अनुक्रम सीमा: Difference between revisions

From Vigyanwiki
Line 30: Line 30:
</div>
</div>


गणित में, एक '''[[क्रम|अनुक्रम]] सीमा''' वह मान है जो किसी अनुक्रम के पदों की ओर प्रवृत्त होता है, और प्रायः इसका उपयोग करके निरूपित किया जाता है <math>\lim</math> प्रतीक (जैसे, <math>\lim_{n \to \infty}a_n</math>).<ref name="Courant (1961), p. 29">Courant (1961), p. 29.</ref> यदि ऐसी सीमा सम्मलित है, तो अनुक्रम को  
[[गणित]] में, एक '''[[क्रम|अनुक्रम]] सीमा''' वह मान है जो किसी अनुक्रम के पदों की ओर प्रवृत्त होता है, और प्रायः इसका उपयोग करके निरूपित किया जाता है <math>\lim</math> प्रतीक (जैसे, <math>\lim_{n \to \infty}a_n</math>).<ref name="Courant (1961), p. 29">Courant (1961), p. 29.</ref> यदि ऐसी सीमा सम्मलित है, तो अनुक्रम को  


भिन्न कहा जाता है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=अभिसरण अनुक्रम|url=https://mathworld.wolfram.com/ConvergentSequence.html|access-date=2020-08-18|website=mathworld.wolfram.com|language=en}}</ref> एक क्रम जो अभिसरण नहीं करता है उसे भिन्न कहा जाता है।।<ref>Courant (1961), p. 39.</ref> अनुक्रम की सीमा को मौलिक धारणा कहा जाता है जिस पर संपूर्ण [[गणितीय विश्लेषण]] अंततः टिका होता है।<ref name="Courant (1961), p. 29" />
भिन्न कहा जाता है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=अभिसरण अनुक्रम|url=https://mathworld.wolfram.com/ConvergentSequence.html|access-date=2020-08-18|website=mathworld.wolfram.com|language=en}}</ref> एक क्रम जो अभिसरण नहीं करता है उसे भिन्न कहा जाता है।।<ref>Courant (1961), p. 39.</ref> अनुक्रम की सीमा को मौलिक धारणा कहा जाता है जिस पर संपूर्ण [[गणितीय विश्लेषण]] अंततः टिका होता है।<ref name="Courant (1961), p. 29" />
Line 71: Line 71:
{{anchor|null sequence}}यदि एक अनुक्रम <math>(x_n)</math> किसी सीमा <math>x</math> तक अभिसरण करता है, तो यह अभिसारी है और <math>x</math> एकमात्र सीमा है; अन्यथा <math>(x_n)</math> भिन्न है। एक अनुक्रम जिसकी सीमा शून्य है, उसे कभी-कभी शून्य अनुक्रम कहा जाता है।   
{{anchor|null sequence}}यदि एक अनुक्रम <math>(x_n)</math> किसी सीमा <math>x</math> तक अभिसरण करता है, तो यह अभिसारी है और <math>x</math> एकमात्र सीमा है; अन्यथा <math>(x_n)</math> भिन्न है। एक अनुक्रम जिसकी सीमा शून्य है, उसे कभी-कभी शून्य अनुक्रम कहा जाता है।   


=== Illustration ===
=== चित्रण ===
<gallery widths="350" heights="200">
<gallery widths="350" heights="200">
File:Folgenglieder im KOSY.svg|अनुक्रम का उदाहरण जो सीमित करने के लिए अभिसरण करता है <math>a</math>.
File:Folgenglieder im KOSY.svg|अनुक्रम का उदाहरण जो सीमित करने के लिए अभिसरण करता है <math>a</math>.
Line 199: Line 199:
=== अनंत सीमा ===
=== अनंत सीमा ===


एक अनुक्रम <math>(x_{n,m})</math> को अनंत की ओर प्रवृत्त कहा जाता है, लिखित
अनुक्रम <math>(x_{n,m})</math> को अनंत की ओर प्रवृत्त कहा जाता है, लिखित
:<math>x_{n,m} \to \infty</math>, या
:<math>x_{n,m} \to \infty</math>, या
:<math>\lim_{\begin{smallmatrix}
:<math>\lim_{\begin{smallmatrix}
Line 296: Line 296:
==संदर्भ==
==संदर्भ==


* {{Császár General Topology}} <!-- {{sfn|Császár|1978|p=}} -->
*<!-- {{sfn|Császár|1978|p=}} -->
* {{Dugundji Topology}} <!-- {{sfn|Dugundji|1966|p=}} -->
*<!-- {{sfn|Dugundji|1966|p=}} -->
* [[Richard Courant|Courant, Richard]] (1961). "Differential and Integral Calculus Volume I", Blackie & Son, Ltd., Glasgow.
* [[Richard Courant|Courant, Richard]] (1961). "Differential and Integral Calculus Volume I", Blackie & Son, Ltd., Glasgow.
* [[Frank Morley]] and [[James Harkness (mathematician)|James Harkness]] [https://archive.org/details/treatiseontheory00harkuoft A treatise on the theory of functions]  (New York: Macmillan, 1893)
* [[Frank Morley]] and [[James Harkness (mathematician)|James Harkness]] [https://archive.org/details/treatiseontheory00harkuoft A treatise on the theory of functions]  (New York: Macmillan, 1893)
Line 305: Line 305:
* {{springer|title=Limit|id=p/l058820}}
* {{springer|title=Limit|id=p/l058820}}
* [https://web.archive.org/web/20040905075957/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html ''A history of the calculus'', including limits]
* [https://web.archive.org/web/20040905075957/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html ''A history of the calculus'', including limits]
{{Calculus topics}}


[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]

Revision as of 14:20, 31 December 2022

diagram of a hexagon and pentagon circumscribed outside a circle
नियमित एन-पक्षीय बहुभुजों के परिधि द्वारा दिए गए अनुक्रम जो यूनिट सर्कल को घेरते हैं, सर्कल के परिधि के बराबर सीमा होती है, अर्थात . अन्तर्लिखित बहुभुजों के लिए संबंधित अनुक्रम की एक ही सीमा है।
n n sin(1/n)
1 0.841471
2 0.958851
...
10 0.998334
...
100 0.999983

धनात्मक पूर्णांक के रूप में बड़ा हो जाता है, मूल्य के निकट हो जाता है . हम कहते हैं कि अनुक्रम की सीमा बराबरी .

गणित में, एक अनुक्रम सीमा वह मान है जो किसी अनुक्रम के पदों की ओर प्रवृत्त होता है, और प्रायः इसका उपयोग करके निरूपित किया जाता है प्रतीक (जैसे, ).[1] यदि ऐसी सीमा सम्मलित है, तो अनुक्रम को

भिन्न कहा जाता है।[2] एक क्रम जो अभिसरण नहीं करता है उसे भिन्न कहा जाता है।।[3] अनुक्रम की सीमा को मौलिक धारणा कहा जाता है जिस पर संपूर्ण गणितीय विश्लेषण अंततः टिका होता है।[1]

सीमाओं को किसी भी मीट्रिक स्थान या संस्थानिक स्थान में परिभाषित किया जा सकता है, लेकिन प्रायः वास्तविक संख्या में पहली बार सामना किया जाता है।

इतिहास

एलिया के यूनानी दार्शनिक ज़ेनो के विरोधाभासों को सूत्रबद्ध करने के लिए प्रसिद्ध हैं।

ल्यूसिपस, डेमोक्रिटस, एंटिफॉन (व्यक्ति), कनिडस के यूडोक्सस और आर्किमिडीज ने थकावट की विधि विकसित की, जो एक क्षेत्र या मात्रा निर्धारित करने के लिए सन्निकटन के अनंत अनुक्रम का उपयोग करता है। आर्किमिडीज योग करने में सफल रहे जिसे अब ज्यामितीय श्रृंखला कहा जाता है।

ग्रेगोइरे डी सेंट-विन्सेंट ने अपने काम ओपस जियोमीट्रिक श्रंखला (1647) में एक ज्यामितीय श्रृंखला की सीमा (टर्मिनस) की पहली परिभाषा दी: "एक प्रगति का टर्मिनस श्रृंखला का अंत है, जो कोई भी प्रगति तक नहीं पहुंच सकता है, भले ही वह अनंत में जारी हो, लेकिन जिस तक वह एक दिए गए खंड की तुलना में अधिक निकट पहुंच सकती है।"[4] आइजैक न्यूटन ने अनंत श्रृंखला के साथ विश्लेषण (1669 में लिखा गया, पांडुलिपि में परिचालित, 1711 में प्रकाशित), प्रवाह और अनंत श्रृंखला की विधि (1671 में लिखा गया, 1736 में अंग्रेजी अनुवाद में प्रकाशित, लैटिन मूल बहुत बाद में प्रकाशित) पर अपने कार्यों में श्रृंखला से निपटा और ट्रैक्टेटस डी क्वाडराटुरा कर्वारम (1693 में लिखा गया, 1704 में उनके परिशिष्ट के रूप में प्रकाशित)। बाद के काम में, न्यूटन (x + o)n के द्विपद विस्तार पर विचार करता है, जिसे वह तब सीमा के रूप में लेते हुए रैखिक करता है, जब 0 की ओर जाता है।

18वीं दशक में, लियोनहार्ड यूलर जैसे गणितज्ञ सही समय पर रुक कर कुछ भिन्न श्रृंखलाओं का योग करने में सफल रहे; जब तक इसकी गणना की जा सकती है, तब तक उन्हें इस बात की ज्यादा चिंता नहीं थी कि कोई सीमा सम्मलित है या नहीं। दशक के अंत में, जोसेफ लुइस लाग्रेंज ने अपने थ्योरी डेस फोंक्शन्स एनालिटिक्स (1797) में कहा कि कठोरता की कमी ने कलन में और विकास को रोक दिया। कार्ल फ्रेडरिक गॉस ने अतिज्यामितीय श्रृंखला (1813) के अपने तसवीर का ख़ाका में पहली बार उन स्थितियों की जांच की जिसके अंतर्गत एक श्रृंखला एक सीमा तक परिवर्तित हो गई।

सीमा की आधुनिक परिभाषा (किसी भी ε के लिए एक अनुक्रमणिका N सम्मलित है जिससे...) बर्नार्ड बोलजानो (डेर बिनोमिशे लेहर्सत्ज़, प्राग 1816, जो उस समय बहुत कम ध्यान दिया गया था) और 1870 के दशक में कार्ल वीयरस्ट्रास द्वारा दिया गया था। .

वास्तविक संख्या

File:Converging Sequence example.svg
एक अभिसरण अनुक्रम का प्लॉट {an} नीले रंग में दिखाया गया है। यहाँ, कोई यह देख सकता है कि अनुक्रम 0 की सीमा में परिवर्तित हो रहा है क्योंकि n बढ़ता है।
वास्तविक संख्या में, एक संख्या अनुक्रम , की सीमा है, यदि अनुक्रम में संख्याएँ , और किसी अन्य संख्या के लिए नहीं।

उदाहरण

  • यदि निरंतर c के लिए , तो .[proof 1][5]
  • यदि , तो .[proof 2][5]*यदि जब सम है, और जब विषम है, तो . (यह तथ्य कि जब भी विषम है अप्रासंगिक है।)
  • किसी भी वास्तविक संख्या को देखते हुए, कोई आसानी से एक अनुक्रम का निर्माण कर सकता है जो उस संख्या में दशमलव सन्निकटन लेकर परिवर्तित हो जाता है। उदाहरण के लिए, अनुक्रम में परिवर्तित होता है। ध्यान दें कि दशमलव प्रतिनिधित्व पिछले क्रम की सीमा है, जिसे परिभाषित किया गया है
  • किसी क्रम की सीमा का पता लगाना हमेशा स्पष्ट नहीं होता है। दो उदाहरण हैं (जिसकी सीमा संख्या e है) और अंकगणितीय-ज्यामितीय माध्य है। ऐसी सीमाओं की स्थापना में निचोड़ प्रमेय प्रायः उपयोगी होता है।

परिभाषा

हम को अनुक्रम की सीमा , कहते हैं, जिसे लिखा गया है

, या
,

यदि निम्न स्थिति होती है:

प्रत्येक वास्तविक संख्या के के लिए, एक प्राकृतिक संख्या लिए उपस्तिथ होती है, जैसे कि प्रत्येक प्राकृतिक संख्या के लिए , हमारे पास है .[6]

दूसरे शब्दों में, निकटता के सभी उपाय के लिए , अनुक्रम की शर्तें अंततः सीमा के निकट हैं। अनुक्रम को सीमा की ओर अभिसरण या झुकाव कहा जाता है। .

प्रतीकात्मक रूप से, यह है:

.

यदि एक अनुक्रम किसी सीमा तक अभिसरण करता है, तो यह अभिसारी है और एकमात्र सीमा है; अन्यथा भिन्न है। एक अनुक्रम जिसकी सीमा शून्य है, उसे कभी-कभी शून्य अनुक्रम कहा जाता है।

चित्रण

गुण

वास्तविक अनुक्रमों की सीमाओं के कुछ अन्य महत्वपूर्ण गुणों में निम्नलिखित शामिल हैं:

  • जब यह सम्मलित होता है, तो अनुक्रम की सीमा अद्वितीय होती है।[5] क्रमों की सीमाएँ सामान्य अंकगणित अंकगणितीय संक्रियाओं के संबंध में अच्छा व्यवहार करती हैं। यदि तथा उपस्तिथ है, तो
[5]::[5]::[5]:: बशर्ते [5]::
  • किसी भी सतत फलन f के लिए, यदि सम्मलितहै, तो भी सम्मलित है। वास्तव में, कोई भी वास्तविक-मूल्यवान फ़ंक्शन (गणित) f निरंतर है और केवल यह अनुक्रमों की सीमाओं को संरक्षित करता है (चूँकि निरंतरता के अधिक सामान्य विचारों का उपयोग करते समय यह जरूरी नहीं है)।
  • यदि सभी के लिए कुछ से बड़ा , फिर .
  • (निचोड़ प्रमेय) यदि सभी के लिए कुछ से बड़ा , तथा , फिर .
  • (मोनोटोन अभिसरण प्रमेय) यदि कुछ से अधिक सभी के लिए परिबद्ध और मोनोटोनिक है, तो यह अभिसरण है।
  • एक अनुक्रम अभिसारी है यदि और केवल यदि प्रत्येक अनुवर्ती अभिसरण है।
  • यदि किसी अनुक्रम के प्रत्येक अनुवर्ती का अपना स्वयं का अनुक्रम होता है जो एक ही बिंदु पर अभिसरण करता है, तो मूल अनुक्रम उस बिंदु पर परिवर्तित हो जाता है।

बोझिल औपचारिक परिभाषा का सीधे उपयोग करने की आवश्यकता के बिना, इन गुणों का व्यापक रूप से सीमा साबित करने के लिए उपयोग किया जाता है। उदाहरण के लिए, एक बार यह सिद्ध हो जाने पर , यह दिखाना आसान हो जाता है—उपरोक्त गुणों का उपयोग करके — कि (ऐसा मानते हुए ).

अनंत सीमा

अनुक्रम को अनंत की ओर प्रवृत्त कहा जाता है, लिखा हुआ है

, या
,

यदि निम्नलिखित धारण करता है:

प्रत्येक वास्तविक संख्या के लिए , के लिए, एक प्राकृतिक संख्या होती है, जैसे कि प्रत्येक प्राकृतिक संख्या के लिए , हमारे पास ; के; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से बड़े होते हैं .

प्रतीकात्मक रूप से, यह है:

.

इसी प्रकार, हम कहते हैं कि एक अनुक्रम ऋणात्मक अनन्त की ओर जाता है, लिखित

, या
,

यदि निम्नलिखित धारण करता है:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि हर प्राकृतिक संख्या के लिए , हमारे पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से छोटे होते हैं .

प्रतीकात्मक रूप से, यह है:

.

यदि कोई अनुक्रम अनंत या ऋणात्मक अनंत की ओर जाता है, तो यह अपसारी है। चूँकि, एक अपसारी अनुक्रम को धनात्मक या ऋणात्मक अनन्त और अनुक्रम की आवश्यकता नहीं है ऐसा ही एक उदाहरण देता है।

मीट्रिक रिक्त स्थान

परिभाषा

मेट्रिक स्थान का एक बिंदु अनुक्रम की सीमा है यदि:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या होती है जैसे कि प्रत्येक प्राकृतिक संख्या के लिए , हमारे पास .

प्रतीकात्मक रूप से, यह है:

.

यह वास्तविक संख्याओं के लिए दी गई परिभाषा से मेल खाता है जब तथा .

गुण

  • जब यह अस्तित्व में होता है, तो एक अनुक्रम की सीमा अद्वितीय होती है, क्योंकि भिन्न-भिन्न बिंदुओं को कुछ धनात्मक दूरी से भिन्न किया जाता है, इसलिए इस दूरी के आधे से कम, अनुक्रम शब्द दूरी के भीतर नहीं हो सकते दोनों बिंदुओं का।
  • किसी भी सतत फलन f के लिए, यदि सम्मलित है, तो . वास्तव में, एक फलन (गणित) f निरंतर है यदि और केवल यदि यह अनुक्रमों की सीमाओं को संरक्षित करता है।

कॉची सीक्वेंस

File:Cauchy sequence illustration.svg
कॉची सीक्वेंस का प्लॉट (xn), नीले रंग में बनाम n दिखाया गया है । दृष्टिगत रूप से, हम देखते हैं कि अनुक्रम एक सीमा बिंदु पर अभिसरण करता हुआ प्रतीत होता है क्योंकि अनुक्रम में पद n बढ़ने पर एक साथ निकट हो जाते हैं। वास्तविक संख्या में प्रत्येक कौशी क्रम किसी सीमा तक अभिसरित होता है।
एक कॉशी अनुक्रम एक अनुक्रम है जिसकी शर्तें अंततः मनमाने ढंग से एक साथ बंद हो जाती हैं, पर्याप्त रूप से कई प्रारंभिक शब्दों को छोड़ दिए जाने के बाद। मीट्रिक रिक्त स्थान में अनुक्रमों के अध्ययन में, और विशेष रूप से, वास्तविक विश्लेषण में कॉची अनुक्रम की धारणा महत्वपूर्ण है। वास्तविक विश्लेषण में एक विशेष रूप से महत्वपूर्ण परिणाम अनुक्रमों के अभिसरण के लिए कॉची आकर्ष है: वास्तविक संख्याओं का एक क्रम अभिसरण होता है यदि केवल यह एक कॉची अनुक्रम है। यह अन्य पूर्ण मीट्रिक रिक्त स्थान में सही रहता है।

संस्थानिक स्थान

परिभाषा

संस्थानिक स्थान का एक बिंदु अनुक्रम का एक सीमा बिंदु है एक है [7][8] अनुक्रम का यदि:

सभी संस्थानिक निकटतम के लिए का , कुछ उपस्तिथ है ऐसा कि प्रत्येक के लिए , अपने पास .[9]

यह मीट्रिक रिक्त स्थान के लिए दी गई परिभाषा से मेल खाता है, यदि एक मीट्रिक स्थान है और द्वारा उत्पन्न संस्थानिक है .

अंकों के अनुक्रम की एक सीमा एक संस्थानिक स्थान में एक फलन की सीमा की एक विशेष स्थिति है संस्थानिक रिक्त स्थान पर कार्य: एक फलन का डोमेन है स्थान में , सजातीय रूप से विस्तारित वास्तविक संख्या प्रणाली की प्रेरित संस्थानिक के साथ, एक फलन की श्रेणी है , और फलन तर्क आदत है , जो इस स्थान में एक समुच्चय का एक सीमा बिंदु है .

गुण

हौसडॉर्फ स्थान में, अनुक्रमों की सीमाएं अद्वितीय होती हैं जब भी वे उपस्तिथ होती हैं। ध्यान दें कि गैर-हॉसडॉर्फ स्थानों में ऐसा होना जरूरी नहीं है; विशेष रूप से, यदि दो बिंदु तथा स्थलाकृतिक रूप से अप्रभेद्य हैं, फिर कोई भी क्रम जो अभिसरण करता है में जुटना चाहिए और इसके विपरीत।

अतिवास्तविक नंबर

अतिवास्तविक नंबरों का उपयोग करते हुए सीमा की परिभाषा अंतर्ज्ञान को औपचारिक रूप देती है कि सूचकांक के एक बहुत बड़े मूल्य के लिए, संबंधित शब्द सीमा के बहुत निकट है। अधिक त्रुटिहीन, एक वास्तविक अनुक्रम L की ओर जाता है यदि सभी अनंत अतिप्राकृतिक H के लिए, शब्द L के असीम रूप से निकट है (यदि, अंतर अपरिमित है)। समतुल्य रूप से, L का मानक भाग फलन है :

.

इस प्रकार, सीमा को सूत्र द्वारा परिभाषित किया जा सकता है

.

जहां सीमा उपस्तिथ है अगर और केवल अगर दायां पक्ष अनंत H की पसंद से स्वतंत्र है।

== एक से अधिक इंडेक्स == का अनुक्रम

कभी-कभी एक से अधिक अनुक्रमणिका वाले अनुक्रम पर भी विचार किया जा सकता है, उदाहरण के लिए, एक डबल अनुक्रम . इस क्रम की एक सीमा होती है यदि यह के निकट हो जाता है, जब जब n और m दोनों बहुत बड़े हो जाते हैं।

उदाहरण

  • यदि निरंतर c के लिए तो .
  • यदि , तो .
  • यदि , तो सीमा सम्मलित नहीं है। n और m की सापेक्ष वृद्धि गति के आधार पर, यह क्रम 0 और 1 के बीच किसी भी मान के निकट हो सकता है।

परिभाषा

हम को अनुक्रम की दोहरी सीमा कहते हैं , लिखा हुआ

, या
,

यदि निम्न स्थिति होती है:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या सम्मलित है जैसे कि, प्राकृत संख्याओं के प्रत्येक युग्म के लिए , हमारे पास .[10]

दूसरे शब्दों में, निकटता के प्रत्येक माप के लिए , अनुक्रम की शर्तें अंततः सीमा के निकटहोती हैं। अनुक्रम को सीमा की ओर अभिसरण या झुकाव कहा जाता है।

प्रतीकात्मक रूप से, यह है:

.

ध्यान दें कि दोहरी सीमा पहले n में सीमा लेने और फिर m में लेने से भिन्न है। उत्तरार्द्ध को पुनरावृत्त सीमा के रूप में जाना जाता है। यह देखते हुए कि दोहरी सीमा और पुनरावृत्त सीमा दोनों उपस्तिथ हैं, उनका मूल्य समान है। चूँकि , यह संभव है कि उनमें से एक उपस्तिथ हो लेकिन दूसरा नहीं हो।

अनंत सीमा

अनुक्रम को अनंत की ओर प्रवृत्त कहा जाता है, लिखित

, या
,

यदि निम्नलिखित धारण करता है:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि प्राकृत संख्याओं के प्रत्येक युग्म के लिए , हमारे पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से बड़े होते हैं .

प्रतीकात्मक रूप से, यह है:

.

इसी प्रकार एक क्रम ऋणात्मक अनन्तकी ओर जाता है, लिखा है

, या
,

यदि निम्नलिखित धारण करता है:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि प्राकृत संख्याओं के प्रत्येक युग्म के लिए , हमारे पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से छोटे होते हैं .

प्रतीकात्मक रूप से, यह है:

.

यदि कोई अनुक्रम धनात्मक या ऋणात्मक अनंत की ओर जाता है, तो यह अपसारी है। चूँकि, एक अपसारी अनुक्रम को धनात्मक या ऋणात्मक अनन्त और अनुक्रम की आवश्यकता नहीं है ऐसा ही एक उदाहरण देता है।

बिंदुवार सीमाएं और समान सीमाएं

दोहरे क्रम के लिए , हम किसी एक सूचकांक में सीमा ले सकते हैं, कहते हैं, , एकल अनुक्रम प्राप्त करने के लिए . वास्तव में, इस सीमा को लेते समय दो संभावित अर्थ होते हैं। पहले वाले को बिंदुवार सीमा कहा जाता है, जिसे निरूपित किया जाता है

, या
,

जिसका तात्पर्य है:

प्रत्येक वास्तविक संख्या के लिए और प्रत्येक निश्चित प्राकृतिक संख्या , एक प्राकृतिक संख्या उपस्तिथ है जैसे कि, बिंदुवार सीमा प्राकृतिक संख्या के लिए , हमारे पास .[11]

प्रतीकात्मक रूप से, यह है:

.

जब ऐसी सीमा होती है, तो हम अनुक्रम कहते हैं बिंदुवार अभिसरण करने के लिए .

दूसरे को एक समान सीमा कहा जाता है, जिसे निरूपित किया जाता है

,
,
, या
,

जिसका तात्पर्य है:

प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या उपस्तिथ है जैसे कि, सभी प्राकृतिक संख्या के लिए और सभी प्राकृतिक संख्या के लिए , हमारे पास .[11]

प्रतीकात्मक रूप से, यह है:

.

इस परिभाषा में, का विकल्प से स्वतंत्र है . दूसरे शब्दों में, का चुनाव समान रूप से सभी प्राकृतिक संख्याओं पर लागू होता हैI इसलिए, कोई भी आसानी से देख सकता है कि बिंदुवार अभिसरण की तुलना में समान अभिसरण एक मजबूत गुण है: समान सीमा के अस्तित्व का तात्पर्य बिंदुवार सीमा के अस्तित्व और समानता से है:

यदि समान रूप से, फिर बिंदुवार।

जब ऐसी सीमा होती है, तो हम अनुक्रम कहते हैं एक समान अभिसरण .

पुनरावृत्त सीमा

दोहरे क्रम के लिए , हम किसी एक सूचकांक में सीमा ले सकते हैं, कहते हैं, , एकल अनुक्रम प्राप्त करने के लिए , और फिर दूसरे अनुक्रमणिका में सीमा लें, अर्थात् , नंबर पाने के लिए . प्रतीकात्मक रूप से,

.

इस सीमा को दोहरे अनुक्रम की पुनरावृत्त सीमा के रूप में जाना जाता है। ध्यान दें कि सीमा लेने का क्रम परिणाम को प्रभावित कर सकता है, अर्थात,

सामान्य रूप में।

समानता की एक पर्याप्त शर्त मूर-ऑसगूड प्रमेय द्वारा दी गई है, जिसके लिए सीमा की आवश्यकता होती है एम में एक समान होना।[10]


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Courant (1961), p. 29.
  2. Weisstein, Eric W. "अभिसरण अनुक्रम". mathworld.wolfram.com (in English). Retrieved 2020-08-18.
  3. Courant (1961), p. 39.
  4. Van Looy, H. (1984). A chronology and historical analysis of the mathematical manuscripts of Gregorius a Sancto Vincentio (1584–1667). Historia Mathematica, 11(1), 57-75.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 "अनुक्रमों की सीमाएं | शानदार गणित और विज्ञान विकी". brilliant.org (in English). Retrieved 2020-08-18.
  6. Weisstein, Eric W. "सीमा". mathworld.wolfram.com (in English). Retrieved 2020-08-18.
  7. Dugundji 1966, pp. 209–210.
  8. Császár 1978, p. 61.
  9. Zeidler, Eberhard (1995). एप्लाइड कार्यात्मक विश्लेषण: मुख्य सिद्धांत और उनके अनुप्रयोग (1 ed.). New York: Springer-Verlag. p. 29. ISBN 978-0-387-94422-7.
  10. 10.0 10.1 Zakon, Elias (2011). "Chapter 4. Function Limits and Continuity". गणितीय विश्लेषण, वॉल्यूम I. p. 223. ISBN 9781617386473.
  11. 11.0 11.1 Habil, Eissa (2005). "डबल सीक्वेंस और डबल सीरीज" (in English). Retrieved 2022-10-28.



प्रमाण

  1. Proof: Choose . For every ,
  2. Proof: choose (the floor function). For every , .


संदर्भ


बाहरी संबंध