अंकगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
== अंकगणितीय संचालन ==
== अंकगणितीय संचालन ==
{{See also|Algebraic operation}}
{{See also|Algebraic operation}}
मूल अंकगणितीय संचालन अतिरिक्त, घटाव, गुणा और विभाजन हैं, हालांकि अंकगणित में अधिक उन्नत संचालन भी शामिल हैं, जैसे कि प्रतिशत का जोड़तोड़, <रेफ नाम =: 2>{{cite web |title=Definition of Arithmetic |url=https://www.mathsisfun.com/definitions/arithmetic.html |website=mathsisfun.com |access-date=2020-08-25}}</ref> वर्ग जड़ें, घातांक, लघुगणक कार्यों, और यहां तक कि त्रिकोणमितीय कार्यों, एक ही नस में लॉगरिदम (प्रोस्थैफैरेसिस) के रूप में।संचालन के इच्छित अनुक्रम के अनुसार अंकगणितीय अभिव्यक्तियों का मूल्यांकन किया जाना चाहिए।इसे निर्दिष्ट करने के लिए कई तरीके हैं, या तो- सबसे आम, इन्फिक्स संकेतन के साथ -साथ - विशेष रूप से कोष्ठक का उपयोग करना और पूर्ववर्ती नियमों पर भरोसा करना, या एक उपसर्ग या पोस्टफिक्स अंकन का उपयोग करना, जो विशिष्ट रूप से स्वयं द्वारा निष्पादन के क्रम को ठीक करता है।उन वस्तुओं का कोई भी सेट, जिन पर सभी चार अंकगणितीय संचालन (शून्य द्वारा विभाजन को छोड़कर) का प्रदर्शन किया जा सकता है, और जहां ये चार ऑपरेशन सामान्य कानूनों (वितरण सहित) का पालन करते हैं, को एक क्षेत्र कहा जाता है। रेफ नाम = ऑक्सफोर्ड>{{cite book
मूल अंकगणितीय संचालन अतिरिक्त, घटाव, गुणा और विभाजन हैं, हालांकि अंकगणित में अधिक उन्नत संचालन भी शामिल हैं, जैसे कि प्रतिशत का जोड़तोड़,<ref name=":2">{{cite web |title=Definition of Arithmetic |url=https://www.mathsisfun.com/definitions/arithmetic.html |website=mathsisfun.com |access-date=2020-08-25}}</ref> वर्ग जड़ें, घातांक, लघुगणक कार्यों, और यहां तक कि त्रिकोणमितीय कार्यों, एक ही नस में लॉगरिदम (प्रोस्थैफैरेसिस) के रूप में।संचालन के इच्छित अनुक्रम के अनुसार अंकगणितीय अभिव्यक्तियों का मूल्यांकन किया जाना चाहिए।इसे निर्दिष्ट करने के लिए कई तरीके हैं, या तो- सबसे आम, इन्फिक्स संकेतन के साथ -साथ - विशेष रूप से कोष्ठक का उपयोग करना और पूर्ववर्ती नियमों पर भरोसा करना, या एक उपसर्ग या पोस्टफिक्स अंकन का उपयोग करना, जो विशिष्ट रूप से स्वयं द्वारा निष्पादन के क्रम को ठीक करता है।उन वस्तुओं का कोई भी सेट, जिन पर सभी चार अंकगणितीय संचालन (शून्य द्वारा विभाजन को छोड़कर) का प्रदर्शन किया जा सकता है, और जहां ये चार ऑपरेशन सामान्य कानूनों (वितरण सहित) का पालन करते हैं, को एक क्षेत्र कहा जाता है। रेफ नाम = ऑक्सफोर्ड>{{cite book
|title=The Oxford Mathematics Study Dictionary
|title=The Oxford Mathematics Study Dictionary
|first1=Frank
|first1=Frank
Line 54: Line 54:
{{Main|Subtraction}}
{{Main|Subtraction}}
{{See also|Method of complements}}
{{See also|Method of complements}}
घटाव, प्रतीक द्वारा निरूपित <math>-</math>, इसके अलावा उलटा ऑपरेशन है।घटाव दो संख्याओं के बीच का अंतर पाता है, मिनूएंड माइनस द सबट्रहेंड: {{math|''D'' {{=}} ''M'' − ''S''.}} पहले से स्थापित जोड़ का सहारा लेते हुए, यह कहना है कि अंतर वह संख्या है, जब सबट्रहेंड में जोड़ा जाता है, तो माइनुएंड में परिणाम होता है: {{math|''D'' + ''S'' {{=}} ''M''.}}<रेफ नाम =: 1>{{cite encyclopedia |title=Arithmetic |url=https://www.britannica.com/science/arithmetic |encyclopedia=[[Encyclopedia Britannica]] |language=en |access-date=2020-08-25}}</ref>
घटाव, प्रतीक द्वारा निरूपित <math>-</math>, इसके अलावा उलटा ऑपरेशन है।घटाव दो संख्याओं के बीच का अंतर पाता है, मिनूएंड माइनस द सबट्रहेंड: {{math|''D'' {{=}} ''M'' − ''S''.}} पहले से स्थापित जोड़ का सहारा लेते हुए, यह कहना है कि अंतर वह संख्या है, जब सबट्रहेंड में जोड़ा जाता है, तो माइनुएंड में परिणाम होता है: {{math|''D'' + ''S'' {{=}} ''M''.}}<ref name=":1">{{cite encyclopedia |title=Arithmetic |url=https://www.britannica.com/science/arithmetic |encyclopedia=[[Encyclopedia Britannica]] |language=en |access-date=2020-08-25}}</ref>


सकारात्मक तर्कों के लिए {{mvar|M}} तथा {{mvar|S}} होल्ड्स:
सकारात्मक तर्कों के लिए {{mvar|M}} तथा {{mvar|S}} होल्ड्स:

Revision as of 11:07, 18 July 2022

बच्चों के लिए अंकगणितीय टेबल, लॉज़ेन, 1835

अंकगणित (from Ancient Greek ἀριθμός (arithmós) 'number', and τική [τέχνη] (tikḗ [tékhnē]) 'art, craft') गणित का एक प्राथमिक हिस्सा है जिसमें संख्याओं पर पारंपरिक संचालन के गुणों का अध्ययन होता है - ध्यान, घटाव, गुणन, विभाजन, घातक, और जड़ों की निष्कर्षण।19 वीं शताब्दी में, इतालवी गणितज्ञ Giuseppe पीनो ने अपने मीनो स्वयंसिद्धों के साथ अंकगणित को औपचारिक रूप दिया, जो आज गणितीय तर्क के क्षेत्र के लिए अत्यधिक महत्वपूर्ण हैं।

इतिहास

अंकगणित का प्रागितिहास कलाकृतियों की एक छोटी संख्या तक सीमित है, जो जोड़ और घटाव की अवधारणा को इंगित कर सकता है, मध्य अफ्रीका से ईशांगो हड्डी होने के नाते, 20,000 और 18,000 और एनबीएसपी के बीच कहीं से डेटिंग;विवादित।[1] जल्द से जल्द लिखित रिकॉर्ड से संकेत मिलता है कि मिस्रियों और बेबीलोनियों ने सभी प्राथमिक अंकगणितीय संचालन का उपयोग किया: इसके अलावा, घटाव, गुणा और विभाजन, 2000 & nbsp; bc के रूप में। ये कलाकृतियां हमेशा समस्याओं को हल करने के लिए उपयोग की जाने वाली विशिष्ट प्रक्रिया को प्रकट नहीं करती हैं, लेकिन विशेष अंक प्रणाली की विशेषताएं विधियों की जटिलता को दृढ़ता से प्रभावित करती हैं। मिस्र के अंकों के लिए हायरोग्लिफ़िक सिस्टम, बाद के रोमन अंकों की तरह, गिनती के लिए उपयोग किए जाने वाले टैली के निशान से उतरे। दोनों मामलों में, इस मूल के परिणामस्वरूप ऐसे मूल्य थे जो दशमलव आधार का उपयोग करते थे, लेकिन इसमें स्थितिगत संकेतन शामिल नहीं थे। रोमन अंकों के साथ जटिल गणनाओं को परिणाम प्राप्त करने के लिए एक काउंटिंग बोर्ड (या रोमन एबाकस) की सहायता की आवश्यकता थी।

प्रारंभिक संख्या प्रणालियाँ जिनमें स्थितिगत संकेतन शामिल थे, दशमलव नहीं थे; इनमें बेबीलोनियन अंकों के लिए Sexagesimal (Base & NBSP; 60) सिस्टम शामिल है, और माया अंकों को परिभाषित करने वाले विजेसिमल (आधार & nbsp; 20) प्रणाली शामिल है। स्थान-मूल्य अवधारणा के कारण, विभिन्न मूल्यों के लिए समान अंकों का पुन: उपयोग करने की क्षमता ने गणना के सरल और अधिक कुशल तरीकों में योगदान दिया।

आधुनिक अंकगणित का निरंतर ऐतिहासिक विकास प्राचीन ग्रीस के हेलेनिस्टिक काल के साथ शुरू होता है; यह बेबीलोन और मिस्र के उदाहरणों की तुलना में बहुत बाद में उत्पन्न हुआ। 300 & nbsp के आसपास यूक्लिड के कामों से पहले; बीसी, गणित में ग्रीक अध्ययन दार्शनिक और रहस्यमय विश्वासों के साथ ओवरलैप किया गया था। निकोमाचस इस दृष्टिकोण का एक उदाहरण है, जो कि अंकगणित के लिए अपने काम के परिचय में एक -दूसरे के लिए संख्याओं और उनके संबंधों के लिए पहले पाइथागोरियन दृष्टिकोण का उपयोग करता है।

ग्रीक अंकों का उपयोग आर्किमिडीज, डायोफेंटस और अन्य लोगों द्वारा एक स्थितिगत संकेतन में किया गया था जो आधुनिक संकेतन से बहुत अलग नहीं है। प्राचीन यूनानियों में हेलेनिस्टिक अवधि तक शून्य के लिए एक प्रतीक का अभाव था, और उन्होंने अंकों के रूप में प्रतीकों के तीन अलग -अलग सेटों का उपयोग किया: इकाइयों के लिए एक सेट, एक स्थान के लिए एक, और सैकड़ों के लिए एक। हजारों स्थानों के लिए, वे इकाइयों के स्थान के लिए प्रतीकों का पुन: उपयोग करेंगे, और इसी तरह। उनका जोड़ एल्गोरिथ्म आधुनिक पद्धति के समान था, और उनका गुणन एल्गोरिथ्म केवल थोड़ा अलग था। उनका लॉन्ग डिवीजन एल्गोरिथ्म एक ही था, और स्क्वायर रूट्स#डिजिट-बाय-अंकों की गणना की गणना करने के तरीके। अंक-दर-अंक वर्गमूल एल्गोरिथ्म, जो हाल ही में 20 वीं शताब्दी के रूप में उपयोग किया जाता है, को आर्किमिडीज के लिए जाना जाता था (जिन्होंने आविष्कार किया हो सकता है (जिन्होंने आविष्कार किया हो सकता है यह)। उन्होंने इसे हेरॉन की विधि के लिए पसंद किया। नायक की क्रमिक सन्निकटन की विधि, क्योंकि एक बार गणना की जाने के बाद, एक अंक नहीं बदलता है, और पूर्ण वर्गों की चौकोर जड़ें, जैसे कि 7485696, तुरंत 2736 के रूप में समाप्त हो जाती हैं। एक आंशिक भाग के साथ संख्याओं के लिए, जैसे कि 546.934 , उन्होंने आंशिक भाग 0.934 के लिए 10 की नकारात्मक शक्तियों के बजाय 60 की नकारात्मक शक्तियों का उपयोग किया।[2] प्राचीन चीनी ने शांग राजवंश से डेटिंग और तांग राजवंश के माध्यम से, बुनियादी संख्याओं से लेकर उन्नत बीजगणित तक की तारीखों को आगे बढ़ाया था।प्राचीन चीनी ने यूनानियों के समान एक स्थितीय संकेतन का उपयोग किया।चूंकि उनके पास शून्य के लिए एक प्रतीक का भी अभाव था, इसलिए उनके पास इकाइयों के स्थान के लिए प्रतीकों का एक सेट था, और दसवें स्थान के लिए दूसरा सेट था।सैकड़ों स्थानों के लिए, उन्होंने तब इकाइयों के लिए प्रतीकों का पुन: उपयोग किया, और इसी तरह।उनके प्रतीक प्राचीन गिनती की छड़ पर आधारित थे।सटीक समय जहां चीनी ने स्थितिगत प्रतिनिधित्व के साथ गणना शुरू की है, अज्ञात है, हालांकि यह ज्ञात है कि गोद लेना 400 & nbsp; bc से पहले शुरू हुआ था।[3] प्राचीन चीनी नकारात्मक संख्याओं की खोज, समझने और लागू करने वाले पहले व्यक्ति थे।यह गणितीय कला (जियुझांग सुंशु) पर नौ अध्यायों में समझाया गया है, जिसे लियू हुई द्वारा लिखा गया था, जो कि 2 वीं शताब्दी ईसा पूर्व में वापस आ गया था।

हिंदू-अरबिक अंक प्रणाली के क्रमिक विकास ने स्वतंत्र रूप से स्थान-मूल्य अवधारणा और स्थिति संकेतन को तैयार किया, जिसने दशमलव आधार के साथ गणना के लिए सरल तरीकों को संयोजित किया, और 0 (संख्या) का प्रतिनिधित्व करने वाले अंक का उपयोग। 0 |इसने सिस्टम को लगातार बड़े और छोटे पूर्णांक दोनों का प्रतिनिधित्व करने की अनुमति दी - एक दृष्टिकोण जो अंततः अन्य सभी प्रणालियों को बदल देता है।जल्दी में 6th century AD, भारतीय गणितज्ञ आर्यभत ने अपने काम में इस प्रणाली के एक मौजूदा संस्करण को शामिल किया, और विभिन्न नोटों के साथ प्रयोग किया।7 वीं & nbsp; सेंचुरी में, ब्रह्मगुप्त ने & nbsp; 0 के उपयोग को एक अलग संख्या के रूप में स्थापित किया, और शून्य से विभाजन के परिणाम को छोड़कर, शून्य और अन्य सभी संख्याओं के गुणन, विभाजन, जोड़ और घटाव के लिए परिणाम निर्धारित किए।उनके समकालीन, सीरियक बिशप सेवेरस सेबोखट (650 & nbsp; AD) ने कहा, भारतीयों के पास गणना का एक तरीका है कि कोई भी शब्द पर्याप्त प्रशंसा नहीं कर सकता है।गणित की उनकी तर्कसंगत प्रणाली, या गणना की उनकी विधि।मेरा मतलब है कि नौ प्रतीकों का उपयोग करने वाली प्रणाली।[4] अरबों ने भी इस नई विधि को सीखा और इसे हेसब कहा।

Leibniz का कदम रेकनर पहला कैलकुलेटर था जो सभी चार अंकगणित संचालन कर सकता था।

यद्यपि कोडेक्स विगिलनस ने 976 & nbsp; विज्ञापन, लियोनार्डो ऑफ पीसा (फाइबोनैचि) द्वारा अरबी अंकों (& nbsp; 0) के शुरुआती रूप में वर्णित किया था।भारतीयों की विधि (लैटिन मोडस इंडोरम) की गणना करने के लिए किसी भी ज्ञात विधि से आगे निकल जाती है।यह एक अद्भुत तरीका है।वे नौ आंकड़ों और प्रतीक शून्य का उपयोग करके अपनी गणना करते हैं।[5] मध्य युग में, अंकगणित विश्वविद्यालयों में सिखाई गई सात उदार कलाओं में से एक था।

मध्ययुगीन इस्लामिक दुनिया में बीजगणित का फलना, और पुनर्जागरण यूरोप में भी, दशमलव संकेतन के माध्यम से गणना के विशाल सरलीकरण का एक प्रकोप था।

संख्यात्मक गणना में सहायता के लिए विभिन्न प्रकार के उपकरणों का आविष्कार किया गया है और व्यापक रूप से उपयोग किया गया है।पुनर्जागरण से पहले, वे विभिन्न प्रकार के ABACI थे।अधिक हाल के उदाहरणों में स्लाइड नियम, नोमोग्राम और यांत्रिक कैलकुलेटर शामिल हैं, जैसे पास्कल के कैलकुलेटर।वर्तमान में, उन्हें इलेक्ट्रॉनिक कैलकुलेटर और कंप्यूटर द्वारा दबा दिया गया है।

अंकगणितीय संचालन

मूल अंकगणितीय संचालन अतिरिक्त, घटाव, गुणा और विभाजन हैं, हालांकि अंकगणित में अधिक उन्नत संचालन भी शामिल हैं, जैसे कि प्रतिशत का जोड़तोड़,[6] वर्ग जड़ें, घातांक, लघुगणक कार्यों, और यहां तक कि त्रिकोणमितीय कार्यों, एक ही नस में लॉगरिदम (प्रोस्थैफैरेसिस) के रूप में।संचालन के इच्छित अनुक्रम के अनुसार अंकगणितीय अभिव्यक्तियों का मूल्यांकन किया जाना चाहिए।इसे निर्दिष्ट करने के लिए कई तरीके हैं, या तो- सबसे आम, इन्फिक्स संकेतन के साथ -साथ - विशेष रूप से कोष्ठक का उपयोग करना और पूर्ववर्ती नियमों पर भरोसा करना, या एक उपसर्ग या पोस्टफिक्स अंकन का उपयोग करना, जो विशिष्ट रूप से स्वयं द्वारा निष्पादन के क्रम को ठीक करता है।उन वस्तुओं का कोई भी सेट, जिन पर सभी चार अंकगणितीय संचालन (शून्य द्वारा विभाजन को छोड़कर) का प्रदर्शन किया जा सकता है, और जहां ये चार ऑपरेशन सामान्य कानूनों (वितरण सहित) का पालन करते हैं, को एक क्षेत्र कहा जाता है। रेफ नाम = ऑक्सफोर्ड>Tapson, Frank (1996). The Oxford Mathematics Study Dictionary. Oxford University Press. ISBN 0-19-914551-2.</ref>

इसके अलावा

जोड़, प्रतीक द्वारा निरूपित , अंकगणित का सबसे बुनियादी संचालन है।अपने सरल रूप में, जोड़ दो संख्याओं को जोड़ता है, जोड़ता है या शर्तें, एकल संख्या में, संख्याओं का योग (जैसे) 2 + 2 = 4 या 3 + 5 = 8)।

बारीक रूप से कई संख्याओं को जोड़ने से बार -बार सरल जोड़ के रूप में देखा जा सकता है;इस प्रक्रिया को योग के रूप में जाना जाता है, एक शब्द का उपयोग एक अनंत श्रृंखला में असीम रूप से कई संख्याओं को जोड़ने के लिए परिभाषा को निरूपित करने के लिए किया जाता है।संख्या & nbsp; 1 का दोहराया जोड़ गिनती का सबसे बुनियादी रूप है;जोड़ने का परिणाम 1 आमतौर पर मूल संख्या का उत्तराधिकारी कहा जाता है।

जोड़ कम्यूटेटिव और सहयोगी है, इसलिए जिस क्रम में कई शर्तें जोड़ी जाती हैं, वह कोई फर्क नहीं पड़ता।

0 (नंबर) | नंबर 0संपत्ति है कि, जब किसी भी संख्या में जोड़ा जाता है, तो यह उसी संख्या को प्राप्त करता है;तो, यह इसके अलावा की पहचान तत्व है, या योजक पहचान है।

हर संख्या के लिए x, एक संख्या को निरूपित किया गया है xके विपरीत कहा जाता है x, ऐसा है कि x + (–x) = 0 तथा (–x) + x = 0।तो, इसके विपरीत x का उलटा है x जोड़ के संबंध में, या के योज्य उलटा x।उदाहरण के लिए, इसके विपरीत 7 है −7, जबसे 7 + (−7) = 0

जोड़ को भी ज्यामितीय रूप से व्याख्या की जा सकती है, जैसा कि निम्नलिखित उदाहरण में है। यदि हमारे पास लंबाई 2 और 5 की दो छड़ें हैं, तो, यदि छड़ें एक के बाद एक के बाद संरेखित की जाती हैं, तो संयुक्त छड़ी की लंबाई 7 हो जाती है, चूंकि 2 + 5 = 7

घटाव

Lua error: not enough memory. घटाव, प्रतीक द्वारा निरूपित , इसके अलावा उलटा ऑपरेशन है।घटाव दो संख्याओं के बीच का अंतर पाता है, मिनूएंड माइनस द सबट्रहेंड: D = MS.Lua error: not enough memory. पहले से स्थापित जोड़ का सहारा लेते हुए, यह कहना है कि अंतर वह संख्या है, जब सबट्रहेंड में जोड़ा जाता है, तो माइनुएंड में परिणाम होता है: D + S = M.Lua error: Internal error: The interpreter exited with status 1.[7]

सकारात्मक तर्कों के लिए M तथा S होल्ड्स:

यदि मिनुएंड सबट्रहेंड से बड़ा है, तो अंतर D सकारात्मक है।
यदि मिनुएंड सबट्रहेंड से छोटा है, तो अंतर D नकारात्मक है।

किसी भी मामले में, यदि Minuend और Subtrahend समान हैं, तो अंतर D = 0.Lua error: Internal error: The interpreter exited with status 1. घटाव न तो कम्यूटेटिव है और न ही साहचर्य।इस कारण से, आधुनिक बीजगणित में इस उलटा संचालन के निर्माण को अक्सर उलटा तत्वों की अवधारणा को पेश करने के पक्ष में छोड़ दिया जाता है (जैसा कि स्केच के तहत स्केच किया गया है Lua error: Internal error: The interpreter exited with status 1.), जहां घटाव को उपकेंड के योजक व्युत्क्रम को जोड़ने के रूप में माना जाता है, यानी, अर्थात्, ab = a + (−b)Lua error: Internal error: The interpreter exited with status 1.। घटाव के द्विआधारी संचालन को छोड़ने की तत्काल कीमत (तुच्छ) अनैरी ऑपरेशन की शुरूआत है, जो किसी भी संख्या के लिए एडिटिव व्युत्क्रम को वितरित करता है, और अंतर की धारणा के लिए तत्काल पहुंच को खो देता है, जो कि नकारात्मक तर्क शामिल होने पर संभावित रूप से भ्रामक है ।

संख्याओं के किसी भी प्रतिनिधित्व के लिए, परिणामों की गणना करने के तरीके हैं, जिनमें से कुछ विशेष रूप से शोषण प्रक्रियाओं में फायदेमंद हैं, एक ऑपरेशन के लिए मौजूद हैं, दूसरों के लिए भी छोटे परिवर्तन द्वारा। उदाहरण के लिए, डिजिटल कंप्यूटर मौजूदा जोड़ने-सर्किट्री का पुन: उपयोग कर सकते हैं और एक घटाव को लागू करने के लिए अतिरिक्त सर्किटों को सहेज सकते हैं, एडिटिव इनवर्स का प्रतिनिधित्व करने के लिए दो के पूरक की विधि को नियोजित करके, जो हार्डवेयर (नकारात्मक) में लागू करना बेहद आसान है। ट्रेड-ऑफ एक निश्चित शब्द लंबाई के लिए संख्या सीमा का आधा हिस्सा है।

एक पूर्व में व्यापक परिवर्तन एक सही परिवर्तन राशि प्राप्त करने के लिए, देय और दी गई राशियों को जानने के लिए, गिनती अप विधि है, जो स्पष्ट रूप से अंतर के मूल्य को उत्पन्न नहीं करती है। मान लीजिए कि एक राशि p को आवश्यक राशि q का भुगतान करने के लिए दिया जाता है, p के साथ Q से अधिक है। स्पष्ट रूप से घटाव P - Q = C को स्पष्ट रूप से करने के बजाय और उस राशि को गिनने में C में परिवर्तन होता है, धन की गिनती की जाती है। क्यू, और मुद्रा के चरणों में जारी है, जब तक कि पी तक नहीं पहुंच जाता है। यद्यपि गिनती की गई राशि को घटाव p - q के परिणाम के बराबर होना चाहिए, घटाव वास्तव में कभी नहीं किया गया था और p - q का मूल्य इस विधि द्वारा आपूर्ति नहीं किया जाता है।

गुणन

Lua error: Internal error: The interpreter exited with status 1. गुणा, प्रतीकों द्वारा निरूपित या , अंकगणित का दूसरा मूल संचालन है।गुणन भी दो संख्याओं को एकल संख्या, उत्पाद में जोड़ता है।दो मूल संख्याओं को गुणक और मल्टीप्लिकैंड कहा जाता है, ज्यादातर दोनों को केवल कारक कहा जाता है।

गुणन को स्केलिंग ऑपरेशन के रूप में देखा जा सकता है।यदि संख्याओं को एक पंक्ति में झूठ बोलने के रूप में कल्पना की जाती है, तो & nbsp से अधिक संख्या से गुणा;था।इसी तरह, & nbsp; 1 से कम संख्या से गुणा करने की कल्पना की जा सकती है और & nbsp; 0 की ओर निचोड़ने के रूप में कल्पना की जा सकती है, इस तरह से कि & nbsp; 1 गुणक में जाता है।

पूर्णांक संख्याओं के गुणन पर एक और दृश्य (तर्कसंगत के लिए विस्तार योग्य लेकिन वास्तविक संख्याओं के लिए बहुत सुलभ नहीं) इसे बार -बार जोड़ के रूप में विचार करके है।उदाहरण के लिए। 3 × 4Lua error: Internal error: The interpreter exited with status 1. या तो जोड़ने के लिए मेल खाता है 3Lua error: Internal error: The interpreter exited with status 1. कई बार 4Lua error: Internal error: The interpreter exited with status 1., या 4Lua error: Internal error: The interpreter exited with status 1. कई बार 3Lua error: Internal error: The interpreter exited with status 1., एक ही परिणाम दे रहा है।गणित शिक्षा में इन प्रतिमानों की लाभप्रदता पर अलग -अलग राय हैं।

गुणन कम्यूटेटिव और सहयोगी है;इसके अलावा, यह जोड़ और घटाव पर वितरण है।गुणात्मक पहचान & nbsp; 1 है, क्योंकि किसी भी संख्या को & nbsp द्वारा गुणा करने के बाद से 1 समान संख्या में पैदावार होती है।किसी भी संख्या के लिए गुणात्मक उलटा & nbsp को छोड़कर;0Lua error: Internal error: The interpreter exited with status 1. इस संख्या का पारस्परिक है, क्योंकि किसी भी संख्या के पारस्परिक को गुणा करने से संख्या में गुणक पहचान होती है 1Lua error: Internal error: The interpreter exited with status 1.. 0Lua error: Internal error: The interpreter exited with status 1.& nbsp; एक गुणात्मक उलटा के बिना एकमात्र संख्या है, और किसी भी संख्या को गुणा करने का परिणाम है और 0Lua error: Internal error: The interpreter exited with status 1. फिर से है 0.Lua error: Internal error: The interpreter exited with status 1. एक कहता है कि 0Lua error: Internal error: The interpreter exited with status 1. संख्याओं के गुणक समूह में निहित नहीं है।

ए और बी के उत्पाद के रूप में लिखा गया है a × bLua error: Internal error: The interpreter exited with status 1. या a·bLua error: Internal error: The interpreter exited with status 1.।जब ए या बी अभिव्यक्तियों को केवल अंकों के साथ नहीं लिखा जाता है, तो यह सरल juxtaposition द्वारा भी लिखा जाता है: & nbsp; ab।कंप्यूटर प्रोग्रामिंग भाषाओं और सॉफ्टवेयर पैकेजों में (जिसमें कोई केवल एक कीबोर्ड पर पाए जाने वाले वर्णों का उपयोग कर सकता है), यह अक्सर एक तारांकन के साथ लिखा जाता है: & nbsp;a * b

संख्याओं के विभिन्न अभ्यावेदन के लिए गुणन के संचालन को लागू करने वाले एल्गोरिदम इसके अलावा उन लोगों की तुलना में कहीं अधिक महंगा और श्रमसाध्य हैं।मैनुअल कम्प्यूटेशन के लिए सुलभ लोग या तो एकल स्थान मूल्यों के लिए कारकों को तोड़ने और दोहराया जोड़ को लागू करने, या तालिकाओं या स्लाइड नियमों को नियोजित करने पर निर्भर करते हैं, जिससे इसके अलावा और इसके विपरीत गुणन की मैपिंग होती है।ये विधियाँ पुरानी हैं और धीरे -धीरे मोबाइल उपकरणों द्वारा प्रतिस्थापित की जाती हैं।कंप्यूटर अपने सिस्टम में समर्थित विभिन्न संख्या स्वरूपों के लिए गुणा और विभाजन को लागू करने के लिए विविध परिष्कृत और उच्च अनुकूलित एल्गोरिदम का उपयोग करते हैं।

डिवीजन

Lua error: Internal error: The interpreter exited with status 1. विभाजन, प्रतीकों द्वारा निरूपित या , अनिवार्य रूप से गुणा करने के लिए उलटा ऑपरेशन है।डिवीजन दो नंबरों के भागफल को पाता है, विभाजित द्वारा विभाजित लाभांश।सामान्य नियमों के तहत, शून्य से विभाजित लाभांश अपरिभाषित है।अलग -अलग सकारात्मक संख्याओं के लिए, यदि लाभांश विभाजक से बड़ा है, तो भागफल & nbsp से अधिक है;भाजक द्वारा गुणा किया गया भागफल हमेशा लाभांश की उपज देता है।

डिवीजन न तो कम्यूटेटिव है और न ही साहचर्य।तो जैसा कि में समझाया गया है Lua error: Internal error: The interpreter exited with status 1., आधुनिक बीजगणित में विभाजन के निर्माण को गुणन के संबंध में उलटा तत्वों के निर्माण के पक्ष में छोड़ दिया गया है, जैसा कि शुरू किया गया है Lua error: Internal error: The interpreter exited with status 1.।इसलिए विभाजन कारकों के रूप में विभाजक के पारस्परिक के साथ लाभांश का गुणन है, अर्थात्, a ÷ b = a × Lua error: Internal error: The interpreter exited with status 1..Lua error: Internal error: The interpreter exited with status 1. प्राकृतिक संख्याओं के भीतर, एक अलग लेकिन संबंधित धारणा भी है जिसे यूक्लिडियन डिवीजन कहा जाता है, जो एक प्राकृतिक को विभाजित करने के बाद दो संख्याओं का उत्पादन करता है N (अंश) एक प्राकृतिक द्वारा D (हर): पहले एक प्राकृतिक Q (भागफल), और दूसरा एक प्राकृतिक R (शेष) ऐसा N = D×Q + RLua error: Internal error: The interpreter exited with status 1. तथा 0 ≤ R < Q.Lua error: Internal error: The interpreter exited with status 1. कंप्यूटर प्रोग्रामिंग और उन्नत अंकगणित सहित कुछ संदर्भों में, विभाजन को शेष के लिए एक और आउटपुट के साथ बढ़ाया जाता है।यह अक्सर एक अलग ऑपरेशन के रूप में माना जाता है, मोडुलो ऑपरेशन, प्रतीक द्वारा निरूपित किया जाता है या शब्द , हालांकि कभी -कभी एक डिवमॉड ऑपरेशन के लिए एक दूसरा आउटपुट।[8] या तो मामले में, मॉड्यूलर अंकगणित में विभिन्न प्रकार के उपयोग के मामले हैं।विभाजन के विभिन्न कार्यान्वयन (फ़्लोर्ड, ट्रंक्टेड, यूक्लिडियन, आदि) मापांक के विभिन्न कार्यान्वयन के साथ मेल खाते हैं।

अंकगणित का मौलिक प्रमेय

Lua error: Internal error: The interpreter exited with status 1. अंकगणित के मौलिक प्रमेय में कहा गया है कि 1 से अधिक पूर्णांक में एक अद्वितीय प्रमुख कारक (प्राइम कारकों के उत्पाद के रूप में एक संख्या का प्रतिनिधित्व), कारकों के क्रम को छोड़कर।उदाहरण के लिए, 252 में केवल एक प्रमुख कारक है:

252 = 22 × 32 × 71

Euclid के तत्वों | Euclid के तत्वों ने पहले इस प्रमेय को पेश किया, और एक आंशिक प्रमाण दिया (जिसे यूक्लिड का लेम्मा कहा जाता है)।अंकगणित का मौलिक प्रमेय पहले कार्ल फ्रेडरिक गॉस द्वारा सिद्ध किया गया था।

अंकगणित का मौलिक प्रमेय एक कारण है कि 1 को एक प्रमुख संख्या क्यों नहीं माना जाता है।अन्य कारणों में एराटोस्टेनेस की छलनी शामिल है, और एक प्रमुख संख्या की परिभाषा स्वयं (1 से अधिक एक प्राकृतिक संख्या है जो दो छोटी प्राकृतिक संख्याओं को गुणा करके नहीं बनाई जा सकती है।)।

दशमलव अंकगणित

Decimal representation विशेष रूप से, सामान्य उपयोग में, लिखित अंक प्रणाली के लिए, अरबी अंकों को एक रेडिक्स 10 & nbsp के अंकों के रूप में नियोजित करने के लिए; (दशमलव) स्थितिगत संकेतन;हालांकि, & nbsp; 10, जैसे, ग्रीक, सिरिलिक, रोमन, या चीनी अंकों की शक्तियों पर आधारित कोई भी अंक प्रणाली वैचारिक रूप से दशमलव संकेतन या दशमलव प्रतिनिधित्व के रूप में वर्णित हो सकती है।

चार मौलिक संचालन (इसके अलावा, घटाव, गुणा और विभाजन) के लिए आधुनिक तरीके पहले भारत के ब्रह्मगुप्त द्वारा तैयार किए गए थे।यह मध्ययुगीन यूरोप के दौरान मोडस इंडोरम या भारतीयों की विधि के रूप में जाना जाता था।पोजिशनल नोटेशन (जिसे प्लेस-वैल्यू नोटेशन के रूप में भी जाना जाता है) को परिमाण के विभिन्न आदेशों के लिए एक ही प्रतीक का उपयोग करके संख्याओं के प्रतिनिधित्व या एन्कोडिंग को संदर्भित करता है (जैसे, लोगों की जगह, दसियों स्थान, सैकड़ों स्थान) और, एक रेडिक्स बिंदु के साथ, का उपयोग करके,अंशों का प्रतिनिधित्व करने के लिए उन्हीं प्रतीकों (जैसे, दसवें स्थान, सौवें स्थान)।उदाहरण के लिए, 507.36 5 & nbsp; सैकड़ों (10 (10) को दर्शाता है2 ), प्लस 0 & nbsp; tens (10 (101 ), प्लस 7 & nbsp; इकाइयाँ (10 (10)0 ), प्लस 3 & nbsp; दसवें (10 (10)−1 ) प्लस 6 & nbsp; सौवें (10 (10)−2 )।

अन्य बुनियादी अंकों की तुलना में एक संख्या के रूप में 0 की अवधारणा इस संकेतन के लिए आवश्यक है, जैसा कि & nbsp की अवधारणा है; एक प्लेसहोल्डर के रूप में 0 का उपयोग, और जैसा कि गुणा की परिभाषा है और & nbsp; 0 के साथ जोड़;एक प्लेसहोल्डर के रूप में & nbsp; 0 का उपयोग और इसलिए, एक स्थितिगत संकेतन का उपयोग सबसे पहले भारत से जैन पाठ में माना जाता है, जिसका शीर्षक है कि लोकाविभगा, दिनांक 458 & nbsp; विज्ञापन और यह केवल 13 वीं & nbsp; सदी में था कि ये अवधारणाएं, इन अवधारणाओं में थी,अरबी दुनिया की छात्रवृत्ति के माध्यम से प्रेषित, फाइबोनैसि द्वारा यूरोप में पेश किया गया था[9] हिंदू -अरबी अंक प्रणाली का उपयोग करना।

इस प्रकार के लिखित अंक का उपयोग करके अंकगणित संगणना करने के लिए अल्गोरिंग में सभी नियम शामिल हैं। उदाहरण के लिए, इसके अलावा दो मनमानी संख्याओं का योग पैदा करता है। परिणाम की गणना प्रत्येक संख्या से एकल अंकों के बार -बार जोड़ द्वारा की जाती है जो एक ही स्थिति पर कब्जा कर लेती है, दाएं से बाएं तक आगे बढ़ती है। दस पंक्तियों और दस कॉलम के साथ एक जोड़ तालिका प्रत्येक राशि के लिए सभी संभावित मान प्रदर्शित करती है। यदि कोई व्यक्तिगत योग मूल्य & nbsp; 9 से अधिक है, तो परिणाम दो अंकों के साथ दर्शाया गया है। सबसे सही अंक वर्तमान स्थिति के लिए मूल्य है, और अंक के बाद के अतिरिक्त जोड़ के लिए परिणाम दूसरे (बाईं ओर) अंक के मूल्य से बढ़ जाता है, जो हमेशा एक होता है (यदि शून्य नहीं है)। इस समायोजन को मान & nbsp; 1 का एक कैरी कहा जाता है।

दो मनमानी संख्याओं को गुणा करने की प्रक्रिया इसके अलावा प्रक्रिया के समान है। दस पंक्तियों और दस स्तंभों के साथ एक गुणन तालिका अंकों के प्रत्येक जोड़े के लिए परिणामों को सूचीबद्ध करती है। यदि अंकों की एक जोड़ी का एक व्यक्तिगत उत्पाद & nbsp; 9 से अधिक हो जाता है, तो कैरी समायोजन किसी भी बाद के गुणा के परिणाम को अंकों से दूसरे (बाएं) अंक के बराबर मान द्वारा बाईं ओर बढ़ाता है, जो कि कोई भी मूल्य है 1 to 8 (9 × 9 = 81Lua error: Internal error: The interpreter exited with status 1.)।अतिरिक्त चरण अंतिम परिणाम को परिभाषित करते हैं।

घटाव और विभाजन के लिए इसी तरह की तकनीकें मौजूद हैं।

गुणा के लिए एक सही प्रक्रिया का निर्माण आसन्न अंकों के मूल्यों के बीच संबंध पर निर्भर करता है।एक अंक में किसी भी एकल अंक का मूल्य इसकी स्थिति पर निर्भर करता है।इसके अलावा, बाईं ओर की प्रत्येक स्थिति दाईं ओर की स्थिति से दस गुना अधिक मूल्य का प्रतिनिधित्व करती है।गणितीय शब्दों में, & nbsp के रेडिक्स (आधार) के लिए घातांक; 10 & nbsp; 1 (बाईं ओर) द्वारा बढ़ता है या & nbsp; 1 (दाईं ओर) द्वारा घट जाता है।इसलिए, किसी भी मनमाना अंक के लिए मान को फॉर्म & nbsp; 10 के मान से गुणा किया जाता है;n पूर्णांक & nbsp; in के साथ।एकल अंक के लिए सभी संभावित पदों के अनुरूप मूल्यों की सूची लिखी गई है as {..., 102, 10, 1, 10−1, 10−2, ...}. इस सूची में किसी भी मूल्य का दोहराया गुणा & nbsp; 10 सूची में एक और मूल्य का उत्पादन करता है।गणितीय शब्दावली में, इस विशेषता को बंद होने के रूप में परिभाषित किया गया है, और पिछली सूची के रूप में वर्णित है closed under multiplication।यह पिछली तकनीक का उपयोग करके गुणन के परिणामों को सही ढंग से खोजने का आधार है।यह परिणाम संख्या सिद्धांत के उपयोग का एक उदाहरण है।

यौगिक इकाई अंकगणितLua error: Internal error: The interpreter exited with status 1.

मिश्रण[10] यूनिट अंकगणित मिश्रित मूल मात्रा में पैर और इंच जैसे अंकगणितीय संचालन का अनुप्रयोग है;गैलन और पिंट्स;पाउंड, शिलिंग और पेंस;और इसी तरह।धन और माप की इकाइयों की दशमलव-आधारित प्रणालियों से पहले, कंपाउंड यूनिट अंकगणित का व्यापक रूप से वाणिज्य और उद्योग में उपयोग किया गया था।

मूल अंकगणितीय संचालन

कंपाउंड यूनिट अंकगणित में उपयोग की जाने वाली तकनीकों को कई शताब्दियों में विकसित किया गया था और कई अलग -अलग भाषाओं में कई पाठ्यपुस्तकों में अच्छी तरह से प्रलेखित हैं।[11][12][13][14] दशमलव अंकगणित में सामना किए गए बुनियादी अंकगणित कार्यों के अलावा, यौगिक इकाई अंकगणित तीन और कार्यों को नियोजित करती है:

  • Reduction, जिसमें एक यौगिक मात्रा एक ही मात्रा में कम हो जाती है - उदाहरण के लिए, गज, पैरों और इंच में व्यक्त की गई दूरी का रूपांतरण इंच में व्यक्त किया जाता है।[15]
  • Expansion, कटौती के लिए उलटा फ़ंक्शन, एक मात्रा का रूपांतरण है जो एक यौगिक इकाई के लिए माप की एकल इकाई के रूप में व्यक्त किया जाता है, जैसे कि 24 & nbsp; oz to का विस्तार करना 1 lb 8 oz
  • Normalization एक मानक रूप में यौगिक इकाइयों के एक सेट का रूपांतरण है - उदाहरण के लिए, पुनर्लेखन1 ft 13 inजैसा2 ft 1 in

माप की विभिन्न इकाइयों के बीच संबंधों का ज्ञान, उनके गुणकों और उनके उपदेशात्मक यौगिक इकाई अंकगणित का एक अनिवार्य हिस्सा बनता है।

यौगिक इकाई के सिद्धांत अंकगणित

यौगिक इकाई अंकगणित के लिए दो बुनियादी दृष्टिकोण हैं:

  • Reduction–expansion method जहां सभी यौगिक इकाई चर एकल इकाई चर में कम हो जाते हैं, गणना की जाती है और परिणाम का विस्तार यौगिक इकाइयों में वापस किया जाता है।यह दृष्टिकोण स्वचालित गणना के लिए अनुकूल है।एक विशिष्ट उदाहरण Microsoft Excel द्वारा समय की हैंडलिंग है जहां सभी समय अंतराल को आंतरिक रूप से दिन के दिनों और दशमलव अंशों के रूप में संसाधित किया जाता है।
  • On-going normalization method जिसमें प्रत्येक इकाई का अलग -अलग इलाज किया जाता है और समाधान विकसित होने के साथ ही समस्या को लगातार सामान्य किया जाता है।यह दृष्टिकोण, जो व्यापक रूप से शास्त्रीय ग्रंथों में वर्णित है, मैनुअल गणना के लिए सबसे उपयुक्त है।चल रहे सामान्यीकरण विधि का एक उदाहरण जैसा कि जोड़ के लिए लागू किया गया है, नीचे दिखाया गया है।
अँगूठा

इसके अतिरिक्त ऑपरेशन को दाएं से बाएं तक किया जाता है;इस मामले में, पेंस को पहले संसाधित किया जाता है, फिर शिलिंग के बाद पाउंड।उत्तर लाइन के नीचे की संख्या मध्यवर्ती परिणाम हैं।

पेंस कॉलम में कुल 25 है। चूंकि एक शिलिंग में 12 पेनी हैं, 25 को & nbsp; 12 से विभाजित किया गया है & nbsp; 2 के साथ & nbsp; 1 के शेष के साथ।मूल्य & nbsp;1 फिर उत्तर पंक्ति और मूल्य & nbsp के लिए लिखा जाता है;2 शिलिंग कॉलम के लिए आगे ले जाया गया।यह ऑपरेशन शिलिंग कॉलम में मानों का उपयोग करके दोहराया जाता है, जिसमें पेनीज़ कॉलम से आगे किए गए मान को जोड़ने के अतिरिक्त चरण के साथ।मध्यवर्ती कुल & nbsp; 20 से विभाजित है क्योंकि वहाँ एक पाउंड में 20 & nbsp; शिलिंग हैं।पाउंड कॉलम को तब संसाधित किया जाता है, लेकिन चूंकि पाउंड सबसे बड़ी इकाई हैं जिन्हें माना जा रहा है, कोई भी मान पाउंड कॉलम से आगे नहीं ले जाया जाता है।

सादगी के लिए, चुने गए उदाहरण में फ़र्थिंग नहीं थी।

व्यवहार में संचालन

एक संबंधित लागत प्रदर्शन के साथ शाही इकाइयों में कैलिब्रेट किया गया।

19 वीं और 20 वीं शताब्दी के दौरान विभिन्न एड्स को यौगिक इकाइयों के हेरफेर में सहायता के लिए विकसित किया गया था, विशेष रूप से वाणिज्यिक अनुप्रयोगों में।सबसे आम एड्स मैकेनिकल टिल्स थे, जिन्हें पाउंड, शिलिंग, पेनीज़ और फ़ार्थिंग और रेडी रेकनर्स को समायोजित करने के लिए यूनाइटेड किंगडम जैसे देशों में अनुकूलित किया गया था, जो व्यापारियों के उद्देश्य से किताबें हैं जो विभिन्न नियमित गणनाओं के परिणामों को सूचीबद्ध करती हैं जैसे कि प्रतिशत या प्रतिशत याविभिन्न रकम के गुणकों के गुणकों।एक विशिष्ट पुस्तिका[16] यह 150 & nbsp; पृष्ठों में एक से एक से दस हजार तक एक से एक पाउंड तक विभिन्न मूल्यों पर एक से दस हजार तक गुणा करता है।

कंपाउंड यूनिट अंकगणित की बोझिल प्रकृति को कई वर्षों से मान्यता दी गई है - 1586 में, फ्लेमिश गणितज्ञ साइमन स्टीविन ने एक छोटा पैम्फलेट प्रकाशित किया जिसे डी थिएन (दसवां) कहा जाता है[17] जिसमें उन्होंने दशमलव सिक्के, उपायों और वज़न के सार्वभौमिक परिचय को केवल समय का प्रश्न घोषित किया।आधुनिक युग में, कई रूपांतरण कार्यक्रम, जैसे कि Microsoft Windows & nbsp; 7 ऑपरेटिंग सिस्टम कैलकुलेटर में शामिल, एक विस्तारित प्रारूप का उपयोग करने के बजाय एक कम दशमलव प्रारूप में यौगिक इकाइयाँ प्रदर्शित करें (जैसे 2.5 & nbsp; ft को प्रदर्शित किया जाता है। "2 ft 6 in")।

संख्या सिद्धांत

Lua error: Internal error: The interpreter exited with status 1. 19 वीं शताब्दी तक, संख्या सिद्धांत अंकगणित का एक पर्याय था।संबोधित समस्याएं सीधे बुनियादी संचालन और चिंतित मूल्यों, विभाजन और पूर्णांक में समीकरणों के समाधान से संबंधित थीं, जैसे कि फर्मेट के अंतिम प्रमेय।ऐसा प्रतीत हुआ कि इनमें से अधिकांश समस्याएं, हालांकि राज्य के लिए बहुत प्राथमिक हैं, बहुत मुश्किल हैं और बहुत गहरे गणित के बिना हल नहीं किए जा सकते हैं, जिसमें गणित की कई अन्य शाखाओं से अवधारणाओं और विधियों को शामिल किया गया है।इसने संख्या सिद्धांत की नई शाखाओं जैसे कि विश्लेषणात्मक संख्या सिद्धांत, बीजगणितीय संख्या सिद्धांत, डायोफेंटाइन ज्यामिति और अंकगणितीय बीजगणितीय ज्यामिति का नेतृत्व किया।फर्मेट के अंतिम प्रमेय का विल्स का प्रमाण परिष्कृत तरीकों की आवश्यकता का एक विशिष्ट उदाहरण है, जो कि अंकगणित के शास्त्रीय तरीकों से परे हैं, जो कि प्राथमिक अंकगणित में बताई गई समस्याओं को हल करने के लिए हैं।

शिक्षा में अंकगणित

गणित में प्राथमिक शिक्षा अक्सर प्राकृतिक संख्याओं, पूर्णांक, अंशों और दशमलव (दशमलव स्थान-मूल्य प्रणाली का उपयोग करके) के अंकगणितीय के लिए एल्गोरिदम पर एक मजबूत ध्यान केंद्रित करती है।इस अध्ययन को कभी -कभी अल्गोरिज्म के रूप में जाना जाता है।

इन एल्गोरिदम की कठिनाई और अनमोटेड उपस्थिति ने लंबे समय से इस पाठ्यक्रम पर सवाल उठाने के लिए नेतृत्व किया है, जो अधिक केंद्रीय और सहज ज्ञान युक्त गणितीय विचारों के शुरुआती शिक्षण की वकालत करता है।इस दिशा में एक उल्लेखनीय आंदोलन 1960 और 1970 के दशक का नया गणित था, जिसने सेट थ्योरी से स्वयंसिद्ध विकास की भावना में अंकगणित सिखाने का प्रयास किया, जो उच्च गणित में प्रचलित प्रवृत्ति की एक गूंज है।[18] इसके अलावा, अंकगणित का उपयोग इस्लामी विद्वानों द्वारा ज़कात और इरथ से संबंधित शासनों के आवेदन को पढ़ाने के लिए किया गया था।यह अब्द-अल-फतह-अल-डुमयती द्वारा द बेस्ट ऑफ अंकगणित नामक एक पुस्तक में किया गया था।[19] पुस्तक गणित की नींव के साथ शुरू होती है और बाद के अध्यायों में इसके आवेदन के लिए आगे बढ़ती है।

यह भी देखें

Lua error: Internal error: The interpreter exited with status 1.

  • गणित के विषयों की सूची
  • अंकगणित की रूपरेखा
  • स्लाइड नियम

संबंधित विषय

Lua error: Internal error: The interpreter exited with status 1.
  • प्राकृतिक संख्याओं के अलावा
  • योगज प्रतिलोम
  • अंकगणितीय कोडिंग
  • अंकगणित औसत
  • अंकगणित संख्या
  • अंकगणितीय प्रगति
  • अंकगणितीय गुण
  • संबद्धता
  • कम्यूटेटिविटी
  • वितरण
  • प्राथमिक अंकगणित
  • परिमित क्षेत्र अंकगणित
  • ज्यामितीय अनुक्रम
  • पूर्णांक
  • गणित में महत्वपूर्ण प्रकाशनों की सूची
  • चंद्र अंकगणित
  • मानसिक गणना
  • संख्या रेखा
  • संयंत्र अंकगणित


टिप्पणियाँ

  1. Lua error: Internal error: The interpreter exited with status 1.
  2. The Works of Archimedes, Chapter IV, Arithmetic in Archimedes, edited by T.L. Heath, Dover Publications Inc, New York, 2002.
  3. Joseph Needham, Science and Civilization in China, Vol. 3, p. 9, Cambridge University Press, 1959.
  4. Reference: Revue de l'Orient Chretien by François Nau pp. 327–338. (1929)
  5. Reference: Sigler, L., "Fibonacci's Liber Abaci", Springer, 2003.
  6. Lua error: Internal error: The interpreter exited with status 1.
  7. Lua error: Internal error: The interpreter exited with status 1.
  8. Lua error: Internal error: The interpreter exited with status 1.
  9. Leonardo Pisano – p. 3: "Contributions to number theory" Lua error: Internal error: The interpreter exited with status 1.. Encyclopædia Britannica Online, 2006. Retrieved 18 September 2006.
  10. Lua error: Internal error: The interpreter exited with status 1.
  11. Lua error: Internal error: The interpreter exited with status 1.
  12. Lua error: Internal error: The interpreter exited with status 1.
  13. Lua error: Internal error: The interpreter exited with status 1.
  14. Lua error: Internal error: The interpreter exited with status 1.
  15. Lua error: Internal error: The interpreter exited with status 1.
  16. Lua error: Internal error: The interpreter exited with status 1.
  17. Lua error: Internal error: The interpreter exited with status 1.
  18. Mathematically Correct: Glossary of Terms
  19. Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.


संदर्भ


बाहरी संबंध

Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1.

{{Navbox

| name =गणित के क्षेत्र

|state = collapsed

| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* 'Lua error: Internal error: The interpreter exited with status 1. '

  • Lua error: Internal error: The interpreter exited with status 1. ' श्रेणी' '
  • Lua error: Internal error: The interpreter exited with status 1. ' कॉमन्स'
  • Lua error: Internal error: The interpreter exited with status 1. [[gikewikipedia: wikiproject matics | wikiproject]

}}

Lua error: Internal error: The interpreter exited with status 1.