आवरण समूह: Difference between revisions

From Vigyanwiki
No edit summary
m (Reverted edits by Saurabh (talk) to last revision by Arti Shah)
Line 1: Line 1:
{{Use American English|date = March 2019}}
{{Use American English|date = March 2019}}
{{Short description|Concept in topological group theory}}
{{Short description|Concept in topological group theory}}
{{about|टोपोलॉजिकल कवरिंग ग्रुप|बीजगणितीय आवरण समूह|यूनिवर्सल परफेक्ट सेंट्रल एक्सटेंशन}}
{{about|topological covering group|algebraic covering group|universal perfect central extension}}
गणित में, एक [[ टोपोलॉजिकल समूह ]] ''एच'' का एक कवरिंग ग्रुप ''एच'' का एक [[ अंतरिक्ष को कवर करना ]] ''जी'' है जैसे कि ''जी'' एक टोपोलॉजिकल ग्रुप है और कवरिंग मैप {{nowrap|''p'' : ''G'' → ''H''}} एक सतत (टोपोलॉजी) [[ समूह समरूपता ]] है। मानचित्र p को 'आवरण समाकारिता' कहा जाता है। बार-बार होने वाली स्तिथि 'डबल कवरिंग ग्रुप' है, एक [[ डबल कवर (टोपोलॉजी) ]] जिसमें एच में जी में एक उपसमूह 2 का सूचकांक है; उदाहरणों में स्[[ पिन समूह ]], पिन समूह और [[ मेटाप्लेक्टिक समूह ]]सम्मलित हैं।
गणित में, एक [[ टोपोलॉजिकल समूह ]] ''एच'' का एक कवरिंग ग्रुप ''एच'' का एक [[ अंतरिक्ष को कवर करना ]] ''जी'' है जैसे कि ''जी'' एक टोपोलॉजिकल ग्रुप है और कवरिंग मैप {{nowrap|''p'' : ''G'' → ''H''}} एक सतत (टोपोलॉजी) [[ समूह समरूपता ]] है। मानचित्र p को 'आवरण समाकारिता' कहा जाता है। एक बार-बार होने वाला मामला 'डबल कवरिंग ग्रुप' है, एक [[ डबल कवर (टोपोलॉजी) ]] जिसमें एच में जी में एक उपसमूह 2 का सूचकांक है; उदाहरणों में स्[[ पिन समूह ]], पिन समूह और [[ मेटाप्लेक्टिक समूह ]] शामिल हैं।


मोटे तौर पर यह कहते हुए समझाया गया है कि उदाहरण के लिए मेटाप्लेक्टिक समूह Mp<sub>2''n''</sub> [[ सहानुभूतिपूर्ण समूह ]] Sp का दोहरा आवरण है<sub>2''n''</sub> इसका तात्पर्य है कि सहानुभूति समूह में एक तत्व का प्रतिनिधित्व करने वाले मेटाप्लेक्टिक समूह में हमेशा दो तत्व होते हैं।
मोटे तौर पर यह कहते हुए समझाया गया है कि उदाहरण के लिए मेटाप्लेक्टिक समूह Mp<sub>2''n''</sub> [[ सहानुभूतिपूर्ण समूह ]] Sp का दोहरा आवरण है<sub>2''n''</sub> इसका मतलब है कि सहानुभूति समूह में एक तत्व का प्रतिनिधित्व करने वाले मेटाप्लेक्टिक समूह में हमेशा दो तत्व होते हैं।


== गुण ==
== गुण ==
Line 13: Line 13:
सभी कवरिंग स्पेस के साथ, G का मूलभूत समूह H के मूलभूत समूह में इंजेक्ट होता है। चूँकि एक टोपोलॉजिकल समूह का मूलभूत समूह हमेशा एबेलियन होता है, इसलिए प्रत्येक कवरिंग समूह एक सामान्य कवरिंग स्पेस होता है। विशेष रूप से, यदि G पथ से जुड़ा है तो [[ भागफल समूह ]] <math>\pi_1(H)/\pi_1(G)</math> K के लिए आइसोमॉर्फिक है। समूह K [[ समूह क्रिया (गणित) ]] केवल सही गुणन द्वारा तंतुओं (जो कि केवल बाएं [[ सह समुच्चय ]] हैं) पर सकर्मक रूप से होती है। समूह जी तब एक प्रमुख बंडल है | एच पर प्रमुख के-बंडल।
सभी कवरिंग स्पेस के साथ, G का मूलभूत समूह H के मूलभूत समूह में इंजेक्ट होता है। चूँकि एक टोपोलॉजिकल समूह का मूलभूत समूह हमेशा एबेलियन होता है, इसलिए प्रत्येक कवरिंग समूह एक सामान्य कवरिंग स्पेस होता है। विशेष रूप से, यदि G पथ से जुड़ा है तो [[ भागफल समूह ]] <math>\pi_1(H)/\pi_1(G)</math> K के लिए आइसोमॉर्फिक है। समूह K [[ समूह क्रिया (गणित) ]] केवल सही गुणन द्वारा तंतुओं (जो कि केवल बाएं [[ सह समुच्चय ]] हैं) पर सकर्मक रूप से होती है। समूह जी तब एक प्रमुख बंडल है | एच पर प्रमुख के-बंडल।


यदि G, H का एक आवरण समूह है तो समूह G और H स्थानीय रूप से आइसोमोर्फिक समूह हैं। इसके अतिरिक्त, किसी भी दो स्थानीय रूप से जुड़े आइसोमॉर्फिक समूहों को एच<sub>1</sub> और वह<sub>2</sub>असतत सामान्य उपसमूह K के साथ एक सामयिक समूह G सम्मलित है<sub>1</sub> और के<sub>2</sub> ऐसा कि एच<sub>1</sub> G/K के लिए आइसोमॉर्फिक है<sub>1</sub> और वह<sub>2</sub> G/K के लिए आइसोमॉर्फिक है<sub>2</sub>.
यदि G, H का एक आवरण समूह है तो समूह G और H स्थानीय रूप से आइसोमोर्फिक समूह हैं। इसके अलावा, किसी भी दो स्थानीय रूप से जुड़े आइसोमॉर्फिक समूहों को एच<sub>1</sub> और वह<sub>2</sub>असतत सामान्य उपसमूह K के साथ एक सामयिक समूह G मौजूद है<sub>1</sub> और के<sub>2</sub> ऐसा कि एच<sub>1</sub> G/K के लिए आइसोमॉर्फिक है<sub>1</sub> और वह<sub>2</sub> G/K के लिए आइसोमॉर्फिक है<sub>2</sub>.


== एक कवरिंग स्पेस पर समूह संरचना ==
== एक कवरिंग स्पेस पर समूह संरचना ==
एच को एक टोपोलॉजिकल समूह होने दें और जी को एच के कवरिंग स्पेस होने दें। यदि जी और एच दोनों पथ से जुड़े हुए हैं और स्थानीय रूप से पथ से जुड़े हुए हैं, तो ई ∈ एच से अधिक फाइबर में तत्व ई * के किसी भी विकल्प के लिए सम्मलितहै पहचान के रूप में e* के साथ G पर अद्वितीय टोपोलॉजिकल समूह संरचना, जिसके लिए कवरिंग मैप p : G → H एक समरूपता है।
एच को एक टोपोलॉजिकल समूह होने दें और जी को एच के कवरिंग स्पेस होने दें। यदि जी और एच दोनों पथ से जुड़े हुए हैं और स्थानीय रूप से पथ से जुड़े हुए हैं, तो ई ∈ एच से अधिक फाइबर में तत्व ई * के किसी भी विकल्प के लिए मौजूद है पहचान के रूप में e* के साथ G पर अद्वितीय टोपोलॉजिकल समूह संरचना, जिसके लिए कवरिंग मैप p : G → H एक समरूपता है।


निर्माण इस प्रकार है। ए और बी को जी के तत्व होने दें और एफ और जी को क्रमशः ई * पर प्रारंभ होने और ए और बी पर समाप्त होने वाले जी में [[ पथ (टोपोलॉजी) ]] दें। पथ h : I → H को h(t) = p(f(t))p(g(t)) द्वारा परिभाषित करें। रिक्त स्थान को कवर करने की पथ-उठाने वाली संपत्ति से प्रारंभिक बिंदु ई * के साथ एच से जी की एक अनूठी लिफ्ट है। उत्पाद ab को इस पथ के समापन बिंदु के रूप में परिभाषित किया गया है। रचना से हमारे पास p(ab) = p(a)p(b) है। किसी को यह दिखाना चाहिए कि यह परिभाषा पथ f और g के चुनाव से स्वतंत्र है, और यह भी कि समूह संचालन निरंतर हैं।
निर्माण इस प्रकार है। ए और बी को जी के तत्व होने दें और एफ और जी को क्रमशः ई * पर शुरू होने और ए और बी पर समाप्त होने वाले जी में [[ पथ (टोपोलॉजी) ]] दें। पथ h : I → H को h(t) = p(f(t))p(g(t)) द्वारा परिभाषित करें। रिक्त स्थान को कवर करने की पथ-उठाने वाली संपत्ति से प्रारंभिक बिंदु ई * के साथ एच से जी की एक अनूठी लिफ्ट है। उत्पाद ab को इस पथ के समापन बिंदु के रूप में परिभाषित किया गया है। रचना से हमारे पास p(ab) = p(a)p(b) है। किसी को यह दिखाना चाहिए कि यह परिभाषा पथ f और g के चुनाव से स्वतंत्र है, और यह भी कि समूह संचालन निरंतर हैं।


वैकल्पिक रूप से, G पर समूह कानून का निर्माण समूह कानून H × H → H से G तक उठाकर किया जा सकता है, कवरिंग मैप G × G → H × H की लिफ्टिंग संपत्ति का उपयोग करके।
वैकल्पिक रूप से, G पर समूह कानून का निर्माण समूह कानून H × H → H से G तक उठाकर किया जा सकता है, कवरिंग मैप G × G → H × H की लिफ्टिंग संपत्ति का उपयोग करके।
Line 27: Line 27:
यदि एच पथ से जुड़ा हुआ है, स्थानीय रूप से पथ से जुड़ा हुआ है, और अर्ध-स्थानीय रूप से जुड़ा हुआ समूह है तो इसमें एक कवरिंग स्पेस#यूनिवर्सल कवरिंग है। पिछले निर्माण के द्वारा सार्वभौमिक कवर को एक टोपोलॉजिकल समूह में कवर किया जा सकता है जिसमें कवरिंग मानचित्र एक सतत समरूपता है। इस समूह को एच का 'सार्वभौमिक आवरण समूह' कहा जाता है। एक अधिक प्रत्यक्ष निर्माण भी है जो हम नीचे देते हैं।
यदि एच पथ से जुड़ा हुआ है, स्थानीय रूप से पथ से जुड़ा हुआ है, और अर्ध-स्थानीय रूप से जुड़ा हुआ समूह है तो इसमें एक कवरिंग स्पेस#यूनिवर्सल कवरिंग है। पिछले निर्माण के द्वारा सार्वभौमिक कवर को एक टोपोलॉजिकल समूह में कवर किया जा सकता है जिसमें कवरिंग मानचित्र एक सतत समरूपता है। इस समूह को एच का 'सार्वभौमिक आवरण समूह' कहा जाता है। एक अधिक प्रत्यक्ष निर्माण भी है जो हम नीचे देते हैं।


PH को H का [[ पथ समूह ]] होने दें। अर्थात, PH [[ कॉम्पैक्ट-ओपन टोपोलॉजी ]] के साथ पहचान के आधार पर H में पथ (टोपोलॉजी) का स्थान है। पथों का गुणनफल बिंदुवार गुणन द्वारा दिया जाता है, अर्थात (fg)(t) = f(t)g(t)। यह पीएच को एक सामयिक समूह की संरचना देता है। एक प्राकृतिक समूह समरूपता PH → H है जो प्रत्येक पथ को उसके अंतिम बिंदु तक भेजता है। एच के सार्वभौमिक कवर को [[ अशक्त होमोटोपिक ]] [[ लूप (टोपोलॉजी) ]] के सामान्य उपसमूह द्वारा पीएच के भागफल के रूप में दिया जाता है। प्रक्षेपण PH → H कवरिंग मैप देते हुए भागफल में उतरता है। कोई दिखा सकता है कि सार्वभौमिक आवरण [[ बस जुड़ा हुआ है ]] और कर्नेल एच का मूल समूह है। अर्थात, हमारे पास एक छोटा सटीक अनुक्रम है
PH को H का [[ पथ समूह ]] होने दें। अर्थात, PH [[ कॉम्पैक्ट-ओपन टोपोलॉजी ]] के साथ पहचान के आधार पर H में पथ (टोपोलॉजी) का स्थान है। पथों का गुणनफल बिंदुवार गुणन द्वारा दिया जाता है, अर्थात (fg)(t) = f(t)g(t)। यह पीएच को एक सामयिक समूह की संरचना देता है। एक प्राकृतिक समूह समरूपता PH → H है जो प्रत्येक पथ को उसके अंतिम बिंदु तक भेजता है। एच के सार्वभौमिक कवर को [[ अशक्त होमोटोपिक ]] [[ लूप (टोपोलॉजी) ]] के सामान्य उपसमूह द्वारा पीएच के भागफल के रूप में दिया जाता है। प्रक्षेपण PH → H कवरिंग मैप देते हुए भागफल में उतरता है। कोई दिखा सकता है कि सार्वभौमिक आवरण [[ बस जुड़ा हुआ है ]] और कर्नेल एच का मूल समूह है। यानी, हमारे पास एक छोटा सटीक अनुक्रम है


:<math>1\to \pi_1(H) \to \tilde H \to H \to 1</math>
:<math>1\to \pi_1(H) \to \tilde H \to H \to 1</math>
Line 37: Line 37:
यह अधिकतम तत्व के रूप में सार्वभौमिक पूर्ण केंद्रीय विस्तार (सादृश्य द्वारा कवरिंग समूह कहा जाता है) के बीजगणितीय रूप से मेल खाता है, और एक समूह अपने केंद्र को न्यूनतम तत्व के रूप में संशोधित करता है।
यह अधिकतम तत्व के रूप में सार्वभौमिक पूर्ण केंद्रीय विस्तार (सादृश्य द्वारा कवरिंग समूह कहा जाता है) के बीजगणितीय रूप से मेल खाता है, और एक समूह अपने केंद्र को न्यूनतम तत्व के रूप में संशोधित करता है।


यह झूठ समूहों के लिए विशेष रूप से महत्वपूर्ण है, क्योंकि ये समूह एक विशेष झूठ बीजगणित के सभी (जुड़े) अहसास हैं। कई लाई समूहों के लिए केंद्र स्केलर मैट्रिसेस का समूह है, और इस प्रकार समूह मोड इसका केंद्र लाई समूह का प्रक्षेपण है। ये कवर लाई समूहों के प्रक्षेपी अभ्यावेदन का अध्ययन करने में महत्वपूर्ण हैं, और स्पिन अभ्यावेदन स्पिन समूहों की खोज की ओर ले जाते हैं: लाई समूह का एक [[ अनुमानित प्रतिनिधित्व ]] समूह के रैखिक प्रतिनिधित्व से नहीं आता है, किंतु कुछ के रैखिक प्रतिनिधित्व से आता है। कवरिंग ग्रुप, विशेष रूप से यूनिवर्सल कवरिंग ग्रुप। जैसा कि ऊपर चर्चा की गई है, परिमित एनालॉग ने कवरिंग ग्रुप या शूर कवर का नेतृत्व किया।
यह झूठ समूहों के लिए विशेष रूप से महत्वपूर्ण है, क्योंकि ये समूह एक विशेष झूठ बीजगणित के सभी (जुड़े) अहसास हैं। कई लाई समूहों के लिए केंद्र स्केलर मैट्रिसेस का समूह है, और इस प्रकार समूह मोड इसका केंद्र लाई समूह का प्रक्षेपण है। ये कवर लाई समूहों के प्रक्षेपी अभ्यावेदन का अध्ययन करने में महत्वपूर्ण हैं, और स्पिन अभ्यावेदन स्पिन समूहों की खोज की ओर ले जाते हैं: लाई समूह का एक [[ अनुमानित प्रतिनिधित्व ]] समूह के रैखिक प्रतिनिधित्व से नहीं आता है, लेकिन कुछ के रैखिक प्रतिनिधित्व से आता है। कवरिंग ग्रुप, विशेष रूप से यूनिवर्सल कवरिंग ग्रुप। जैसा कि ऊपर चर्चा की गई है, परिमित एनालॉग ने कवरिंग ग्रुप या शूर कवर का नेतृत्व किया।


एक प्रमुख उदाहरण SL2(R)|SL से उत्पन्न होता है<sub>2</sub>(आर), जिसका केंद्र {±1} और मौलिक समूह Z है। यह केंद्र रहित [[ प्रक्षेपी विशेष रैखिक समूह ]] PSL का दोहरा आवरण है<sub>2</sub>(आर), जो केंद्र द्वारा भागफल लेने पर प्राप्त होता है। [[ इवासावा अपघटन ]] द्वारा, दोनों समूह जटिल ऊपरी आधे विमान और उनके सार्वभौमिक आवरण पर सर्कल बंडल हैं <math>{\mathrm{S}\widetilde{\mathrm{L}_2(}\mathbf{R})}</math> अर्ध-तल पर एक वास्तविक रेखा बंडल है जो ज्यामितिकरण अनुमानों में से एक बनाता है | थर्स्टन की आठ ज्यामिति। चूंकि अर्ध-तल सिकुड़ा जा सकता है, सभी बंडल संरचनाएं तुच्छ हैं। एसएल की प्राथमिकता<sub>2</sub>(जेड) यूनिवर्सल कवर में तीन स्ट्रैंड्स पर [[ चोटी समूह ]] के लिए आइसोमॉर्फिक है।
एक प्रमुख उदाहरण SL2(R)|SL से उत्पन्न होता है<sub>2</sub>(आर), जिसका केंद्र {±1} और मौलिक समूह Z है। यह केंद्र रहित [[ प्रक्षेपी विशेष रैखिक समूह ]] PSL का दोहरा आवरण है<sub>2</sub>(आर), जो केंद्र द्वारा भागफल लेने पर प्राप्त होता है। [[ इवासावा अपघटन ]] द्वारा, दोनों समूह जटिल ऊपरी आधे विमान और उनके सार्वभौमिक आवरण पर सर्कल बंडल हैं <math>{\mathrm{S}\widetilde{\mathrm{L}_2(}\mathbf{R})}</math> अर्ध-तल पर एक वास्तविक रेखा बंडल है जो ज्यामितिकरण अनुमानों में से एक बनाता है | थर्स्टन की आठ ज्यामिति। चूंकि अर्ध-तल सिकुड़ा जा सकता है, सभी बंडल संरचनाएं तुच्छ हैं। एसएल की प्राथमिकता<sub>2</sub>(जेड) यूनिवर्सल कवर में तीन स्ट्रैंड्स पर [[ चोटी समूह ]] के लिए आइसोमॉर्फिक है।


== झूठ समूह ==
== झूठ समूह ==
{{See also|ग्रुप एक्सटेंशन#सेंट्रल एक्सटेंशन}}
{{See also|Group extension#Central extension}}
उपरोक्त परिभाषाएं और निर्माण सभी [[ झूठ समूह ]]ों के विशेष स्थितियों पर संचालित होते हैं। विशेष रूप से, [[ विविध ]] का प्रत्येक आच्छादन मैनिफोल्ड होता है, और आच्छादन समाकारिता एक सुगम मानचित्र बन जाता है। इसी तरह, लाई समूह के किसी भी असतत सामान्य उपसमूह को दिए जाने पर भागफल समूह एक लाई समूह होता है और भागफल मानचित्र एक आवरण समरूपता है।
उपरोक्त परिभाषाएं और निर्माण सभी [[ झूठ समूह ]]ों के विशेष मामले पर लागू होते हैं। विशेष रूप से, [[ विविध ]] का प्रत्येक आच्छादन मैनिफोल्ड होता है, और आच्छादन समाकारिता एक सुगम मानचित्र बन जाता है। इसी तरह, लाई समूह के किसी भी असतत सामान्य उपसमूह को दिए जाने पर भागफल समूह एक लाई समूह होता है और भागफल मानचित्र एक आवरण समरूपता है।


दो लाइ समूह स्थानीय रूप से आइसोमोर्फिक हैं यदि और केवल यदि उनके ले बीजगणित आइसोमोर्फिक हैं। इसका तात्पर्य है कि एक समरूपता φ : G → H झूठ समूहों का एक आच्छादित समरूपता है यदि और केवल यदि झूठे बीजगणित पर प्रेरित मानचित्र
दो लाइ समूह स्थानीय रूप से आइसोमोर्फिक हैं यदि और केवल अगर उनके ले बीजगणित आइसोमोर्फिक हैं। इसका तात्पर्य है कि एक समरूपता φ : G → H झूठ समूहों का एक आच्छादित समरूपता है यदि और केवल अगर झूठे बीजगणित पर प्रेरित मानचित्र


:<math>\phi_* : \mathfrak g \to \mathfrak h</math>
:<math>\phi_* : \mathfrak g \to \mathfrak h</math>
Line 54: Line 54:
== उदाहरण ==
== उदाहरण ==
* सर्कल समूह टी का सार्वभौमिक कवरिंग समूह [[ वास्तविक संख्या ]] आर का योगात्मक समूह है जिसमें [[ घातांक प्रकार्य ]] ऍक्स्प: आर → टी द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ है। एक्सपोनेंशियल मैप का कर्नेल Z के लिए आइसोमोर्फिक है।
* सर्कल समूह टी का सार्वभौमिक कवरिंग समूह [[ वास्तविक संख्या ]] आर का योगात्मक समूह है जिसमें [[ घातांक प्रकार्य ]] ऍक्स्प: आर → टी द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ है। एक्सपोनेंशियल मैप का कर्नेल Z के लिए आइसोमोर्फिक है।
* किसी भी पूर्णांक ''n'' के लिए हमारे पास सर्कल का एक कवरिंग ग्रुप है T → T जो ''z'' को ''z'' भेजता है<sup>एन</sup>. इस समरूपता का मूल [[ चक्रीय समूह ]] है जिसमें एकता की nवीं जड़ें सम्मलित हैं।
* किसी भी पूर्णांक ''n'' के लिए हमारे पास सर्कल का एक कवरिंग ग्रुप है T → T जो ''z'' को ''z'' भेजता है<sup>एन</sup>. इस समरूपता का मूल [[ चक्रीय समूह ]] है जिसमें एकता की nवीं जड़ें शामिल हैं।
* घूर्णन समूह [[ SO(3) ]] में समूह [[ SU(2) ]] का सार्वभौम आवरण होता है जो चतुष्कोणों में छंदों के समूह के लिए समरूपी होता है। यह एक दोहरा आवरण है क्योंकि कर्नेल का क्रम 2 है। (cf [[ tangloids ]]।)
* घूर्णन समूह [[ SO(3) ]] में समूह [[ SU(2) ]] का सार्वभौम आवरण होता है जो चतुष्कोणों में छंदों के समूह के लिए समरूपी होता है। यह एक दोहरा आवरण है क्योंकि कर्नेल का क्रम 2 है। (cf [[ tangloids ]]।)
* [[ एकात्मक समूह ]] यू (एन) कॉम्पैक्ट समूह 'टी' × एसयू (एन) द्वारा पी (जेड, ए) = जेडए द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ कवर किया गया है। यूनिवर्सल कवर 'आर' × एसयू (एन) है।
* [[ एकात्मक समूह ]] यू (एन) कॉम्पैक्ट समूह 'टी' × एसयू (एन) द्वारा पी (जेड, ए) = जेडए द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ कवर किया गया है। यूनिवर्सल कवर 'आर' × एसयू (एन) है।

Revision as of 12:48, 8 January 2023

गणित में, एक टोपोलॉजिकल समूह एच का एक कवरिंग ग्रुप एच का एक अंतरिक्ष को कवर करना जी है जैसे कि जी एक टोपोलॉजिकल ग्रुप है और कवरिंग मैप p : GH एक सतत (टोपोलॉजी) समूह समरूपता है। मानचित्र p को 'आवरण समाकारिता' कहा जाता है। एक बार-बार होने वाला मामला 'डबल कवरिंग ग्रुप' है, एक डबल कवर (टोपोलॉजी) जिसमें एच में जी में एक उपसमूह 2 का सूचकांक है; उदाहरणों में स्पिन समूह , पिन समूह और मेटाप्लेक्टिक समूह शामिल हैं।

मोटे तौर पर यह कहते हुए समझाया गया है कि उदाहरण के लिए मेटाप्लेक्टिक समूह Mp2n सहानुभूतिपूर्ण समूह Sp का दोहरा आवरण है2n इसका मतलब है कि सहानुभूति समूह में एक तत्व का प्रतिनिधित्व करने वाले मेटाप्लेक्टिक समूह में हमेशा दो तत्व होते हैं।

गुण

मान लीजिए कि G, H का एक आवरण समूह है। आवरण समरूपता का कर्नेल (समूह सिद्धांत) K, H में पहचान के ऊपर का तंतु है और G का एक असतत समूह सामान्य उपसमूह है। कर्नेल K को G में सेट किया गया है यदि और केवल यदि G हॉसडॉर्फ स्थान है (और यदि और केवल यदि H हौसडॉर्फ है)। दूसरी दिशा में जाने पर, यदि G कोई टोपोलॉजिकल समूह है और K, G का असतत सामान्य उपसमूह है, तो भागफल मानचित्र p: G → G/K एक आच्छादन समाकारिता है।

यदि G जुड़ा हुआ स्थान है तो K, एक असतत सामान्य उपसमूह होने के नाते, आवश्यक रूप से G के केंद्र (समूह सिद्धांत) में स्थित है और इसलिए एबेलियन समूह है। इस स्थिति में, H = G/K का केंद्र दिया जाता है

सभी कवरिंग स्पेस के साथ, G का मूलभूत समूह H के मूलभूत समूह में इंजेक्ट होता है। चूँकि एक टोपोलॉजिकल समूह का मूलभूत समूह हमेशा एबेलियन होता है, इसलिए प्रत्येक कवरिंग समूह एक सामान्य कवरिंग स्पेस होता है। विशेष रूप से, यदि G पथ से जुड़ा है तो भागफल समूह K के लिए आइसोमॉर्फिक है। समूह K समूह क्रिया (गणित) केवल सही गुणन द्वारा तंतुओं (जो कि केवल बाएं सह समुच्चय हैं) पर सकर्मक रूप से होती है। समूह जी तब एक प्रमुख बंडल है | एच पर प्रमुख के-बंडल।

यदि G, H का एक आवरण समूह है तो समूह G और H स्थानीय रूप से आइसोमोर्फिक समूह हैं। इसके अलावा, किसी भी दो स्थानीय रूप से जुड़े आइसोमॉर्फिक समूहों को एच1 और वह2असतत सामान्य उपसमूह K के साथ एक सामयिक समूह G मौजूद है1 और के2 ऐसा कि एच1 G/K के लिए आइसोमॉर्फिक है1 और वह2 G/K के लिए आइसोमॉर्फिक है2.

एक कवरिंग स्पेस पर समूह संरचना

एच को एक टोपोलॉजिकल समूह होने दें और जी को एच के कवरिंग स्पेस होने दें। यदि जी और एच दोनों पथ से जुड़े हुए हैं और स्थानीय रूप से पथ से जुड़े हुए हैं, तो ई ∈ एच से अधिक फाइबर में तत्व ई * के किसी भी विकल्प के लिए मौजूद है पहचान के रूप में e* के साथ G पर अद्वितीय टोपोलॉजिकल समूह संरचना, जिसके लिए कवरिंग मैप p : G → H एक समरूपता है।

निर्माण इस प्रकार है। ए और बी को जी के तत्व होने दें और एफ और जी को क्रमशः ई * पर शुरू होने और ए और बी पर समाप्त होने वाले जी में पथ (टोपोलॉजी) दें। पथ h : I → H को h(t) = p(f(t))p(g(t)) द्वारा परिभाषित करें। रिक्त स्थान को कवर करने की पथ-उठाने वाली संपत्ति से प्रारंभिक बिंदु ई * के साथ एच से जी की एक अनूठी लिफ्ट है। उत्पाद ab को इस पथ के समापन बिंदु के रूप में परिभाषित किया गया है। रचना से हमारे पास p(ab) = p(a)p(b) है। किसी को यह दिखाना चाहिए कि यह परिभाषा पथ f और g के चुनाव से स्वतंत्र है, और यह भी कि समूह संचालन निरंतर हैं।

वैकल्पिक रूप से, G पर समूह कानून का निर्माण समूह कानून H × H → H से G तक उठाकर किया जा सकता है, कवरिंग मैप G × G → H × H की लिफ्टिंग संपत्ति का उपयोग करके।

गैर-जुड़ा हुआ मामला दिलचस्प है और टेलर और ब्राउन-मुकुक द्वारा नीचे दिए गए पत्रों में इसका अध्ययन किया गया है। अनिवार्य रूप से एक सार्वभौमिक आवरण के अस्तित्व में बाधा है जो एक स्थलीय समूह भी है जैसे कि कवरिंग मानचित्र एक रूपवाद है: यह बाधा जी के घटकों के समूह के तीसरे कोहोलॉजी समूह में जी के मौलिक समूह में गुणांक के साथ है। पहचान पर।

यूनिवर्सल कवरिंग ग्रुप

यदि एच पथ से जुड़ा हुआ है, स्थानीय रूप से पथ से जुड़ा हुआ है, और अर्ध-स्थानीय रूप से जुड़ा हुआ समूह है तो इसमें एक कवरिंग स्पेस#यूनिवर्सल कवरिंग है। पिछले निर्माण के द्वारा सार्वभौमिक कवर को एक टोपोलॉजिकल समूह में कवर किया जा सकता है जिसमें कवरिंग मानचित्र एक सतत समरूपता है। इस समूह को एच का 'सार्वभौमिक आवरण समूह' कहा जाता है। एक अधिक प्रत्यक्ष निर्माण भी है जो हम नीचे देते हैं।

PH को H का पथ समूह होने दें। अर्थात, PH कॉम्पैक्ट-ओपन टोपोलॉजी के साथ पहचान के आधार पर H में पथ (टोपोलॉजी) का स्थान है। पथों का गुणनफल बिंदुवार गुणन द्वारा दिया जाता है, अर्थात (fg)(t) = f(t)g(t)। यह पीएच को एक सामयिक समूह की संरचना देता है। एक प्राकृतिक समूह समरूपता PH → H है जो प्रत्येक पथ को उसके अंतिम बिंदु तक भेजता है। एच के सार्वभौमिक कवर को अशक्त होमोटोपिक लूप (टोपोलॉजी) के सामान्य उपसमूह द्वारा पीएच के भागफल के रूप में दिया जाता है। प्रक्षेपण PH → H कवरिंग मैप देते हुए भागफल में उतरता है। कोई दिखा सकता है कि सार्वभौमिक आवरण बस जुड़ा हुआ है और कर्नेल एच का मूल समूह है। यानी, हमारे पास एक छोटा सटीक अनुक्रम है

कहां H का सार्वभौमिक आवरण है। ठोस रूप से, H का सार्वभौमिक आवरण समूह पथों के बिंदुवार गुणन के साथ H में पथों के होमोटॉपी वर्गों का स्थान है। कवरिंग मैप प्रत्येक पथ वर्ग को उसके समापन बिंदु पर भेजता है।

आच्छादित समूहों का जाल

जैसा कि ऊपर सुझाव दिया गया है, यदि एक समूह में एक सार्वभौमिक आवरण समूह है (यदि यह पथ से जुड़ा हुआ है, स्थानीय रूप से पथ से जुड़ा हुआ है, और अर्ध-स्थानीय रूप से जुड़ा हुआ है), असतत केंद्र के साथ, तो सभी टोपोलॉजिकल समूहों का सेट जो सार्वभौमिक आवरण द्वारा कवर किया गया है समूह एक जाली बनाता है, जो सार्वभौमिक आवरण समूह के केंद्र के उपसमूहों की जाली के अनुरूप होता है: उपसमूहों का समावेश भागफल समूहों के आवरण से मेल खाता है। अधिकतम तत्व सार्वभौमिक आवरण समूह है जबकि न्यूनतम तत्व यूनिवर्सल कवरिंग ग्रुप मोड है, इसका केंद्र है, .

यह अधिकतम तत्व के रूप में सार्वभौमिक पूर्ण केंद्रीय विस्तार (सादृश्य द्वारा कवरिंग समूह कहा जाता है) के बीजगणितीय रूप से मेल खाता है, और एक समूह अपने केंद्र को न्यूनतम तत्व के रूप में संशोधित करता है।

यह झूठ समूहों के लिए विशेष रूप से महत्वपूर्ण है, क्योंकि ये समूह एक विशेष झूठ बीजगणित के सभी (जुड़े) अहसास हैं। कई लाई समूहों के लिए केंद्र स्केलर मैट्रिसेस का समूह है, और इस प्रकार समूह मोड इसका केंद्र लाई समूह का प्रक्षेपण है। ये कवर लाई समूहों के प्रक्षेपी अभ्यावेदन का अध्ययन करने में महत्वपूर्ण हैं, और स्पिन अभ्यावेदन स्पिन समूहों की खोज की ओर ले जाते हैं: लाई समूह का एक अनुमानित प्रतिनिधित्व समूह के रैखिक प्रतिनिधित्व से नहीं आता है, लेकिन कुछ के रैखिक प्रतिनिधित्व से आता है। कवरिंग ग्रुप, विशेष रूप से यूनिवर्सल कवरिंग ग्रुप। जैसा कि ऊपर चर्चा की गई है, परिमित एनालॉग ने कवरिंग ग्रुप या शूर कवर का नेतृत्व किया।

एक प्रमुख उदाहरण SL2(R)|SL से उत्पन्न होता है2(आर), जिसका केंद्र {±1} और मौलिक समूह Z है। यह केंद्र रहित प्रक्षेपी विशेष रैखिक समूह PSL का दोहरा आवरण है2(आर), जो केंद्र द्वारा भागफल लेने पर प्राप्त होता है। इवासावा अपघटन द्वारा, दोनों समूह जटिल ऊपरी आधे विमान और उनके सार्वभौमिक आवरण पर सर्कल बंडल हैं अर्ध-तल पर एक वास्तविक रेखा बंडल है जो ज्यामितिकरण अनुमानों में से एक बनाता है | थर्स्टन की आठ ज्यामिति। चूंकि अर्ध-तल सिकुड़ा जा सकता है, सभी बंडल संरचनाएं तुच्छ हैं। एसएल की प्राथमिकता2(जेड) यूनिवर्सल कवर में तीन स्ट्रैंड्स पर चोटी समूह के लिए आइसोमॉर्फिक है।

झूठ समूह

उपरोक्त परिभाषाएं और निर्माण सभी झूठ समूह ों के विशेष मामले पर लागू होते हैं। विशेष रूप से, विविध का प्रत्येक आच्छादन मैनिफोल्ड होता है, और आच्छादन समाकारिता एक सुगम मानचित्र बन जाता है। इसी तरह, लाई समूह के किसी भी असतत सामान्य उपसमूह को दिए जाने पर भागफल समूह एक लाई समूह होता है और भागफल मानचित्र एक आवरण समरूपता है।

दो लाइ समूह स्थानीय रूप से आइसोमोर्फिक हैं यदि और केवल अगर उनके ले बीजगणित आइसोमोर्फिक हैं। इसका तात्पर्य है कि एक समरूपता φ : G → H झूठ समूहों का एक आच्छादित समरूपता है यदि और केवल अगर झूठे बीजगणित पर प्रेरित मानचित्र

एक समरूपता है।

चूंकि प्रत्येक झूठ बीजगणित के लिए लाई बीजगणित के साथ एक अद्वितीय सरलता से जुड़ा लाई समूह G है , इससे यह पता चलता है कि कनेक्टेड लाई ग्रुप एच का यूनिवर्सल कवरिंग ग्रुप (अद्वितीय) बस जुड़ा हुआ लाई ग्रुप जी है, जिसमें एच के समान लाई बीजगणित है।

उदाहरण

  • सर्कल समूह टी का सार्वभौमिक कवरिंग समूह वास्तविक संख्या आर का योगात्मक समूह है जिसमें घातांक प्रकार्य ऍक्स्प: आर → टी द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ है। एक्सपोनेंशियल मैप का कर्नेल Z के लिए आइसोमोर्फिक है।
  • किसी भी पूर्णांक n के लिए हमारे पास सर्कल का एक कवरिंग ग्रुप है T → T जो z को z भेजता हैएन. इस समरूपता का मूल चक्रीय समूह है जिसमें एकता की nवीं जड़ें शामिल हैं।
  • घूर्णन समूह SO(3) में समूह SU(2) का सार्वभौम आवरण होता है जो चतुष्कोणों में छंदों के समूह के लिए समरूपी होता है। यह एक दोहरा आवरण है क्योंकि कर्नेल का क्रम 2 है। (cf tangloids ।)
  • एकात्मक समूह यू (एन) कॉम्पैक्ट समूह 'टी' × एसयू (एन) द्वारा पी (जेड, ए) = जेडए द्वारा दिए गए कवरिंग होमोमोर्फिज्म के साथ कवर किया गया है। यूनिवर्सल कवर 'आर' × एसयू (एन) है।
  • विशेष ऑर्थोगोनल समूह SO(n) में एक दोहरा आवरण होता है जिसे स्पिन समूह स्पिन(n) कहा जाता है। n ≥ 3 के लिए, स्पिन समूह SO(n) का सार्वभौमिक आवरण है।
  • n ≥ 2 के लिए, विशेष रैखिक समूह SL(n, 'R') का सार्वभौमिक आवरण एक मैट्रिक्स समूह नहीं है (अर्थात इसमें कोई विश्वसनीय परिमित-आयामी समूह प्रतिनिधित्व नहीं है)।


संदर्भ

  • Pontryagin, Lev S. (1986). Topological Groups. trans. from Russian by Arlen Brown and P.S.V. Naidu (3rd ed.). Gordon & Breach Science. ISBN 2-88124-133-6.
  • Taylor, R.L. (1954). "Covering groups of nonconnected topological groups". Proc. Amer. Math. Soc. 5: 753–768. doi:10.1090/S0002-9939-1954-0087028-0. JSTOR 2031861. MR 0087028.
  • Brown, R.; Mucuk, O. (1994). "Covering groups of nonconnected topological groups revisited". Math. Proc. Cambridge Philos. Soc. 115 (1): 97–110. arXiv:math/0009021. Bibcode:2000math......9021B. CiteSeerX 10.1.1.236.9436. doi:10.1017/S0305004100071942.

श्रेणी:सामयिक समूह श्रेणी:झूठ बोलने वाले समूह