गणन संख्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Size of a possibly infinite set}}
{{Short description|Size of a possibly infinite set}}[[File:Bijection.svg|thumb|200px|एक विशेषण फ़ंक्शन, f: X → Y, समूह X से समूह Y तक दर्शाता है कि समूह में समान प्रमुखता है, इस स्थिति में प्रधान नंबर 4 के बराबर है।]]
{{about|गणितीय अवधारणा|संख्या शब्द मात्रा का संकेत देते हैं ("तीन" सेब, "चार" पक्षी, आदि)|कार्डिनल अंक}}
 
[[File:Bijection.svg|thumb|200px|एक विशेषण फ़ंक्शन, f: X → Y, समूह X से समूह Y तक दर्शाता है कि समूह में समान प्रमुखता है, इस स्थिति में प्रधान नंबर 4 के बराबर है।]]


[[File:Aleph0.svg|thumb|right|150px|[[aleph-अशक्त]], सबसे छोटा अनंत प्रधान]][[गणित]] में, प्रधान नंबर, या संक्षेप में प्रधान, [[सेट (गणित)|समूह (गणित)]] के प्रमुखता (आकार) को मापने के लिए उपयोग की जाने वाली [[प्राकृतिक संख्या]]ओं का सामान्यीकरण है। [[परिमित सेट|परिमित समूह]] की [[प्रमुखता]]  समूह में तत्वों की संख्या में प्राकृतिक संख्या पर निर्भर करती है। '[[अनंत संख्या]]' प्रधान नंबर, जिसे प्रायः हिब्रू प्रतीक का उपयोग करके दर्शाया जाता है <math>\aleph</math> ([[एलेफ (हिब्रू)]]) सबस्क्रिप्ट के बाद, [[अनंत सेट|अनंत समूह]] के आकार का वर्णन करता हैं।
[[File:Aleph0.svg|thumb|right|150px|[[aleph-अशक्त]], सबसे छोटा अनंत प्रधान]][[गणित]] में, प्रधान नंबर, या संक्षेप में प्रधान, [[सेट (गणित)|समूह (गणित)]] के प्रमुखता (आकार) को मापने के लिए उपयोग की जाने वाली [[प्राकृतिक संख्या]]ओं का सामान्यीकरण है। [[परिमित सेट|परिमित समूह]] की [[प्रमुखता]]  समूह में तत्वों की संख्या में प्राकृतिक संख्या पर निर्भर करती है। '[[अनंत संख्या]]' प्रधान नंबर, जिसे प्रायः हिब्रू प्रतीक का उपयोग करके दर्शाया जाता है <math>\aleph</math> ([[एलेफ (हिब्रू)]]) सबस्क्रिप्ट के बाद, [[अनंत सेट|अनंत समूह]] के आकार का वर्णन करता हैं।
Line 207: Line 204:


{{Number systems}}
{{Number systems}}
{{Mathematical logic}}
{{Set theory}}
{{DEFAULTSORT:Cardinal Number}}[[Category: कार्डिनल नंबर | कार्डिनल नंबर ]]  
{{DEFAULTSORT:Cardinal Number}}[[Category: कार्डिनल नंबर | कार्डिनल नंबर ]]  



Revision as of 15:12, 8 February 2023

एक विशेषण फ़ंक्शन, f: X → Y, समूह X से समूह Y तक दर्शाता है कि समूह में समान प्रमुखता है, इस स्थिति में प्रधान नंबर 4 के बराबर है।
aleph-अशक्त, सबसे छोटा अनंत प्रधान

गणित में, प्रधान नंबर, या संक्षेप में प्रधान, समूह (गणित) के प्रमुखता (आकार) को मापने के लिए उपयोग की जाने वाली प्राकृतिक संख्याओं का सामान्यीकरण है। परिमित समूह की प्रमुखता समूह में तत्वों की संख्या में प्राकृतिक संख्या पर निर्भर करती है। 'अनंत संख्या' प्रधान नंबर, जिसे प्रायः हिब्रू प्रतीक का उपयोग करके दर्शाया जाता है (एलेफ (हिब्रू)) सबस्क्रिप्ट के बाद, अनंत समूह के आकार का वर्णन करता हैं।

प्रधान संख्या को विशेषण कार्यों के संदर्भ में परिभाषित किया गया है। दो समूहों में समान प्रमुखता होती है, और केवल अगर, दो समूहों के तत्वों के बीच एक-से-एक पत्राचार (आक्षेप) होता है। परिमित समूह के स्थिति में, यह आकार की सहज धारणा से सहमत है। अपरिमित समुच्चयों की स्थिति में व्यवहार अधिक जटिल होता है। जॉर्ज कैंटर के कारण मौलिक प्रमेय से पता चलता है कि अनंत समूहों के लिए अलग-अलग प्रमुखता होना संभव है, और विशेष रूप से वास्तविक संख्याओं के समूह की प्रमुखता प्राकृतिक संख्याओं के समूह की प्रमुखता से अधिक है। अनंत समुच्चय के उचित उपसमुच्चय के लिए मूल समुच्चय के समान प्रमुखता होना भी संभव है - ऐसा कुछ जो परिमित समुच्चय के उचित उपसमुच्चय के साथ नहीं होती हैं।

प्रधान संख्याओं का अनंत क्रम है:

यह अनुक्रम शून्य (परिमित प्रधान्स) सहित प्राकृतिक संख्याओं से प्रारंभ होता है, जिसके पश्चात एलेफ़ संख्याएँ (सुव्यवस्थित समूहों के अनंत प्रधान्स) होती हैं। एलीफ संख्याओं को क्रमिक संख्याओं द्वारा अनुक्रमित किया जाता है। पसंद के स्वयंसिद्ध की धारणा के अनुसार, इस क्रम में प्रत्येक प्रधान संख्या सम्मलित है। यदि पसंद का स्वयंसिद्ध स्वतंत्रता उस स्वयंसिद्ध है, तो स्थिति अधिक जटिल है, अतिरिक्त अनंत प्रधान्स के साथ जो एलेफ्स नहीं हैं।

समुच्चय सिद्धान्त के हिस्से के रूप में प्रमुखता का अध्ययन स्वयं के लिए किया जाता है। यह मॉडल सिद्धांत, साहचर्य, अमूर्त बीजगणित और गणितीय विश्लेषण सहित गणित की शाखाओं में उपयोग किया जाने वाला उपकरण भी है। श्रेणी सिद्धांत में, क्रमसूचक संख्या समूह की श्रेणी का प्रारूप(श्रेणी सिद्धांत) बनाते हैं।

इतिहास

प्रमुखता की धारणा, जैसा कि अब समझा जाता है, 1874-1884 में समूह सिद्धांत के प्रवर्तक जॉर्ज कैंटर द्वारा तैयार की गई थी। प्रमुखता का उपयोग परिमित समूह के पहलू की तुलना करने के लिए किया जाता है। उदाहरण के लिए, समूह {1,2,3} और {4,5,6} बराबर नहीं हैं, किन्तु प्रमुखता है। यह दो समूहों के बीच आक्षेप (अर्ताथ, एक-से-एक पत्राचार) के अस्तित्व से स्थापित होता है, जैसे कि पत्राचार {1→4, 2→5, 3→6}।

कैंटर ने अपनी आपत्ति की अवधारणा को अनंत समूहों पर लागू किया[1] (उदाहरण के लिए प्राकृतिक संख्याओं का समुच्चय N = {0, 1, 2, 3, ...})। इस प्रकार, उन्होंने N काउंटेबल समूह के साथ आक्षेप वाले सभी समूहों को बुलाया था। इस प्रधान नंबर को अलेफ संख्या या कहा जाता है। उन्होंने अनंत समूहों के प्रधान संख्याओं को ट्रांसफिनिट प्रधान नंबर कहा हैं।

कैंटर ने सिद्ध किया कि N के किसी भी बंधे हुए समूह में N के समान ही प्रमुखता है, भले ही यह अंतर्ज्ञान के विपरीत प्रतीत होती हैं। उन्होंने यह भी सिद्ध किया कि प्राकृतिक संख्याओं के सभी क्रमित युग्म का समुच्चय अगणनीय है, इसका तात्पर्य यह है कि सभी परिमेय संख्याओं का समुच्चय भी भाज्य है, क्योंकि प्रत्येक परिमेय संख्या को पूर्णांकों की जोड़ी द्वारा दर्शाया जाता है। उन्होंने बाद में सिद्ध किया कि सभी वास्तविक बीजगणितीय संख्याओं का समुच्चय भी अभाज्य होता है। प्रत्येक वास्तविक B गणितीय संख्या z को पूर्णांकों के परिमित अनुक्रम के रूप में N को कोड किया जाता है, जो बहुपद समीकरण में गुणांक हैं, जिसका यह समाधान है, अर्थात आदेशित n-tuple (a0, a1, ..., an), ai∈ 'Z' परिमेय की जोड़ी के साथ (B0, B1) ऐसा है कि गुणांक के साथ बहुपद की अनूठी जड़ है (a0, a1, ..., an) जो अंतराल में (B0, B1)है ।

अपने 1874 के पेपर ऑन ए प्रॉपर्टी ऑफ द कलेक्शन ऑफ ऑल रियल बीजगणितीय संख्याओं में, कैंटर ने सिद्ध किया कि उच्च-क्रम के प्रधान नंबर सम्मलित हैं, यह दिखाते हुए कि वास्तविक संख्याओं के समूह में N की तुलना में प्रमुखता अधिक है। उनके प्रमाण ने नेस्टेड के साथ तर्क का उपयोग किया अंतराल, किन्तु 1891 के पेपर में, उन्होंने अपने सरल और बहुत सरल कैंटर के विकर्ण तर्क का उपयोग करके उसी परिणाम को सिद्ध कर दिया। वास्तविक संख्याओं के समूह की नई प्रधान संख्या को सातत्य की प्रमुखता कहा जाता है और कैंटर ने इसके लिए प्रतीक का उपयोग किया ।

कैंटर ने प्रधान संख्या के सामान्य सिद्धांत का बड़ा हिस्सा भी विकसित किया, उन्होंने सिद्ध किया कि सबसे छोटी ट्रांसफिनिट प्रधान संख्या है (, aleph-null), और यह कि प्रत्येक प्रधान संख्या के लिए अगला बड़ा प्रधान होता है

उनकी सातत्य परिकल्पना यह प्रस्ताव है कि प्रमुखता वास्तविक संख्याओं के समुच्चय के समान है . यह परिकल्पना गणितीय समूह सिद्धांत के मानक स्वयंसिद्धों से स्वतंत्र है, अर्थात यह न तो उनसे सिद्ध किया जाता है और न ही अप्रमाणित। यह 1963 में पॉल कोहेन (गणितज्ञ) द्वारा दिखाया गया था, जो 1940 में कर्ट गोडेल द्वारा पहले के कार्य का पूरक था।

प्रेरणा

अनौपचारिक उपयोग में, क्रमसूचक संख्या वह होता है जिसे सामान्यतः गिनती संख्या के रूप में संदर्भित किया जाता है, बशर्ते कि 0 सम्मलित हो: 0, 1, 2, .... उन्हें 0 से प्रारंभ होने वाली प्राकृतिक संख्याओं के साथ पहचाना जाता है। गिनती संख्याएं हैं वास्तव में क्या औपचारिक रूप से परिमित समूह प्रधान संख्या के रूप में परिभाषित किया जाता है। अनंत प्रधान केवल उच्च स्तर के गणित और तर्कशास्त्र में होते हैं।

अधिक औपचारिक रूप से, गैर-शून्य संख्या का उपयोग दो उद्देश्यों के लिए किया जाता है: समूह के आकार का वर्णन करने के लिए, या किसी क्रम में किसी तत्व की स्थिति का वर्णन करने के लिए। परिमित समुच्चयों और अनुक्रमों के लिए यह देखना आसान है कि ये दो धारणाएँ मेल खाती हैं, क्योंकि अनुक्रम में किसी स्थिति का वर्णन करने वाली प्रत्येक संख्या के लिए हम ऐसे समुच्चय का निर्माण कर सकते हैं जिसका आकार बिल्कुल सही हो। उदाहरण के लिए, 3 अनुक्रम <'a', 'b', 'c', 'd',...> में 'c' की स्थिति का वर्णन करता है, और हम समूह {a,b,c} का निर्माण कर सकते हैं, जिसमें 3 तत्व हों।

चूंकि, अनंत समूहों के साथ व्यवहार करते समय, दोनों के बीच अंतर करना आवश्यक है, क्योंकि दो धारणाएं वास्तव में अनंत समूहों के लिए अलग-अलग हैं। स्थिति पहलू को ध्यान में रखते हुए क्रमिक संख्याएं होती हैं, जबकि आकार पहलू को यहां वर्णित प्रधान संख्याओं द्वारा सामान्यीकृत किया जाता है।

प्रधान की औपचारिक परिभाषा के पीछे अंतर्ज्ञान समूह के सापेक्ष आकार या बड़ेपन की धारणा का निर्माण है। परिमित समुच्चयों के लिए यह आसान है, जिसमें एक बस समूह में सम्मलित तत्वों की संख्या को गिनता है। बड़े समूहों के आकार की तुलना करने के लिए, अधिक परिष्कृत धारणाओं को अपील करना आवश्यक है।

एक समूह Y कम से कम समूह X जितना बड़ा होता है यदि X के तत्वों से Y के तत्वों के लिए इंजेक्शन फंक्शन मैप (गणित) होता है। इंजेक्शन मैपिंग समूह X के प्रत्येक तत्व को समूह के अद्वितीय तत्व के साथ पहचानती है Y. इसे उदाहरण से सबसे सरलता से समझा जाता है, मान लें कि हमारे पास X = {1,2,3} और Y = {a,b,c,d} समूह हैं, तो आकार की इस धारणा का उपयोग करके, हम देखेंगे कि मैपिंग है:

1 →a
2 → b
3 → c

जो अंतःक्षेपी है, और इसलिए यह निष्कर्ष निकालता है कि Y की प्रमुखता X से अधिक या उसके बराबर है। तत्व d में इसके लिए कोई तत्व मानचित्रण नहीं है, किन्तु इसकी अनुमति है क्योंकि हमें केवल अंतःक्षेपी मानचित्रण की आवश्यकता है, न कि विशेषण मानचित्रण की। इस धारणा का लाभ यह है कि इसे अनंत समूहों तक बढ़ाया जाता है।

इसके बाद हम इसे समानता-शैली के संबंध में बढ़ा सकते हैं। दो समूह (गणित) X और Y को समान प्रमुखता कहा जाता है यदि X और Y के बीच आक्षेप सम्मलित है। कैंटर-बर्नस्टीन-श्रोएडर प्रमेय द्वारा या X से Y, और Y से X तक इंजेक्शन मैपिंग द्वारा मिलता हैं।

फिर हम लिखते हैं

|X| = |Y|

X की प्रधान संख्या को प्रायः कम से कम क्रमिक के साथ परिभाषित किया जाता है = |X|।[2] इसे वॉन न्यूमैन प्रधान असाइनमेंट कहा जाता है, इस परिभाषा को समझने के लिए, यह सिद्ध किया जाना चाहिए कि प्रत्येक समूह में कुछ क्रमवाचक के समान ही प्रमुखता होती है, यह कथन सुव्यवस्थित सिद्धांत है। चूंकि वस्तुओं को स्पष्ट रूप से नाम दिए बिना समूह की सापेक्ष प्रमुखता पर चर्चा करना संभव है।

उपयोग किया जाने वाला क्लासिक उदाहरण अनंत होटल विरोधाभास का है, जिसे ग्रांड होटल का हिल्बर्ट का विरोधाभास भी कहा जाता है। मान लीजिए कि होटल में सराय का मालिक है, जिसके पास अनंत संख्या में कमरे हैं। होटल भरा हुआ है, और फिर नया मेहमान आता है। कमरे 1 में सम्मलित अतिथि को कमरे 2 में जाने के लिए, कमरे 2 में अतिथि को कमरे 3 में जाने के लिए, और इसी तरह कमरा 1 को खाली छोड़कर अतिरिक्त अतिथि को फिट करना संभव है। हम इस मानचित्रण का खंड स्पष्ट रूप से लिख सकते हैं:

1 → 2
2 → 3
3 → 4
...
n→ n + 1
...

इस असाइनमेंट के साथ, हम देखते हैं कि समूह {1,2,3,...} में समूह {2,3,4,...} के समान प्रमुखता है, क्योंकि पहले और दूसरे के बीच आपत्ति है दिखाया गया। यह अनंत समूह की परिभाषा को किसी भी समूह के रूप में प्रेरित करता है जिसमें समान प्रमुखता (अर्ताथ, डेडेकिंड-अनंत समूह) का उचित उपसमुच्चय होता है, इस स्थिति में {2,3,4,...} {1,2,3,...} का उचित उपसमुच्चय है।

इन बड़ी वस्तुओं पर विचार करते समय, कोई भी यह देखना चाह सकता है कि क्या गणना क्रम की धारणा इन अनंत समूहों के लिए ऊपर परिभाषित प्रधान के साथ मेल खाती है। ऐसा होता है कि ऐसा नहीं होता, उपरोक्त उदाहरण पर विचार करके हम देखते हैं कि यदि कोई वस्तु अनंत से बड़ी है, तो उसमें वही प्रमुखता होनी चाहिए जो अनंत समूह के साथ हमने प्रारंभ की थी। संख्या के लिए अलग औपचारिक धारणा का उपयोग करना संभव है, जिसे क्रमिक संख्या कहा जाता है, गिनती के विचारों के आधार पर और प्रत्येक संख्या पर बारी-बारी से विचार किया जाता है, और हमें पता चलता है कि बार जब हम परिमित संख्या से बाहर निकल जाते हैं तो प्रमुखता और ऑर्डिनलिटी की धारणाएँ अलग हो जाती हैं।

यह सिद्ध किया जाता है कि वास्तविक संख्याओं की प्रमुखता अभी वर्णित प्राकृतिक संख्याओं की तुलना में अधिक है। कैंटर के विकर्ण तर्क का उपयोग करके इसकी कल्पना की जा सकती है,

प्रमुखता के क्लासिक प्रश्न (उदाहरण के लिए सातत्य परिकल्पना) यह पता लगाने से संबंधित हैं कि क्या अन्य अनंत प्रधान्स की कुछ जोड़ी के बीच कुछ प्रधान है। हाल के दिनों में, गणितज्ञ बड़े और बड़े प्रधान के गुणों का वर्णन करते रहे हैं।

चूँकि गणित में प्रमुखता ऐसी सामान्य अवधारणा है, इसलिए विभिन्न प्रकार के नाम उपयोग में हैं। प्रमुखता की समरूपता को कभी-कभी समता, समता, या समतुल्यता के रूप में संदर्भित किया जाता है। इस प्रकार यह कहा जाता है कि समान प्रमुखता वाले दो समुच्चय क्रमश: समशक्ति, समशक्ति या समविभव होते हैं।

औपचारिक परिभाषा

औपचारिक रूप से, पसंद के स्वयंसिद्ध को मानते हुए, समूह X की प्रमुखता कम से कम क्रमिक संख्या α है जैसे कि X और α के बीच आपत्ति है। इस परिभाषा को वॉन न्यूमैन प्रधान असाइनमेंट के रूप में जाना जाता है। यदि पसंद का स्वयंसिद्ध नहीं माना जाता है, तो अलग दृष्टिकोण की आवश्यकता होती है। समूह X की कार्डिनालिटी की सबसे पुरानी परिभाषा (कैंटर में निहित और फ्रीज और गणितीय सिद्धांत में स्पष्ट) सभी समूहों के वर्ग [X] के रूप में है जो X के समतुल्य हैं। यह जेडएफसी या स्वयंसिद्ध के अन्य संबंधित प्रणालियों में कार्य नहीं करता है समूह थ्योरी क्योंकि यदि X खाली नहीं है, तो यह संग्रह समूह होने के लिए बहुत बड़ा है। वास्तव में, X ≠ ∅ के लिए समुच्चय m को {m} × X पर मैप करके ब्रह्मांड से [X] में अंतःक्षेपण होता है, और इसलिए आकार की सीमा के अभिगृहीत द्वारा, [X] उचित वर्ग है। परिभाषा चूंकि प्रकार सिद्धांत और नई नींव और संबंधित प्रणालियों में कार्य करती है। चूंकि, अगर हम इस वर्ग से X के साथ समतुल्य तक सीमित हैं जिनके पास कम से कम रैंक (समूह सिद्धांत) है, तो यह कार्य करेगा (यह दाना स्कॉट के कारण चाल है:[3] यह कार्य करता है क्योंकि किसी दिए गए रैंक वाले ऑब्जेक्ट्स का संग्रह समूह है)।

वॉन न्यूमैन प्रधान असाइनमेंट का तात्पर्य है कि परिमित समूह की प्रधान संख्या उस समूह के सभी संभावित क्रमों की सामान्य क्रमिक संख्या है, और प्रधान और क्रमिक अंकगणित (इसके अतिरिक्त, गुणा, शक्ति, उचित घटाव) फिर परिमित के लिए समान उत्तर दें नंबर। चूंकि, वे अनंत संख्याओं के लिए भिन्न हैं। उदाहरण के लिए, क्रमिक अंकगणित में जबकि प्रधान अंकगणित में, चूंकि वॉन न्यूमैन असाइनमेंट डालता है . दूसरी ओर, स्कॉट की चाल का अर्थ है कि प्रधान संख्या 0 है , जो क्रमांक 1 भी है, और यह भ्रमित करने वाला होती है। संभावित समझौता (अनंत अंकगणित में पसंद और भ्रम की स्वयंसिद्धता पर निर्भरता से बचने के समय परिमित अंकगणित में संरेखण का लाभ उठाने के लिए) वॉन न्यूमैन असाइनमेंट को परिमित समूहों के प्रधान संख्याओं पर लागू करना है (जो अच्छी तरह से आदेशित हो सकते हैं और नहीं हैं) उचित उपसमुच्चयों के लिए समबल) और अन्य समूहों की प्रधान संख्याओं के लिए स्कॉट की चाल का उपयोग करने के लिए किया जाता हैं।

औपचारिक रूप से, प्रधान संख्याओं के बीच क्रम को निम्नानुसार परिभाषित किया गया है: |X| ≤ |Y फ़ंक्शन X से Y तक। कैंटर-बर्नस्टीन-श्रोएडर प्रमेय कहता है कि यदि |X| ≤ |Y| और | Y | ≤ |X| फिर |X| = |Y| के अनुसार इसमें अभिगृहीत उस कथन के समतुल्य है जिसमें दो समुच्चय X और Y, या तो |X| ≤ |Y| या |Y| ≤ |X| में दिए गए हैं[4][5]

एक समुच्चय X डिडिकाइन्ड-अनंत है यदि |X| के साथ X का उचित उपसमुच्चय Y सम्मलित है = |Y|, और डेडेकाइंड परिमित यदि ऐसा उपसमुच्चय सम्मलित नहीं है। परिमित समुच्चय प्रधान केवल प्राकृतिक संख्याएँ हैं, इस अर्थ में कि समुच्चय X परिमित है यदि और केवल यदि |X| = |N| = n किसी प्राकृत संख्या n के लिए कोई अन्य समुच्चय अनंत समुच्चय होता है।

पसंद के स्वयंसिद्ध को मानते हुए, यह सिद्ध किया जाता है कि डेडेकाइंड की धारणा मानक के अनुरूप है। यह भी सिद्ध किया जाता है कि प्रधान (अलेफ नल या एलेफ-0, जहां एलेफ हिब्रू वर्णमाला में पहला अक्षर है, दर्शाया गया है ) प्राकृतिक संख्याओं के समूह का सबसे छोटा अनंत प्रधान है (अर्ताथ, किसी भी अनंत समूह में प्रमुखता का सबसमूह है ). अगले बड़े प्रधान द्वारा दर्शाया गया है , और इसी तरह। प्रत्येक क्रमिक संख्या α के लिए, प्रधान संख्या होती है और यह सूची सभी अनंत प्रधान संख्याओं को समाप्त कर देती है।

प्रधान अंकगणित

हम मूल संख्याओं पर अंकगणितीय संक्रियाओं को परिभाषित कर सकते हैं जो प्राकृतिक संख्याओं के लिए सामान्य संक्रियाओं का सामान्यीकरण करती हैं। यह दिखाया जाता है कि परिमित प्रधान के लिए, ये संक्रियाएँ प्राकृतिक संख्याओं के लिए सामान्य संक्रियाओं के साथ मेल खाती हैं। इसके अतिरिक्त, ये ऑपरेशन साधारण अंकगणित के साथ कई गुण साझा करते हैं।

उत्तराधिकारी प्रधान

यदि पसंद का स्वयंसिद्ध धारण करता है, तो प्रत्येक प्रधान κ का उत्तराधिकारी होता है, जिसे κ दर्शाया जाता है+, जहां κ+ > κ और κ और उसके उत्तराधिकारी के बीच कोई प्रधान नहीं है। (पसंद के अभिगृहीत के बिना, हरटाग्स संख्या या हरटाग्स प्रमेय का उपयोग करके, यह दिखाया जाता है कि किसी भी प्रधान संख्या κ के लिए, न्यूनतम प्रधान κ+ है ऐसा कि ) परिमित प्रधान के लिए, उत्तराधिकारी केवल κ + 1 है। अनंत प्रधान के लिए, उत्तराधिकारी प्रधान उत्तराधिकारी क्रमसूचक से भिन्न होता है।

प्रधान जोड़

यदि X और Y असम्बद्ध समुच्चय हैं, तो जोड़ X और Y के मिलन (समुच्चय सिद्धांत) द्वारा दिया जाता है। यदि दो समुच्चय पहले से ही असंयुक्त नहीं हैं, तो उन्हें समान प्रधान संख्या के असंयुक्त समुच्चय द्वारा प्रतिस्थापित किया जाता है (उदाहरण के लिए, X द्वारा प्रतिस्थापित करें) X×{0} और Y by Y×{1}).

[6]

शून्य योगात्मक पहचान है κ + 0 = 0 + κ = κ।

जोड़ साहचर्य (κ + μ) + ν = κ + (μ + ν) है।

योग विनिमेय κ + μ = μ + κ है।

जोड़ दोनों तर्कों में गैर-घट रहा है:

पसंद के स्वयंसिद्ध को मानते हुए, अनंत प्रधान संख्याओं का जोड़ सरल है। यदि या तो κ या μ अपरिमित है, तब

घटाव

पसंद के स्वयंसिद्ध मानते हुए और, अनंत प्रधान σ और प्रधान μ दिए जाने पर, प्रधान κ सम्मलित है जैसे कि μ + κ = σ अगर और केवल अगर μ ≤ σ। यह अद्वितीय (और σ के बराबर) होगा यदि और केवल यदि μ < σ के मान के समान हो।

प्रधान गुणन

प्रधान्स का उत्पाद कार्टेशियन उत्पाद से आता है।

[7]

κ·0 = 0·κ = 0.

κ·μ = 0 → (κ = 0 या μ = 0)।

एक गुणक पहचान κ·1 = 1·κ = κ है।

गुणा सहयोगी है (κ·μ)·ν = κ·(μ·ν)।

गुणन कम्यूटेटिव κ·μ = μ·κ है।

गुणा दोनों तर्कों में गैर-घट रहा है:

κ ≤ μ → (κ·ν ≤ μ·ν और ν·κ ≤ ν·μ).

योग पर गुणन वितरण:

κ·(μ + ν) = κ·μ + κ·ν और (M + N) · K = M · K + N · K।

पसंद के स्वयंसिद्ध को मानते हुए, अनंत प्रधान संख्याओं का गुणन भी आसान है। यदि या तो κ या μ अनंत है और दोनों गैर-शून्य हैं, तो

विभाग

पसंद के स्वयंसिद्ध को मानते हुए और, अनंत प्रधान π और गैर-शून्य प्रधान μ दिए जाने पर, प्रधान κ सम्मलित है जैसे कि μ · κ = π अगर और केवल अगर μ ≤ π। यह अद्वितीय (और π के बराबर) होगा जब μ < π का मान होगा।

प्रधान घातांक

घातांक किसके द्वारा दिया जाता है

जहां XY, Y से X तक सभी प्रकार्य (गणित) का समुच्चय है।[8]

K0 = 1 (विशेष रूप से 00 = 1), खाली कार्य देखें।
यदि 1 ≤ μ, तो 0μ = 0।
1μ = 1।
K1 = μ
Km + n = Km·μn
Km · n = (mμ)n.
(μ)n = Km·mn.

दोनों तर्कों में घातांक गैर-घट रहा है:

(1 ≤ ν और κ ≤ μ) → (νK ≤ Nमी)
(κ ≤ μ) → (κn ≤ mn).

2|X| समूह X के सत्ता स्थापित की प्रमुखता है और कैंटर के विकर्ण तर्क से पता चलता है कि 2|X| > |X| किसी भी समूह X के लिए। यह सिद्ध करता है कि कोई भी सबसे बड़ा प्रधान सम्मलित नहीं है (क्योंकि किसी भी प्रधान κ के लिए, हम हमेशा बड़ा प्रधान 2κ के रूप में पा सकते हैं). वास्तव में, प्रधान्स का वर्ग (समूह सिद्धांत) उचित वर्ग है। (यह प्रमाण कुछ समूह सिद्धांतों, विशेष रूप से न्यू फ़ाउंडेशन में विफल रहता है।)

इस खंड में शेष सभी प्रस्ताव पसंद के स्वयंसिद्ध मानते हैं:

यदि κ और μ दोनों सीमित हैं और 1 से अधिक हैं, और ν अनंत है, तो κn = mn.
यदि κ अनंत है और μ परिमित और गैर-शून्य है, तो κμ = κ.

यदि 2 ≤ κ और 1 ≤ μ और उनमें से कम से कम अपरिमित है, तो:

max (κ, 2μ) ≤ Kμ ≤ अधिकतम (22μ).

कोनिग के प्रमेय (समूह सिद्धांत) का उपयोग करना या कोनिग के प्रमेय, कोई भी κ < κcf(κ) सिद्ध कर सकता है, और κ <cf(2κ) किसी अनंत प्रधान κ के लिए, जहां cf(κ) κ की अंतिमता है।

रूट्स

पसंद के स्वयंसिद्ध को मानते हुए और, अनंत प्रधान κ और परिमित प्रधान μ 0 से अधिक दिया गया, प्रधान के लिए ν संतोषजनक होगा।

लघुगणक

पसंद के स्वयंसिद्ध को मानते हुए और, अनंत प्रधान κ और परिमित प्रधान μ 1 से अधिक दिया गया है, प्रधान λ संतोषजनक होती है या नहीं भी होती है . चूंकि, यदि ऐसा प्रधान सम्मलित है, तो यह अनंत है और κ से कम है, और 1 से अधिक कोई परिमित प्रमुखता भी संतुष्ट करेगी।

.

एक अनंत प्रधान संख्या κ के लघुगणक को कम से कम प्रधान संख्या μ के रूप में परिभाषित किया गया है जैसे कि κ ≤ 2μ. गणित के कुछ क्षेत्रों में अनंत प्रधान के लॉगरिदम उपयोगी होते हैं, उदाहरण के लिए टोपोलॉजिकल स्पेस स्थान के प्रधान अपरिवर्तनीय के अध्ययन में, चूंकि उनमें कुछ गुणों की कमी होती है जो सकारात्मक वास्तविक संख्याओं के लॉगरिदम के पास होती हैं।[9][10][11]

सातत्य परिकल्पना

सातत्य परिकल्पना (सीएच) में कहा गया है कि सख्ती के बीच कोई प्रधान नहीं हैं और बाद के प्रधान नंबर को भी प्रायः द्वारा निरूपित किया जाता है , यह सातत्य (वास्तविक संख्याओं का समुच्चय) की प्रमुखता है।

इस स्थिति में

इसी तरह, सामान्यीकृत सातत्य परिकल्पना (जीसीएच) कहती है कि प्रत्येक अनंत प्रधान के लिए , बीच में सख्ती से कोई प्रधान नहीं हैं और . सातत्य परिकल्पना और सामान्यीकृत सातत्य परिकल्पना दोनों समूह सिद्धांत के सामान्य स्वयंसिद्धों से स्वतंत्र सिद्ध हुए हैं, ज़र्मेलो-फ्रेंकेल स्वयंसिद्ध साथ पसंद के स्वयंसिद्ध (ज़र्मेलो-फ्रेंकेल समूह सिद्धांत) के साथ होता हैं।

इस प्रकार ईस्टन के प्रमेय से पता चलता है कि, नियमित प्रधान के लिए , केवल ZFC की प्रमुखता पर प्रतिबंध लगाता है जिसका मान के समान होता है इस प्रकार के लिए यह घातीय फलन घटता है।

यह भी देखें


संदर्भ

Notes

  1. Dauben 1990, pg. 54
  2. Weisstein, Eric W. "Cardinal Number". mathworld.wolfram.com (in English). Retrieved 2020-09-06.
  3. Deiser, Oliver (May 2010). "On the Development of the Notion of a Cardinal Number". History and Philosophy of Logic. 31 (2): 123–143. doi:10.1080/01445340903545904. S2CID 171037224.
  4. Enderton, Herbert. "Elements of Set Theory", Academic Press Inc., 1977. ISBN 0-12-238440-7
  5. Friedrich M. Hartogs (1915), Felix Klein; Walther von Dyck; David Hilbert; Otto Blumenthal (eds.), "Über das Problem der Wohlordnung", Math. Ann., Leipzig: B. G. Teubner, Bd. 76 (4): 438–443, doi:10.1007/bf01458215, ISSN 0025-5831, S2CID 121598654, archived from the original on 2016-04-16, retrieved 2014-02-02
  6. Schindler 2014, pg. 34
  7. Schindler 2014, pg. 34
  8. Schindler 2014, pg. 34
  9. Robert A. McCoy and Ibula Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer-Verlag.
  10. Eduard Čech, Topological Spaces, revised by Zdenek Frolík and Miroslav Katetov, John Wiley & Sons, 1966.
  11. D. A. Vladimirov, Boolean Algebras in Analysis, Mathematics and Its Applications, Kluwer Academic Publishers.

Bibliography


बाहरी कड़ियाँ