंत्र रूप से अपरिवर्तनीय धारा की अनुमति देगा, किन्तु तेजी से बदलते का विरोध करता है।[52]: 226–29 

इलेक्ट्रिक पावर(विद्युत शक्ति)

इलेक्ट्रिक पावर वह दर है जिस पर विद्युत ऊर्जा को इलेक्ट्रिक परिपथ द्वारा स्थानांतरित किया जाता है। पावर की एसआई इकाई वाट , जूल/सेकंड है।

विद्युत की तरह इलेक्ट्रिक पावर, कार्य करने की दर , वाट्स में मापा जाता है, और अक्षर पी द्वारा प्रतिनिधित्व किया जाता है। वाट्स शब्द का उपयोग बोलचाल में किया जाता है, जिसका अर्थ है वाट्स में विद्युत शक्ति का कारण है।एक विद्युत प्रवाह द्वारा उत्पादित वाट्स में इलेक्ट्रिक पावर मैं q कूलॉम केआवेश से युक्त होता है, जो हर टी सेकंड में विद्युत क्षमता (वोल्टेज) अंतर से निकलता है

कहाँ पे

Q कूलॉम में इलेक्ट्रिकआवेश है
टी सेकंड में समय है
मैं एम्पीयर में विद्युत प्रवाह है
V वोल्ट में विद्युत क्षमता या वोल्टेज है

विद्युतउत्पादन अधिकांशतः यांत्रिक ऊर्जा को विद्युतमें परिवर्तित करने की प्रक्रिया द्वारा किया जाता भाप टर्बाइन या गैस टर्बाइन जैसे उपकरण यांत्रिक ऊर्जा के उत्पादन में सम्मिलित होते हैं, जो विद्युतका उत्पादन करने वाले विद्युत जनरेटर को पारित किया जाता है।विद्युतके स्रोतों की विस्तृत विविधता से विद्युतकी बैटरी या अन्य साधनों जैसे रासायनिक स्रोतों द्वारा विद्युतकी आपूर्ति भी की जा सकती है।विद्युतउत्पन्न करने वाला सामान्यतः इलेक्ट्रिक पावर उद्योग द्वारा व्यवसायों और घरों को आपूर्ति की जाती है।विद्युतसामान्यतः किलोवाट घंटे (3.6 एमजे) द्वारा बेची जाती है, जो कि घंटों में समय पर चलने से गुणा किए गए किलोवाट में विद्युतका उत्पाद है।इलेक्ट्रिक यूटिलिटीज विद्युतके मीटर का उपयोग करके विद्युतको मापती है, जो ग्राहक को दी जाने वाली विद्युत ऊर्जा का कुल चल रहा है।जीवाश्म ईंधन के विपरीत, विद्युतऊर्जा का न्यूनतमएन्ट्रापी रूप है और उच्च दक्षता के साथ गति या ऊर्जा के कई अन्य रूपों में परिवर्तित किया जा सकता है।[53]

इलेक्ट्रॉनिक्स

सतह-माउंट प्रौद्योगिकी इलेक्ट्रॉनिक घटक

इलेक्ट्रॉनिक्स विद्युत परिपथसे संबंधित है जिसमें वैक्यूम ट्यूब, ट्रांजिस्टर, डायोड, ऑप्टोइलेक्ट्रॉनिक्स , सेंसर और एकीकृत परिपथ, और संबंधित निष्क्रिय इंटरकनेक्शन प्रौद्योगिकियों जैसे सक्रिय घटक सम्मिलित हैं।सक्रिय घटकों का अरेखीय व्यवहार और इलेक्ट्रॉन प्रवाह को नियंत्रित करने की उनकी क्षमता दुर्बल संकेतों के प्रवर्धन को संभव बनाती है और इलेक्ट्रॉनिक्स का व्यापक रूप से सूचना प्रसंस्करण, दूरसंचार और संकेत प्रसंस्करण में उपयोग किया जाता है।स्विच के रूप में कार्य करने के लिए इलेक्ट्रॉनिक उपकरणों की क्षमता डिजिटल सूचना प्रसंस्करण को संभव बनाती है।इंटरकनेक्शन टेक्नोलॉजीज जैसे परिपथ बोर्ड, इलेक्ट्रॉनिक्स पैकेजिंग विधि, और संचार मूलभूत ढांचे के अन्य विविध रूपों को पूरा परिपथ कार्य क्षमता और मिश्रित घटकों को नियमित कार्य प्रणाली में बदल देता है।

आज, अधिकांश इलेक्ट्रॉनिक उपकरण इलेक्ट्रॉन नियंत्रण करने के लिए अर्धचालक घटकों का उपयोग करते हैं।अर्धचालक उपकरणों और संबंधित विधि के अध्ययन को ठोस अवस्था भौतिकी की शाखा माना जाता है, अपितु व्यावहारिक समस्याओं को हल करने के लिए इलेक्ट्रॉनिक परिपथका डिजाइन और निर्माण इलेक्ट्रॉनिक्स अभियांत्रिकी के अनुसार आता है।

विद्युत चुम्बकीय तरंग

फैराडे और अम्पेयर के कार्य से पता चला कि समय-भिन्न चुंबकीय क्षेत्र विद्युत क्षेत्र के स्रोत के रूप में कार्य करता है, और समय-अलग-अलग विद्युत क्षेत्र चुंबकीय क्षेत्र का स्रोत था।इस प्रकार, जब या तो क्षेत्र समय में बदल रहा होता है, तो दूसरे का क्षेत्र आवश्यक रूप से प्रेरित होता है।[22]: 696–700  इस तरह की घटना में लहर के गुण होते हैं, और स्वाभाविक रूप से विद्युत चुम्बकीय तरंग के रूप में संदर्भित किया जाता है।1864 में जेम्स क्लर्क मैक्सवेल द्वारा इलेक्ट्रोमैग्नेटिक तरंगों का सैद्धांतिक रूप से विश्लेषण किया गया था। मैक्सवेल ने समीकरणों का समूह विकसित किया था जो विद्युत क्षेत्र, चुंबकीय क्षेत्र, इलेक्ट्रिकआवेश और विद्युत प्रवाह के बीच अंतर्संबंध का स्पष्ट रूप से वर्णन कर सकता था।वह यह सिद्ध कर सकता है कि इस तरह की लहर आवश्यक प्रकाश की गति से यात्रा करेगी, और इस तरह प्रकाश स्वयं विद्युत चुम्बकीय विकिरण का रूप था।मैक्सवेल के नियम, जो प्रकाश, क्षेत्रों औरआवेश को एकजुट करते हैं, सैद्धांतिक भौतिकी के महान मील के पत्थर में से हैं।[22]: 696–700 

इस प्रकार, कई शोधकर्ताओं के कार्य ने इलेक्ट्रॉनिक्स के उपयोग को रेडियो आवृत्ति दोलन धाराओं में संकेतों को परिवर्तित करने में सक्षम बनाया, और उपयुक्त रूप से आकार के संवाहक के माध्यम से, विद्युतबहुत लंबी दूरी पर रेडियो तरंगों के माध्यम से इन संकेतों के संचरण और स्वागत की अनुमति देती है।

उत्पादन और उपयोग

पीढ़ी और ट्रांसमिशन

20 वीं सदी के प्रारंभिक आवर्तित्र , बुडापेस्ट, हंगरी में बनाया गया, पनविद्युतस्टेशन के पावर जनरेटिंग हॉल में (प्रोकुडिन-गोर्स्की द्वारा फोटोग्राफ, 1905-1915)।

6 वीं शताब्दी ईसा पूर्व में, मिलिटस के ग्रीक दार्शनिक थेल्स ने एम्बर रॉड्स के साथ प्रयोग किया और ये प्रयोग विद्युत ऊर्जा के उत्पादन में पहला अध्ययन था।अपितु यह विधि, जिसे अब ट्राइबोइलेक्ट्रिक प्रभाव के रूप में जाना जाता है, प्रकाश वस्तुओं को उठा सकता है और स्पार्क उत्पन्न कर सकता है, यह अत्यधिक अक्षम है।[54] यह अठारहवीं शताब्दी में वोल्टिक ढेर के आविष्कार तक नहीं था कि विद्युतका व्यवहार्य स्रोत उपलब्ध हो गया।वोल्टिक ढेर, और इसके आधुनिक वंशज, बैटरी (विद्युत), ऊर्जा को रासायनिक रूप से संग्रहीत करते हैं और इसे विद्युत ऊर्जा के रूप में मांग पर उपलब्ध कराते हैं।[54]बैटरी बहुमुखी और बहुत सामान्य शक्ति स्रोत है जो आदर्श रूप से कई अनुप्रयोगों के लिए अनुकूल है, किन्तु इसकी ऊर्जा भंडारण परिमित है, और बार डिस्चार्ज होने के बाद इसे निपटाया या रिचार्ज किया जाना चाहिए।बड़ी विद्युत मांगों के लिए विद्युत ऊर्जा उत्पन्न की जानी चाहिए और प्रवाहकीय संचरण रेखाओं पर लगातार प्रेषित की जानी चाहिए।

विद्युत शक्ति सामान्यतः जीवाश्म ईंधन दहन से उत्पादित भाप द्वारा संचालित इलेक्ट्रो-मैकेनिकल विद्युत जनरेटर द्वारा उत्पन्न होती है, या परमाणु प्रतिक्रियाओं से जारी गर्मी;या अन्य स्रोतों से जैसे कि हवा या बहते पानी से निकाले गए गतिज ऊर्जा।1884 में चार्ल्स अल्गर्नन पार्सन्स द्वारा आविष्कार किया गया आधुनिक वाष्प टरबाइन आज विभिन्न प्रकार के गर्मी स्रोतों का उपयोग करके विश्व में लगभग 80 प्रतिशत विद्युत शक्ति उत्पन्न करता है।इस तरह के जनरेटर 1831 के फैराडे के होमोपोलर डिस्क जनरेटर के लिए कोई समानता नहीं रखते हैं, किन्तु वे अभी भी अपने विद्युत चुम्बकीय सिद्धांत पर भरोसा करते हैं कि बदलते चुंबकीय क्षेत्र को जोड़ने वाला संवाहक इसके छोरों में संभावित अंतर को प्रेरित करता है।[55] ट्रांसफार्मर के उन्नीसवीं शताब्दी के उत्तरार्ध में आविष्कार का कारण था कि विद्युत शक्ति को उच्च वोल्टेज पर अधिक कुशलता से प्रेषित किया जा सकता है किन्तु न्यूनतमधारा।कुशल विद्युत संचरण का कारण बदले में था कि विद्युतकेंद्रीकृत विद्युतस्टेशनों पर उत्पन्न की जा सकती है, जहां यह मापदंडों की अर्थव्यवस्थाओं से लाभान्वित हुआ, और फिर अपेक्षाकृत लंबी दूरी तक डिस्पैच किया जा सकता है जहां इसकी आवश्यकता थी।[56][57]

A wind farm of about a dozen threeव्हाइट विंड टर्बाइनों को ब्लैड किया।कई देशों में महत्व बढ़ रहा है

चूंकि विद्युत ऊर्जा आसानी से राष्ट्रीय स्तर पर मांगों को पूरा करने के लिए पर्याप्त मात्रा में संग्रहीत नहीं की जा सकती है, हर समय बिल्कुल उतना ही उत्पादन किया जाना चाहिए जितना आवश्यक है।[56]इसके लिए अपने विद्युत भार की सावधानीपूर्वक भविष्यवाणियां करने और अपने पावर स्टेशनों के साथ निरंतर समन्वय बनाए रखने के लिए विद्युत उपयोगिता की आवश्यकता होती है।अपरिहार्य अस्तव्यस्तता और हानि के खिलाफ विद्युत ग्रिड को कुशन करने के लिए निश्चित मात्रा में पीढ़ी को प्रचालन आरक्षित में सदैव ऑपरेटिंग रिजर्व में आयोजित किया जाना चाहिए।

एक राष्ट्र आधुनिकीकरण के रूप में विद्युतकी मांग बड़ी कठोरता के साथ बढ़ती है और इसकी अर्थव्यवस्था विकसित होती है।[58] संयुक्त अवस्था अमेरिका ने बीसवीं शताब्दी के पहले तीन दशकों के प्रत्येक वर्ष के समय मांग में 12% की वृद्धि दिखाई,[59] विकास की दर जो अब भारत या चीन जैसी उभरती अर्थव्यवस्थाओं द्वारा अनुभव की जा रही है।[60][61] ऐतिहासिक रूप से, विद्युतकी मांग के लिए विकास दर ऊर्जा के अन्य रूपों के लिए आगे बढ़ गई है।[62]: 16 

विद्युतउत्पादन के साथ पर्यावरणीय चिंताओं ने नवीकरणीय ऊर्जा से पीढ़ी पर ध्यान केंद्रित किया है, विशेष रूप से पवन ऊर्जा और सौर ऊर्जा से।अपितु बहस से विद्युतउत्पादन के विभिन्न साधनों के पर्यावरणीय प्रभाव को जारी रखने की उम्मीद की जा सकती है, इसका अंतिम रूप अपेक्षाकृत साफ है।[62]: 89 

अनुप्रयोग

गरमागरम प्रकाश बल्ब, विद्युतका प्रारंभिक अनुप्रयोग, जौले ऊष्मा द्वारा संचालित होता है: विद्युत प्रतिरोध उत्पन्न करने वाले गर्मी के माध्यम से धारा (विद्युत) का पारित होना

विद्युतऊर्जा को स्थानांतरित करने के लिए बहुत ही सुविधाजनक विधि है, और इसे विशाल, और बढ़ते, उपयोग की संख्या के लिए अनुकूलित किया गया है।[63] 1870 के दशक में व्यावहारिक गरमागरम प्रकाश बल्ब के आविष्कार ने प्रकाश व्यवस्था को विद्युत शक्ति के पहले सार्वजनिक रूप से उपलब्ध अनुप्रयोगों में से बन गया।यद्यपि विद्युतीकरण अपने स्वयं के खतरों के साथ लाया, गैस प्रकाश की नग्न आग की लपटों की जगह घरों और कारखानों के अंदर आग के खतरों को बहुत न्यूनतमकर दिया।[64] सार्वजनिक उपयोगिताओं को कई शहरों में स्थापित किया गया था, जो विद्युतके प्रकाश के लिए बोझिल बाजार को लक्षित करते हैं।20 वीं शताब्दी के उत्तरार्ध में और आधुनिक समय में, विद्युत शक्ति क्षेत्र में डेरेग्यूलेशन की दिशा में प्रवृत्ति का प्रवाह प्रारंभ हो गया है।[65]

फिलामेंट लाइट बल्बों में नियोजित प्रतिरोधक जूल ऊष्मा प्रभाव भी इलेक्ट्रिक ऊष्मा में अधिक प्रत्यक्ष उपयोग देखता है।अपितु यह बहुमुखी और नियंत्रणीय है, इसे व्यर्थ के रूप में देखा जा सकता है, क्योंकि अधिकांश विद्युत पीढ़ी ने पहले से ही पावर स्टेशन पर गर्मी के उत्पादन की आवश्यकता है।[66] डेनमार्क जैसे कई देशों ने नई इमारतों में प्रतिरोधक विद्युत ताप के उपयोग को प्रतिबंधित या प्रतिबंधित करने वाले नियम जारी किए हैं।[67] विद्युतअभी भी ऊष्मा और प्रशीतन के लिए अत्यधिक व्यावहारिक ऊर्जा स्रोत है,[68] एयर कंडीशनिंग/ गर्मी पंप के साथ ऊष्मा और कूलिंग के लिए विद्युतकी मांग के लिए बढ़ते क्षेत्र का प्रतिनिधित्व करते हैं, जिन प्रभावों के प्रभावों को विद्युतकी उपयोगिताओं को समायोजित करने के लिए तेजी से बाध्य किया जाता है।[69]

विद्युतका उपयोग दूरसंचार के अंदर किया जाता है, और वास्तव में विद्युत तार , 1837 में विलियम फोथेरगिल कुक और चार्ल्स व्हीटस्टोन द्वारा व्यावसायिक रूप से प्रदर्शित किया गया था, इसके प्रारंभिक अनुप्रयोगों में से था।1860 के दशक में पहले पहला ट्रांसकॉन्टिनेंटल टेलीग्राफ, और फिर ट्रान्साटलांटिक टेलीग्राफ केबल, टेलीग्राफ प्रणाली के निर्माण के साथ, विद्युतने विश्व भर में मिनटों में संचार को सक्षम किया था।ऑप्टिकल फाइबर और संचार उपग्रह ने संचार प्रणालियों के लिए बाजार का हिस्सा लिया है, किन्तु विद्युतकी प्रक्रिया का अनिवार्य हिस्सा बने रहने की उम्मीद की जा सकती है।

विद्युतचुम्बकत्व के प्रभाव इलेक्ट्रिक मोटर में सबसे अधिक स्पष्ट रूप से नियोजित होते हैं, जो मकसद शक्ति का स्वच्छ और कुशल साधन प्रदान करता है।एक स्थिर मोटर जैसे कि चरखी आसानी से विद्युतकी आपूर्ति के साथ प्रदान की जाती है, किन्तु मोटर जो इसके आवेदन के साथ चलती है, जैसे कि विद्युत् वाहन, या तो बैटरी जैसे विद्युतस्रोत के साथ ले जाने के लिए बाध्य है, या धारा से धारा इकट्ठा करने के लिएएक स्लाइडिंग संपर्क जैसे कि पेंटोग्राफ (रेल)।इलेक्ट्रिक रूप से संचालित वाहनों का उपयोग सार्वजनिक परिवहन में किया जाता है, जैसे कि इलेक्ट्रिक बसें और ट्रेनें,[70] और निजी स्वामित्व में बैटरी से चलने वाली इलेक्ट्रिक कारों की बढ़ती संख्या।

इलेक्ट्रॉनिक उपकरण ट्रांजिस्टर का उपयोग करते हैं, संभवतः बीसवीं शताब्दी के सबसे महत्वपूर्ण आविष्कारों में से एक,[71] और सभी आधुनिक सर्किटरी का मौलिक बिल्डिंग ब्लॉक।एक आधुनिक एकीकृत परिपथमें केवल कुछ सेंटीमीटर वर्ग के क्षेत्र में कई अरबों लघु ट्रांजिस्टर हो सकते हैं।[72]

विद्युतऔर प्राकृतिक विश्व

शारीरिक प्रभाव

एक मानव शरीर पर प्रयुक्त वोल्टेज ऊतकों के माध्यम से विद्युत प्रवाह का कारण बनता है, और चूंकि संबंध गैर-रैखिक है, वोल्टेज जितना अधिक होता है, धारा में अधिक होता है।[73] धारणा के लिए दहलीज आपूर्ति आवृत्ति के साथ और धारा के मार्ग के साथ भिन्न होती है, किन्तु लगभग 0.1 & nbsp; ma से 1 & nbsp; mas-frequency विद्युतके लिए ma, चूंकि माइक्रोएम्पियर के रूप में न्यूनतमके रूप में धारा के अनुसार इलेक्ट्रोविब्रेशन प्रभाव के रूप में पता लगाया जा सकता है।कुछ निबंधन।[74] यदि धारा पर्याप्त रूप से अधिक है, तो यह मांसपेशियों के संकुचन, हृदय के फिब्रिलेशन और जलने का कारण होगा।[73] किसी भी दृश्यमान संकेत की निम्नता कि संवाहक विद्युतीकृत होता है, विद्युतको विशेष खतरा बनाता है।एक विद्युतके झटके के कारण होने वाला दर्द तीव्र हो सकता है, कई बार विद्युतअग्रणी हो सकती है जिसे यातना की विधि के रूप में नियोजित किया जाता है।एक विद्युतके झटके के कारण होने वाली मौत को विद्युतके झटके के रूप में संदर्भित किया जाता है।इलेक्ट्रोक्यूशन अभी भी कुछ न्यायालयों में पूंजी की सजा का साधन है, चूंकि इसका उपयोग हाल के दिनों में दुर्लभ हो गया है।[75]

प्रकृति में विद्युत घटनाएं

इलेक्ट्रिक ईल, इलेक्ट्रोफोरस इलेक्ट्रिकस

विद्युतमानव आविष्कार नहीं है, और प्रकृति में कई रूपों में देखा जा सकता है, प्रमुख अभिव्यक्ति जिसमें विद्युतहै।मैक्रोस्कोपिक स्तर पर परिचित कई इंटरैक्शन, जैसे कि स्पर्श, घर्षण या रासायनिक संबंध, परमाणु मापदंडों पर विद्युत क्षेत्रों के बीच बातचीत के कारण होते हैं।पृथ्वी के चुंबकीय क्षेत्र को ग्रह के मूल में धाराओं के प्रसार के डायनमो सिद्धांत से उत्पन्न होने के लिए माना जाता है।[76] कुछ क्रिस्टल, जैसे कि क्वार्ट्ज, या यहां तक कि चीनी, बाहरी दबाव के अधीन होने पर उनके चेहरे पर संभावित अंतर उत्पन्न करते हैं।[77] इस घटना को पीजोइलेक्ट्रिकिटी के रूप में जाना जाता है, ग्रीक भाषा पीज़िन (νιέειν) से, जिसका अर्थ प्रेस करने के लिए है, और 1880 में पियरे क्यूरी और जैक्स क्यूरी द्वारा खोजा गया था।प्रभाव पारस्परिक है, और जब पीजोइलेक्ट्रिक सामग्री को विद्युत क्षेत्र के अधीन किया जाता है, तो भौतिक आयामों में छोटा सा परिवर्तन होता है।[77]

माइक्रोबियल जीवन में बायोइलेक्ट्रोजेनेसिस#बायोइलेक्ट्रोजेनेसिस।माइक्रोबियल ईंधन सेल इस सर्वव्यापी प्राकृतिक घटना की नकल करता है।

कुछ जीव, जैसे कि शार्क, विद्युत क्षेत्रों में परिवर्तन का पता लगाने और प्रतिक्रिया करने में सक्षम हैं, क्षमता जिसे इलेक्ट्रोरेसेप्शन के रूप में जाना जाता है,[78] अपितु अन्य, जिसे विद्युत -संबंधी कहा जाता है, शिकारी या रक्षात्मक हथियार के रूप में सेवा करने के लिए स्वयं वोल्टेज उत्पन्न करने में सक्षम हैं;ये विभिन्न आदेशों में इलेक्ट्रिक मछली हैं।[3] ऑर्डर जिमनोटिफ़ॉर्म्स, जिनमें से सबसे अच्छा ज्ञात उदाहरण इलेक्ट्रिक ईल है, इलेक्ट्रोसाइट्स नामक संशोधित मांसपेशी कोशिकाओं से उत्पन्न उच्च वोल्टेज के माध्यम से अपने शिकार का पता लगाता है या स्तब्ध है।[3][4] सभी जानवर वोल्टेज दालों के साथ अपने सेल झिल्ली के साथ जानकारी प्रसारित करते हैं, जिसे संभावित कार्रवाई कहा जाता है, जिसके कार्यों में न्यूरॉन्स और मांसपेशियों के बीच तंत्रिका तंत्र द्वारा संचार सम्मिलित है।[79] विद्युतका झटका इस प्रणाली को उत्तेजित करता है, और मांसपेशियों को अनुबंध करने का कारण बनता है।[80] कुछ पौधों में गतिविधियों के समन्वय के लिए एक्शन पोटेंशिअल भी जिम्मेदार हैं।[79]

सांस्कृतिक धारणा

1850 में, विलियम इवर्ट ग्लेडस्टोन ने वैज्ञानिक माइकल फैराडे से पूछा कि विद्युतक्यों मूल्यवान थी।फैराडे ने उत्तर दिया, "एक दिन सर, आप इस पर कर लगा सकते हैं।"[81]

19 वीं और 20 वीं शताब्दी की प्रारंभ में, विद्युतकई लोगों के रोजमर्रा के जीवन का हिस्सा नहीं थी, यहां तक कि औद्योगिक पश्चिमी विश्व में भी।तदनुसार उस समय की लोकप्रिय संस्कृति ने इसे अधिकांशतः रहस्यमय, अर्ध-जादुई बल के रूप में चित्रित किया, जो जीवित को मार सकता है, मृतकों को पुनर्जीवित कर सकता है या अन्यथा प्रकृति के नियमों को मोड़ सकता है।[82]: 69  यह रवैया लुइगी गालवानी के 1771 प्रयोगों के साथ प्रारंभ हुआ, जिसमें मृत मेंढकों के पैरों को गैल्वनीय के आवेदन पर चिकोटी दिखाया गया था।गालवानी के कार्य के तुरंत बाद चिकित्सा साहित्य में स्पष्ट रूप से मृत या डूबे हुए व्यक्तियों के पुनरोद्धार या पुनर्जीवन की सूचना दी गई थी।इन परिणामों को मैरी शेली को तब जाना जाता था जब उन्होंने फ्रेंकस्टीन (1819) को लिखा था, चूंकि वह राक्षस के पुनरोद्धार की विधि का नाम नहीं देती हैं।विद्युतके साथ राक्षसों का पुनरोद्धार बाद में हॉरर फिल्मों में स्टॉक थीम बन गया।

जैसे -जैसे दूसरी औद्योगिक क्रांति के जीवन के रूप में विद्युतके साथ सार्वजनिक परिचितता बढ़ती गई, इसके वॉल्डर्स को अधिक बार सकारात्मक प्रकाश में डाला गया,[82]: 71  ऐसे श्रमिकों के रूप में जो अपने दस्ताने के अंत में मौत की मौत करते हैं, क्योंकि वे रूडयार्ड किपलिंग के 1907 की कविता के मार्था के पोर्स में रहने वाले तारों को तैयार करते हैं।[82]: 71  हर तरह के विद्युत संचालित वाहनों में एडवेंचर स्टोरीज़ जैसे कि जूल्स वर्ने और द टॉम स्विफ्ट बुक्स जैसे साहसिक कहानियों में बड़े होते हैं।[82]: 71  विद्युतके स्वामी, चाहे वह काल्पनिक हो या वास्तविक-जिसमें थॉमस एडिसन, चार्ल्स स्टीनमेट्ज़ या निकोला टेस्ला जैसे वैज्ञानिकों में सम्मिलित हैं-को विज़ार्ड जैसी शक्तियों के रूप में लोकप्रिय रूप से कल्पना की गई थी।[82]: 71 

विद्युतके साथ नवीनता होने के लिए और 20 वीं शताब्दी के बाद के आधे हिस्से में रोजमर्रा की जिंदगी की आवश्यकता बन जाती है, इसे लोकप्रिय संस्कृति द्वारा विशेष ध्यान देने की आवश्यकता होती है, जब यह बहना बंद हो जाता है,[82]: 71  ऐसी घटना जो सामान्यतः आपदा का संकेत देती है।[82]: 71  जो लोग इसे बहते रहते हैं, जैसे कि जिमी वेब के गीत विचिटा लाइनमैन (1968) के नामहीन नायक,[82]: 71  अभी भी अधिकांशतः वीर, जादूगर जैसे आंकड़े के रूप में डाला जाता है।[82]: 71 

यह भी देखें

  • Ampère का सर्कुलेटेड नियम, विद्युत प्रवाह और उसके संबंधित चुंबकीय धाराओं की दिशा को जोड़ता है।
  • विद्युत संभावित ऊर्जा, आवेशों की प्रणाली की संभावित ऊर्जा
  • विद्युतबाजार, विद्युत ऊर्जा की बिक्री
  • विद्युतकी व्युत्पत्ति, विद्युत की उत्पत्ति और इसके धारा अलग -अलग उपयोग
  • हाइड्रोलिक सादृश्य, पानी और विद्युत प्रवाह के प्रवाह के बीच सादृश्य

टिप्पणियाँ

  1. Accounts differ as to whether this was before, during, or after a lecture.
  2. Almost all electric fields vary in space. An exception is the electric field surrounding a planar conductor of infinite extent, the field of which is uniform.
  1. Jones, D.A. (1991), "Electrical engineering: the backbone of society", IEE Proceedings A - Science, Measurement and Technology, 138 (1): 1–10, doi:10.1049/ip-a-3.1991.0001
  2. Moller, Peter; Kramer, Bernd (December 1991), "Review: Electric Fish", BioScience, American Institute of Biological Sciences, 41 (11): 794–96 [794], doi:10.2307/1311732, JSTOR 1311732
  3. 3.0 3.1 3.2 Bullock, Theodore H. (2005), Electroreception, Springer, pp. 5–7, ISBN 0-387-23192-7
  4. 4.0 4.1 Morris, Simon C. (2003), Life's Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, pp. 182–85, ISBN 0-521-82704-3
  5. 5.0 5.1 Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 981-02-4471-1
  6. Simpson, Brian (2003), Electrical Stimulation and the Relief of Pain, Elsevier Health Sciences, pp. 6–7, ISBN 0-444-51258-6
  7. Diogenes Laertius, R.D. Hicks (ed.), "Lives of Eminent Philosophers, Book 1 Chapter 1 [24]", Perseus Digital Library, Tufts University, archived from the original on 30 July 2022, retrieved 5 February 2017, Aristotle and Hippias affirm that, arguing from the magnet and from amber, he attributed a soul or life even to inanimate objects.
  8. Aristotle, Daniel C. Stevenson (ed.), translated by J.A. Smith, "De Animus (On the Soul) Book 1 Part 2 (B4 verso)", The Internet Classics Archive, archived from the original on 26 February 2017, retrieved 5 February 2017, Thales, too, to judge from what is recorded about him, seems to have held soul to be a motive force, since he said that the magnet has a soul in it because it moves the iron.
  9. Frood, Arran (27 February 2003), Riddle of 'Baghdad's batteries', BBC, archived from the original on 2017-09-03, retrieved 2008-02-16
  10. Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Press, pp. 7–8, ISBN 978-0-313-33358-3
  11. Chalmers, Gordon (1937), "The Lodestone and the Understanding of Matter in Seventeenth Century England", Philosophy of Science, 4 (1): 75–95, doi:10.1086/286445, S2CID 121067746
  12. 12.0 12.1 12.2 Guarnieri, M. (2014), "Electricity in the age of Enlightenment", IEEE Industrial Electronics Magazine, 8 (3): 60–63, doi:10.1109/MIE.2014.2335431, S2CID 34246664
  13. Srodes, James (2002), Franklin: The Essential Founding Father, Regnery Publishing, pp. 92–94, ISBN 0-89526-163-4. It is uncertain if Franklin personally carried out this experiment, but it is popularly attributed to him.
  14. Uman, Martin (1987), All About Lightning (PDF), Dover Publications, ISBN 0-486-25237-X
  15. Riskin, Jessica (1998), Poor Richard's Leyden Jar: Electricity and economy in Franklinist France (PDF), p. 327, archived (PDF) from the original on 2014-05-12, retrieved 2014-05-11
  16. Williamson, Hugh (1775), "Experiments and observations on the Gymnotus electricus, or electric eel", Philosophical Transactions of the Royal Society, 65 (65): 94–101, doi:10.1098/rstl.1775.0011, S2CID 186211272, archived from the original on 2022-07-30, retrieved 2022-07-16
  17. Edwards, Paul (10 November 2021), A Correction to the Record of Early Electrophysiology Research on the 250th Anniversary of a Historic Expedition to Île de Ré, HAL open-access archive
  18. Hunter, John (1775), "An account of the Gymnotus electricus", Philosophical Transactions of the Royal Society of London (65): 395–407
  19. 19.0 19.1 Guarnieri, M. (2014), "The Big Jump from the Legs of a Frog", IEEE Industrial Electronics Magazine, 8 (4): 59–61, 69, doi:10.1109/MIE.2014.2361237, S2CID 39105914
  20. 20.0 20.1 20.2 Kirby, Richard S. (1990), Engineering in History, Courier Dover Publications, pp. 331–33, ISBN 0-486-26412-2
  21. 21.0 21.1 21.2 Berkson, William (1974), Fields of Force: The Development of a World View from Faraday to Einstein, Routledge, ISBN 0-7100-7626-6
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 Sears, Francis; et al. (1982), University Physics, Sixth Edition, Addison Wesley, ISBN 0-201-07199-1
  23. Hertz, Heinrich (1887), "Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung", Annalen der Physik, 267 (8): S. 983–1000, Bibcode:1887AnP...267..983H, doi:10.1002/andp.18872670827, archived from the original on 2020-06-11, retrieved 2019-08-25
  24. "The Nobel Prize in Physics 1921", Nobel Foundation, archived from the original on 2008-10-17, retrieved 2013-03-16
  25. "Solid state", The Free Dictionary, archived from the original on 2018-07-21
  26. Blakemore, John Sydney (1985), Solid state physics, Cambridge University Press, pp. 1–3, ISBN 0-521-31391-0
  27. Jaeger, Richard C.; Blalock, Travis N. (2003), Microelectronic circuit design, McGraw-Hill Professional, pp. 46–47, ISBN 0-07-250503-6
  28. "1947: Invention of the Point-Contact Transistor", Computer History Museum, archived from the original on 30 September 2021, retrieved 10 August 2019
  29. "1948: Conception of the Junction Transistor", The Silicon Engine, Computer History Museum, archived from the original on 30 July 2020, retrieved 8 October 2019
  30. Coulomb, Charles-Augustin de (1785), Histoire de l'Academie Royal des Sciences, Paris, The repulsive force between two small spheres charged with the same type of electricity is inversely proportional to the square of the distance between the centres of the two spheres.
  31. 31.0 31.1 31.2 31.3 31.4 31.5 31.6 Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, ISBN 0-07-084111-X
  32. National Research Council (1998), Physics Through the 1990s, National Academies Press, pp. 215–16, ISBN 0-309-03576-7
  33. 33.0 33.1 Umashankar, Korada (1989), Introduction to Engineering Electromagnetic Fields, World Scientific, pp. 77–79, ISBN 9971-5-0921-0
  34. 34.0 34.1 Hawking, Stephen (1988), A Brief History of Time, Bantam Press, p. 77, ISBN 0-553-17521-1
  35. Trefil, James (2003), The Nature of Science: An A–Z Guide to the Laws and Principles Governing Our Universe, Houghton Mifflin Books, p. 74, ISBN 0-618-31938-7
  36. Shectman, Jonathan (2003), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century, Greenwood Press, pp. 87–91, ISBN 0-313-32015-2
  37. Sewell, Tyson (1902), The Elements of Electrical Engineering, Lockwood, p. 18. The Q originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'.
  38. Close, Frank (2007), The New Cosmic Onion: Quarks and the Nature of the Universe, CRC Press, p. 51, ISBN 978-1-58488-798-0
  39. Al-Khalili, Jim, "Shock and Awe: The Story of Electricity", BBC Horizon
  40. Ward, Robert (1960), Introduction to Electrical Engineering, Prentice-Hall, p. 18
  41. Solymar, L. (1984), Lectures on electromagnetic theory, Oxford University Press, p. 140, ISBN 0-19-856169-5
  42. "Lab Note #105 EMI Reduction – Unsuppressed vs. Suppressed", Arc Suppression Technologies, April 2011, archived from the original on March 5, 2016, retrieved March 7, 2012
  43. 43.0 43.1 43.2 Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, ISBN 9781417505432
  44. 44.0 44.1 Morely & Hughes (1970), Principles of Electricity, Fifth edition, p. 73, ISBN 0-582-42629-4
  45. 45.0 45.1 Naidu, M.S.; Kamataru, V. (1982), High Voltage Engineering, Tata McGraw-Hill, ISBN 0-07-451786-4
  46. Paul J. Nahin (9 October 2002), Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age, JHU Press, ISBN 978-0-8018-6909-9
  47. Serway, Raymond A. (2006), Serway's College Physics, Thomson Brooks, p. 500, ISBN 0-534-99724-4
  48. Saeli, Sue; MacIsaac, Dan (2007), "Using Gravitational Analogies To Introduce Elementary Electrical Field Theory Concepts", The Physics Teacher, 45 (2): 104, Bibcode:2007PhTea..45..104S, doi:10.1119/1.2432088, archived from the original on 2008-02-16, retrieved 2007-12-09
  49. Thompson, Silvanus P. (2004), Michael Faraday: His Life and Work, Elibron Classics, p. 79, ISBN 1-4212-7387-X
  50. 50.0 50.1 Morely & Hughes, Principles of Electricity, Fifth edition, pp. 92–93
  51. 51.0 51.1 Institution of Engineering and Technology, Michael Faraday: Biography, archived from the original on 2007-07-03, retrieved 2007-12-09
  52. 52.0 52.1 52.2 52.3 Alexander, Charles; Sadiku, Matthew (2006), Fundamentals of Electric Circuits (3, revised ed.), McGraw-Hill, ISBN 9780073301150
  53. Smith, Clare (2001), Environmental Physics
  54. 54.0 54.1 Dell, Ronald; Rand, David (2001), "Understanding Batteries", NASA Sti/Recon Technical Report N, Royal Society of Chemistry, 86: 2–4, Bibcode:1985STIN...8619754M, ISBN 0-85404-605-4
  55. McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, pp. 182–83, ISBN 0-85312-269-5
  56. 56.0 56.1 Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, pp. 44–48, ISBN 1-85383-341-X
  57. Edison Electric Institute, History of the Electric Power Industry, archived from the original on November 13, 2007, retrieved 2007-12-08
  58. Bryce, Robert (2020), A Question of Power: Electricity and the Wealth of Nations, PublicAffairs, p. 352, ISBN 978-1610397490, archived from the original on 2021-11-07, retrieved 2021-11-07
  59. Edison Electric Institute, History of the U.S. Electric Power Industry, 1882–1991, archived from the original on 2010-12-06, retrieved 2007-12-08
  60. Carbon Sequestration Leadership Forum, An Energy Summary of India, archived from the original on 2007-12-05, retrieved 2007-12-08
  61. IndexMundi, China Electricity – consumption, archived from the original on 2019-06-17, retrieved 2007-12-08
  62. 62.0 62.1 National Research Council (1986), Electricity in Economic Growth, National Academies Press, ISBN 0-309-03677-1
  63. Wald, Matthew (21 March 1990), "Growing Use of Electricity Raises Questions on Supply", New York Times, archived from the original on 2008-01-08, retrieved 2007-12-09
  64. d'Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, p. 211
  65. "The Bumpy Road to Energy Deregulation", EnPowered, 2016-03-28, archived from the original on 2017-04-07, retrieved 2017-05-29
  66. ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, p. 298, ISBN 0-86720-321-8
  67. Danish Ministry of Environment and Energy, "F.2 The Heat Supply Act", Denmark's Second National Communication on Climate Change, archived from the original on January 8, 2008, retrieved 2007-12-09
  68. Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5
  69. Hojjati, B.; Battles, S., The Growth in Electricity Demand in U.S. Households, 1981–2001: Implications for Carbon Emissions (PDF), archived from the original (PDF) on 2008-02-16, retrieved 2007-12-09
  70. "Public Transportation", Alternative Energy News, 2010-03-10, archived from the original on 2010-12-04, retrieved 2010-12-02
  71. Herrick, Dennis F. (2003), Media Management in the Age of Giants: Business Dynamics of Journalism, Blackwell Publishing, ISBN 0-8138-1699-8
  72. Das, Saswato R. (2007-12-15), "The tiny, mighty transistor", Los Angeles Times, archived from the original on 2008-10-11, retrieved 2008-01-12
  73. 73.0 73.1 Tleis, Nasser (2008), Power System Modelling and Fault Analysis, Elsevier, pp. 552–54, ISBN 978-0-7506-8074-5
  74. Grimnes, Sverre (2000), Bioimpedance and Bioelectricity Basic, Academic Press, pp. 301–09, ISBN 0-12-303260-1
  75. Lipschultz, J.H.; Hilt, M.L.J.H. (2002), Crime and Local Television News, Lawrence Erlbaum Associates, p. 95, ISBN 0-8058-3620-9
  76. Encrenaz, Thérèse (2004), The Solar System, Springer, p. 217, ISBN 3-540-00241-3
  77. 77.0 77.1 Lima-de-Faria, José; Buerger, Martin J. (1990), "Historical Atlas of Crystallography", Zeitschrift für Kristallographie, Springer, 209 (12): 67, Bibcode:1994ZK....209.1008P, doi:10.1524/zkri.1994.209.12.1008a, ISBN 0-7923-0649-X
  78. Ivancevic, Vladimir & Tijana (2005), Natural Biodynamics, World Scientific, p. 602, ISBN 981-256-534-5
  79. 79.0 79.1 Kandel, E.; Schwartz, J.; Jessell, T. (2000), Principles of Neural Science, McGraw-Hill Professional, pp. 27–28, ISBN 0-8385-7701-6
  80. Davidovits, Paul (2007), Physics in Biology and Medicine, Academic Press, pp. 204–05, ISBN 978-0-12-369411-9
  81. Jackson, Mark (4 November 2013), Theoretical physics – like sex, but with no need to experiment, The Conversation, archived from the original on 4 April 2014, retrieved 26 March 2014
  82. 82.0 82.1 82.2 82.3 82.4 82.5 82.6 82.7 82.8 Van Riper, A. Bowdoin (2002), Science in popular culture: a reference guide, Westport: Greenwood Press, ISBN 0-313-31822-0

संदर्भ

बाहरी कड़ियाँ

श्रेणी: पदार्थ में विद्युत और चुंबकीय क्षेत्र