व्यास: Difference between revisions
No edit summary |
No edit summary |
||
| Line 10: | Line 10: | ||
अधिक आधुनिक उपयोग में, लंबाई <math>d</math> व्यास को भी कहा जाता है। इस अर्थ में व्यास के अतिरिक्त व्यास की बात करता है (जो स्वयं रेखा खंड को संदर्भित करता है), क्योंकि एक वृत्त या गोले के सभी व्यासों की लंबाई समान होती है, यह त्रिज्या का दोगुना होता है | अधिक आधुनिक उपयोग में, लंबाई <math>d</math> व्यास को भी कहा जाता है। इस अर्थ में व्यास के अतिरिक्त व्यास की बात करता है (जो स्वयं रेखा खंड को संदर्भित करता है), क्योंकि एक वृत्त या गोले के सभी व्यासों की लंबाई समान होती है, यह त्रिज्या का दोगुना होता है | ||
:<math>d = 2r \qquad\text{or equivalently}\qquad r = \frac{d}{2}.</math> | :<math>d = 2r \qquad\text{or equivalently}\qquad r = \frac{d}{2}.</math> | ||
विमान (ज्यामिति) में [[उत्तल सेट]] आकार के लिए, व्यास को सबसे बड़ी दूरी के रूप में परिभाषित किया गया है जो दो विपरीत समानांतर रेखाओं के बीच इसकी सीमा के लिए [[स्पर्शरेखा]] है, और {{em|चौड़ाई}} | विमान (ज्यामिति) में [[उत्तल सेट]] आकार के लिए, व्यास को सबसे बड़ी दूरी के रूप में परिभाषित किया गया है जो दो विपरीत समानांतर रेखाओं के बीच इसकी सीमा के लिए [[स्पर्शरेखा]] है, और {{em|चौड़ाई}} अधिकांशतः इस तरह की सबसे छोटी दूरी के रूप में परिभाषित की जाती है। [[घूर्णन कैलीपर्स]] का प्रयोग करके दोनों मात्राओं की कुशलता से गणना की जा सकती है।<ref>{{cite web|author=Toussaint, Godfried T.|title=Solving geometric problems with the rotating calipers |publisher=Proc. MELECON '83, Athens|year=1983|citeseerx=10.1.1.155.5671}}</ref> निरंतर चौड़ाई जैसे कि [[रेउलॉक्स त्रिभुज]] के वक्र के लिए, चौड़ाई और व्यास समान हैं क्योंकि समानांतर स्पर्श रेखा लाइनों के ऐसे सभी जोड़े समान दूरी पर हैं। | ||
| Line 16: | Line 16: | ||
दीर्घवृत्त के लिए, मानक शब्दावली अलग है। दीर्घवृत्त का व्यास किसी भी कॉर्ड (ज्यामिति) है जो दीर्घवृत्त के केंद्र से निकलता है।<ref>{{cite web|url=http://www.cut-the-knot.org/Curriculum/Geometry/ConjugateDiameters.shtml|title=Conjugate Diameters in Ellipse|first=Alexander|last=Bogomolny|website=www.cut-the-knot.org}}</ref> उदाहरण के लिए, संयुग्म व्यास की संपत्ति होती है कि व्यास के अंत में दीर्घवृत्त के लिए स्पर्शरेखा रेखा संयुग्म व्यास के समानांतर होती है। सबसे लंबे व्यास को [[प्रमुख अक्ष]] कहा जाता है। | दीर्घवृत्त के लिए, मानक शब्दावली अलग है। दीर्घवृत्त का व्यास किसी भी कॉर्ड (ज्यामिति) है जो दीर्घवृत्त के केंद्र से निकलता है।<ref>{{cite web|url=http://www.cut-the-knot.org/Curriculum/Geometry/ConjugateDiameters.shtml|title=Conjugate Diameters in Ellipse|first=Alexander|last=Bogomolny|website=www.cut-the-knot.org}}</ref> उदाहरण के लिए, संयुग्म व्यास की संपत्ति होती है कि व्यास के अंत में दीर्घवृत्त के लिए स्पर्शरेखा रेखा संयुग्म व्यास के समानांतर होती है। सबसे लंबे व्यास को [[प्रमुख अक्ष]] कहा जाता है। | ||
शब्द व्यास से लिया गया है {{lang-grc|διάμετρος}} ({{transl|grc|डीएमेट्रोस}}), वृत्त का व्यास, से {{lang|grc|διά}} ({{transl|grc|dia}}), पार, के माध्यम से और {{lang|grc|μέτρον}} ({{transl|grc|metron}}), उपाय ।<ref>{{cite web|url=http://www.etymonline.com/index.php?term=diameter|title=diameter - Origin and meaning of diameter by Online Etymology Dictionary|website=www.etymonline.com}}</ref> यह | शब्द व्यास से लिया गया है {{lang-grc|διάμετρος}} ({{transl|grc|डीएमेट्रोस}}), वृत्त का व्यास, से {{lang|grc|διά}} ({{transl|grc|dia}}), पार, के माध्यम से और {{lang|grc|μέτρον}} ({{transl|grc|metron}}), उपाय ।<ref>{{cite web|url=http://www.etymonline.com/index.php?term=diameter|title=diameter - Origin and meaning of diameter by Online Etymology Dictionary|website=www.etymonline.com}}</ref> यह अधिकांशतः संक्षिप्त होता है <math>\text{DIA}, \text{dia}, d,</math> या <math>\varnothing.</math> | ||
| Line 39: | Line 39: | ||
[[Image:Sign diameter.png|thumb|150px|हस्ताक्षर {{unichar|2205|EMPTY SET|ulink=Mathematical Operators}} एक कोण 16 ° के साथ dim.shx फ़ॉन्ट में एक [[ऑटोकैड]] ड्राइंग से।इस फ़ॉन्ट में सम्मिलित नहीं है {{unichar|2300|DIAMETER SIGN|ulink=Miscellaneous Technical}}।]] | [[Image:Sign diameter.png|thumb|150px|हस्ताक्षर {{unichar|2205|EMPTY SET|ulink=Mathematical Operators}} एक कोण 16 ° के साथ dim.shx फ़ॉन्ट में एक [[ऑटोकैड]] ड्राइंग से।इस फ़ॉन्ट में सम्मिलित नहीं है {{unichar|2300|DIAMETER SIGN|ulink=Miscellaneous Technical}}।]] | ||
{{distinguish|text=the Scandinavian letter "[[Ø]]", the [[empty set]] symbol {{italics correction|"}}''∅''", the [[slashed zero]], or the greek letter [[phi]] (Φ)}} | {{distinguish|text=the Scandinavian letter "[[Ø]]", the [[empty set]] symbol {{italics correction|"}}''∅''", the [[slashed zero]], or the greek letter [[phi]] (Φ)}} | ||
व्यास के लिए [[प्रतीक]] या चर (गणित), {{char|⌀}}, कभी -कभी तकनीकी चित्र या विनिर्देशों में संख्या (जैसे 55 मिमी) के लिए उपसर्ग या प्रत्यय के रूप में उपयोग किया जाता है, यह दर्शाता है कि यह व्यास का प्रतिनिधित्व करता है। उदाहरण के लिए, फोटोग्राफिक [[फ़िल्टर धागा]] आकार को | व्यास के लिए [[प्रतीक]] या चर (गणित), {{char|⌀}}, कभी -कभी तकनीकी चित्र या विनिर्देशों में संख्या (जैसे 55 मिमी) के लिए उपसर्ग या प्रत्यय के रूप में उपयोग किया जाता है, यह दर्शाता है कि यह व्यास का प्रतिनिधित्व करता है। उदाहरण के लिए, फोटोग्राफिक [[फ़िल्टर धागा]] आकार को अधिकांशतः इस तरह से दर्शाया जाता है। | ||
जर्मन (भाषा) में, व्यास का प्रतीक (जर्मन: DE:डर्चमेसेरज़ीचेन) का उपयोग एक [[औसत]] प्रतीक (डर्चमेसेरज़ीचेन)) के रूप में भी किया जाता है। | जर्मन (भाषा) में, व्यास का प्रतीक (जर्मन: DE:डर्चमेसेरज़ीचेन) का उपयोग एक [[औसत]] प्रतीक (डर्चमेसेरज़ीचेन)) के रूप में भी किया जाता है। | ||
Revision as of 08:43, 9 February 2023
| ज्यामिति |
|---|
| जियोमेटर्स |
ज्यामिति में, वृत्त का व्यास कोई भी सीधा रेखा खंड है जो वृत्त के केंद्र से होकर निकलता है और जिसका समापन बिंदु वृत्त पर होता है। इसे वृत्त के सबसे लंबे समय तक कॉर्ड (ज्यामिति) के रूप में भी परिभाषित किया जा सकता है। दोनों परिभाषाएँ क्षेत्र के व्यास के लिए भी मान्य हैं।
अधिक आधुनिक उपयोग में, लंबाई व्यास को भी कहा जाता है। इस अर्थ में व्यास के अतिरिक्त व्यास की बात करता है (जो स्वयं रेखा खंड को संदर्भित करता है), क्योंकि एक वृत्त या गोले के सभी व्यासों की लंबाई समान होती है, यह त्रिज्या का दोगुना होता है
विमान (ज्यामिति) में उत्तल सेट आकार के लिए, व्यास को सबसे बड़ी दूरी के रूप में परिभाषित किया गया है जो दो विपरीत समानांतर रेखाओं के बीच इसकी सीमा के लिए स्पर्शरेखा है, और चौड़ाई अधिकांशतः इस तरह की सबसे छोटी दूरी के रूप में परिभाषित की जाती है। घूर्णन कैलीपर्स का प्रयोग करके दोनों मात्राओं की कुशलता से गणना की जा सकती है।[1] निरंतर चौड़ाई जैसे कि रेउलॉक्स त्रिभुज के वक्र के लिए, चौड़ाई और व्यास समान हैं क्योंकि समानांतर स्पर्श रेखा लाइनों के ऐसे सभी जोड़े समान दूरी पर हैं।
दीर्घवृत्त के लिए, मानक शब्दावली अलग है। दीर्घवृत्त का व्यास किसी भी कॉर्ड (ज्यामिति) है जो दीर्घवृत्त के केंद्र से निकलता है।[2] उदाहरण के लिए, संयुग्म व्यास की संपत्ति होती है कि व्यास के अंत में दीर्घवृत्त के लिए स्पर्शरेखा रेखा संयुग्म व्यास के समानांतर होती है। सबसे लंबे व्यास को प्रमुख अक्ष कहा जाता है।
शब्द व्यास से लिया गया है Ancient Greek: διάμετρος (डीएमेट्रोस), वृत्त का व्यास, से διά (dia), पार, के माध्यम से और μέτρον (metron), उपाय ।[3] यह अधिकांशतः संक्षिप्त होता है या
सामान्यीकरण
ऊपर दी गई परिभाषाएँ केवल हलकों, गोले और उत्तल आकृतियों के लिए मान्य हैं। चुकीं , वे अधिक सामान्य परिभाषा के विशेष स्थितियों में हैं जो किसी भी प्रकार के लिए मान्य है -डिमेंशनल (उत्तल या गैर-उत्तल) प्रदर्शन, जैसे कि अतिविम या बिखरे हुए बिंदुओं का सेट (गणित) व्यास या मीट्रिक व्यास मीट्रिक स्थान के सबसेट का सबसेट में बिंदुओं के जोड़े के बीच सभी दूरी के सेट का अंतिम रूप है। स्पष्ट रूप से, अगर सबसेट है और अगर मीट्रिक (गणित) का , व्यास है
किसी भी ठोस वस्तु या खुले हुए बिंदुओं के सेट के लिए -डिमेंशनल यूक्लिडियन स्पेस, वस्तु या सेट का व्यास इसके उत्तल पतवार के व्यास के समान है। चट्टान के विषय में घाव या भूविज्ञान में चिकित्सा मुहावरे पार्लेंस में, किसी वस्तु का व्यास वस्तु में बिंदुओं के जोड़े के बीच सभी दूरी के सेट का सबसे कम ऊपरी ऊपरी हिस्सा है।
विभेदक ज्यामिति में, व्यास महत्वपूर्ण वैश्विक रीमैनियन ज्यामिति अपरिवर्तनीय (गणित) है।
प्लानर ज्यामिति में,शंकुधारी खंड का व्यास सामान्यतः किसी भी कॉर्ड के रूप में परिभाषित किया जाता है जो केंद्र (ज्यामिति) से निकलता है (ज्यामिति) प्रक्षेपी शंकु शंकुधर का केंद्र इस तरह के व्यास जरूरी नहीं कि समान लंबाई के हो, वृत्त के स्थितियों को छोड़कर, जिसमें सनकीपन (गणित) है
प्रतीक
व्यास के लिए प्रतीक या चर (गणित), ⌀, कभी -कभी तकनीकी चित्र या विनिर्देशों में संख्या (जैसे 55 मिमी) के लिए उपसर्ग या प्रत्यय के रूप में उपयोग किया जाता है, यह दर्शाता है कि यह व्यास का प्रतिनिधित्व करता है। उदाहरण के लिए, फोटोग्राफिक फ़िल्टर धागा आकार को अधिकांशतः इस तरह से दर्शाया जाता है।
जर्मन (भाषा) में, व्यास का प्रतीक (जर्मन: DE:डर्चमेसेरज़ीचेन) का उपयोग एक औसत प्रतीक (डर्चमेसेरज़ीचेन)) के रूप में भी किया जाता है।
समान प्रतीक
Ø ø इसके लिए समरूपता है। व्यास का प्रतीक ⌀ खाली सेट प्रतीक से अलग है ∅, (इटैलिक स्क्रिप्ट) अपरकेस फी (पत्र) से Φ, और नॉर्डिक स्वर से Ø (Ø)।[5] शून्य शून्य भी देखें।
एन्कोडिंग
प्रतीक में यूनीकोड कोड बिंदु है U+2300 ⌀ व्यास का चिह्न, विविध तकनीकी सेट में। एप्पल इंक. मैकिनटोश पर, व्यास का प्रतीक चरित्र पैलेट के माध्यम से उल्लेख किया जा सकता है (यह दबाकर खोला जाता है ⌥ Opt⌘ CmdT अधिकांश अनुप्रयोगों में), जहां इसे तकनीकी प्रतीकों की श्रेणी में पाया जा सकता है। यूनिक्स/लिनक्स/क्रोमोस सिस्टम में, यह उपयोग करके उत्पन्न होता है Ctrl+⇧ Shift+U& nbsp;2300space। यह UNIX जैसे ऑपरेटिंग सिस्टम में प्राप्त किया जा सकता है, जो कि अनुक्रम में दबाकर रचना कुंजी का उपयोग करके, अनुक्रम में प्राप्त किया जा सकता है Composedi.[6] विंडोज में, इसे ALT कोड 8960 के साथ अधिकांश कार्यक्रमों में दर्ज किया जा सकता है।
चरित्र कभी -कभी सही ढंग से प्रदर्शित नहीं होगा, चुकीं , क्योंकि कई टाइपफ़ेस इसमें सम्मिलित नहीं होते हैं। कई स्थितियों में, नॉर्डिक पत्र ø यूनिकोड में U+00F8 ø स्ट्रोक के साथ लैटिन स्माल लेटर ओ (ø) टाइपोग्राफिक सन्निकटन है। इसे दबाकर मैकिंटोश पर दर्ज किया जा सकता है ⌥ OptO (अक्षर हे, संख्या 0 नहीं)।यूनिक्स/लिनक्स/क्रोमोस सिस्टम में, यह उपयोग करके उत्पन्न होता है Ctrl+⇧ Shift+U& nbsp;F8space या Composeo/ ऑटोकैड का उपयोग करता है U+2205 ∅ खाली सेट शॉर्टकट स्ट्रिंग के रूप में उपलब्ध है %%c।
माइक्रोसॉफ्ट वर्ड में, व्यास का प्रतीक टाइपिंग द्वारा अधिग्रहित किया जा सकता है 2300 और फिर दबाना Alt+X।
आदेश में, व्यास का प्रतीक आदेश के साथ प्राप्त किया जा सकता है \diameter वैसीसम पैकेज से।[7]
व्यास बनाम त्रिज्या
किसी वृत्त का व्यास उसकी त्रिज्या का ठीक दुगुना होता है। चुकीं, यह केवल वृत्त के लिए और केवल यूक्लिडियन दूरी में सच है, जंग के प्रमेय पर पृष्ठ त्रिज्या से संबंधित कुछ और सामान्य असमानताओं पर चर्चा करता है।
यह भी देखें
- Angular diameter
- कैलिपर, माइक्रोमीटर (युक्ति), व्यास को मापने के लिए उपकरण
- Conjugate diameters
- Diameter (group theory), समूह सिद्धांत में एक अवधारणा
- एरेटोस्थेनेज, जिन्होंने 240 ईसा पूर्व के आसपास पृथ्वी के व्यास की गणना की।
- Graph or network diameter
- Hydraulic diameter
- Inside diameter* Semidiameter
- Sauter mean diameter
- Tangent lines to circles
- एक स्क्रूथ्रेड का स्क्रू थ्रेड#व्यास
- Ø (disambiguation)
संदर्भ
- ↑ Toussaint, Godfried T. (1983). "Solving geometric problems with the rotating calipers". Proc. MELECON '83, Athens. CiteSeerX 10.1.1.155.5671.
{{cite web}}: Missing or empty|url=(help) - ↑ Bogomolny, Alexander. "Conjugate Diameters in Ellipse". www.cut-the-knot.org.
- ↑ "diameter - Origin and meaning of diameter by Online Etymology Dictionary". www.etymonline.com.
- ↑ "Re: diameter of an empty set". at.yorku.ca.
- ↑ Korpela, Jukka K. (2006), Unicode Explained, O'Reilly Media, Inc., pp. 23–24, ISBN 978-0-596-10121-3.
- ↑ Monniaux, David. "UTF-8 (Unicode) compose sequence". Retrieved 2018-07-13.
- ↑ "wasysym – LaTeX support for the wasy fonts". Comprehensive TeX Archive Network. Retrieved 2022-03-11.