पूर्णांकीय प्रभावक्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 138: Line 138:
*{{cite web |url=https://math.stackexchange.com/q/45945 |title=where does the term "integral domain" come from? }}
*{{cite web |url=https://math.stackexchange.com/q/45945 |title=where does the term "integral domain" come from? }}


{{DEFAULTSORT:Integral Domain}}[[Category: क्रमविनिमेय बीजगणित]]
{{DEFAULTSORT:Integral Domain}}
[[Category: वलय सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Integral Domain]]
[[Category: Machine Translated Page]]
[[Category:Articles with short description|Integral Domain]]
[[Category:Created On 24/11/2022]]
[[Category:CS1 errors]]
[[Category:Vigyan Ready]]
[[Category:CS1 français-language sources (fr)|Integral Domain]]
[[Category:CS1 maint|Integral Domain]]
[[Category:CS1 Ελληνικά-language sources (el)|Integral Domain]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates|Integral Domain]]
[[Category:Created On 24/11/2022|Integral Domain]]
[[Category:Machine Translated Page|Integral Domain]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Integral Domain]]
[[Category:Pages with script errors|Integral Domain]]
[[Category:Short description with empty Wikidata description|Integral Domain]]
[[Category:Sidebars with styles needing conversion|Integral Domain]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module|Integral Domain]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats|Integral Domain]]
[[Category:Templates that are not mobile friendly|Integral Domain]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Integral Domain]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates|Integral Domain]]
[[Category:क्रमविनिमेय बीजगणित|Integral Domain]]
[[Category:वलय सिद्धांत|Integral Domain]]

Latest revision as of 10:07, 13 December 2022

गणित में, विशेष रूप से अमूर्त बीजगणित, एक अभिन्न प्रभाव क्षेत्र एक शून्य रिंग क्रमविनिमेय अंगूठी है जिसमें किसी भी दो गैर-शून्य तत्वों का उत्पाद गैर-शून्य होता है।[1][2] अभिन्न प्रभाव क्षेत्र पूर्णांक के रिंग (गणित) के सामान्यीकरण हैं और विभाज्यता (रिंग थ्योरी) का अध्ययन करने के लिए एक प्राकृतिक समुच्चयन प्रदान करते हैं। एक अभिन्न प्रभाव क्षेत्र में, प्रत्येक गैर-शून्य तत्व में रद्द करने की संपत्ति होती है, अर्थात यदि a ≠ 0, एक समानता ab = ac तात्पर्य b = c.

अभिन्न प्रभाव क्षेत्र को लगभग सार्वभौमिक रूप से ऊपर के रूप में परिभाषित किया गया है, लेकिन इसमें कुछ भिन्नता है।और यह लेख इस परंपरा का अनुसरण करता है कि छल्ले की गुणक पहचान होती है, जिसे सामान्यतः 1 द्वारा दर्शाया जाता है, लेकिन कुछ लेखक इसका पालन नहीं करते हैं, अभिन्न प्रभाव क्षेत्र को गुणक पहचान की आवश्यकता नहीं होने के कारण।[3][4] कभी-कभी गैर-अनुक्रमिक अभिन्न प्रभाव क्षेत्र स्वीकार किए जाते हैं।[5] यह लेख, प्रायः, क्रमविनिमेय स्थिति के लिए अभिन्न प्रभाव क्षेत्र शब्द को रक्षित करने और गैर-क्रमविनिमेय रिंग्स सहित सामान्य स्थिति के लिए प्रभाव क्षेत्र (रिंग थ्योरी) का उपयोग करने के अधिक सामान्य सम्मेलन का अनुसरण करता है।

कुछ स्रोत, विशेष रूप से सर्ज लैंग, अभिन्न प्रभाव क्षेत्र के लिए संपूर्ण रिंग शब्द का उपयोग करते हैं।[6]उपवर्ग (सेट सिद्धांत) की निम्नलिखित श्रृंखला के साथ कुछ विशिष्ट प्रकार के अभिन्न प्रभाव क्षेत्र दिए गए हैं:

rngsringscommutative ringsintegral domainsintegrally closed domainsGCD domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfieldsalgebraically closed fields


परिभाषा

एक अभिन्न प्रभाव क्षेत्र एक शून्य सबरिंग क्रमविनिमेय रिंग है जिसमें किसी भी दो गैर-शून्य तत्वों का उत्पाद गैर-शून्य होता है। समान रूप से:

  • एक अभिन्न प्रभाव क्षेत्र एक गैर-शून्य क्रमविनिमेय वलय है जिसमें कोई गैर-शून्य विभाजक नहीं है।
  • एक अभिन्न प्रभाव क्षेत्र एक क्रमविनिमेय रिंग है जिसमें शून्य आदर्श {0} एक प्रमुख आदर्श है।
  • एक अभिन्न प्रभाव क्षेत्र एक गैर-शून्य क्रमविनिमेय रिंग है जिसके लिए प्रत्येक गैर-शून्य तत्व गुणन के अंतर्गत रद्द करने की संपत्ति है।
  • एक अभिन्न प्रभाव क्षेत्र एक अंगूठी है जिसके लिए गैर-शून्य तत्वों का समूह गुणन के अंतर्गत एक क्रमविनिमेय एकाभ (मोनोइड) है (क्योंकि गुणन के अंतर्गत एक एकाभ बंद होना चाहिए)।
  • एक अभिन्न प्रभाव क्षेत्र एक गैर-शून्य क्रमविनिमेय रिंग है जिसमें प्रत्येक गैर-शून्य तत्व r के लिए, रिंग के प्रत्येक तत्व x को उत्पाद xr में मानचित्रण करने वाला फलन अंतःक्षेपक है। इस संपत्ति वाले तत्वों को नियमित कहा जाता है, इसलिए यह आवश्यक है कि अंगूठी के प्रत्येक गैर-शून्य तत्व नियमित हों।
  • एक अभिन्न प्रभाव क्षेत्र एक अंगूठी है जो एक क्षेत्र (गणित) के एक उपसमूह के लिए समरूपी है। (एक अभिन्न प्रभाव क्षेत्र दिया गया है, कोई इसे अपने अंशों के क्षेत्र में लागू कर सकता है।)

उदाहरण

  • मूल रूप में  उदाहरण अंगूठी है सभी पूर्णांकों का।
  • हर क्षेत्र एक अभिन्न प्रभाव क्षेत्र है। उदाहरण के लिए, मैदान सभी वास्तविक संख्याओं का एक अभिन्न प्रभाव क्षेत्र है। इसके विपरीत, प्रत्येक आर्टिनियन अभिन्न प्रभाव क्षेत्र एक क्षेत्र है। विशेष रूप से, सभी परिमित अभिन्न प्रभाव क्षेत्र परिमित क्षेत्र हैं (अधिक सामान्यतः, वेडरबर्न के छोटे प्रमेय द्वारा, परिमित प्रभाव क्षेत्र (रिंग सिद्धांत) परिमित क्षेत्र हैं)। पूर्णांकों का वलय एक गैर-R्टिनियन अनंत अभिन्न प्रभाव क्षेत्र का एक उदाहरण प्रदान करता है जो कि एक क्षेत्र नहीं है,और जिसमें आदर्शों के अनंत अवरोही क्रम होते हैं जैसे:
  • यदि गुणांक एक अभिन्न प्रभाव क्षेत्र से आते हैं तो बहुपद के छल्ले अभिन्न प्रभाव क्षेत्र हैं। उदाहरण के लिए, अंगूठी पूर्णांक गुणांक वाले एक चर में सभी बहुपदों का एक अभिन्न प्रभाव क्षेत्र है; तो अंगूठी है सम्मिश्र संख्या गुणांक वाले n-चर में सभी बहुपदों की संख्या।
  • प्रधान आदर्शों से भागफल लेकर पिछले उदाहरण का और अधिक उपयोग किया जा सकता है। उदाहरण के लिए, अंगूठी समतल दीर्घवृत्तीय वक्र के संगत एक पूर्णांकीय प्रभाव क्षेत्र है। अखंडता दिखाकर जाँच की जा सकती है एक अलघुकरणीय बहुपद है।
  • अंगूठी किसी भी गैर-वर्ग पूर्णांक के लिए एक अभिन्न प्रभाव क्षेत्र है यदि , तो यह वलय सदैव का उपवलय होता है , अन्यथा, यह का एक उपसमूह है।
  • पी-आदिक पूर्णांक (p-adic integers) का वलय एक अभिन्न प्रभाव क्षेत्र है।
  • यदि सम्मिश्र संख्या का एक जुड़ाव खुला उपसमुच्चय है , फिर अंगूठी सभी होलोमॉर्फिक फलन से मिलकर एक अभिन्न प्रभाव क्षेत्र है। विश्लेषणात्मक विविध के जुड़े खुले उपसमुच्चय पर विश्लेषणात्मक कार्य के छल्ले के लिए भी यही सच है।


गैर-उदाहरण

निम्नलिखित वलय अभिन्न प्रांत नहीं हैं।

  • शून्य वलय (वह वलय जिसमें ).
  • भागफल की अंगूठी जब एम एक समग्र संख्या है। वास्तव में, एक उचित गुणनखंड चुनें (जिसका अर्थ है कि तथा के बराबर नहीं हैं या ). फिर तथा , लेकिन .
  • दो अशून्य क्रमविनिमेय वलयों का उत्पाद वलय। ऐसे उत्पाद में , किसी के पास .
  • भागफल की अंगूठी किसी के लिए . के चित्र तथा अशून्य हैं, जबकि इस वलय में उनका गुणनफल 0 है।
  • n ≥ 2 होने पर किसी भी शून्य रिंग पर n × n मैट्रिक्स (गणित) का मैट्रिक्स रिंग। यदि तथा मैट्रिसेस ऐसे हैं कि की छवि के कर्नेल में निहित है , फिर . उदाहरण के लिए, ऐसा होता है .
  • भागफल की अंगूठी किसी भी क्षेत्र के लिए और कोई भी गैर-निरंतर बहुपद . के चित्र f तथा g इस भागफल वलय में शून्येतर तत्व हैं जिनका गुणनफल 0 है। और यह तर्क समान रूप से यह दर्शाता है प्रमुख आदर्श नहीं है। इस परिणाम की ज्यामितीय व्याख्या यह है कि एक फलन का शून्य fg एक संबधित बीजगणितीय समूह बनाते हैं जो सामान्य रूप से अप्रासंगिक नहीं है (अर्थात, बीजगणितीय किस्म नहीं है)। एकमात्र स्थिति जहां यह बीजगणितीय समूह अप्रासंगिक हो सकता है, जब fg एक अलघुकरणीय बहुपद की एक शक्ति है, जो समान बीजगणितीय समुच्चय को परिभाषित करता है।
हर जगह शून्य है, लेकिन है।
  • बीजगणित का टेंसर उत्पाद . इस अंगूठी में दो गैर-तुच्छ इडेमपोटेंट हैं, तथा . वे लाम्बिक हैं, जिसका अर्थ है , और इसलिए एक प्रभाव क्षेत्र नहीं है। वास्तव में, एक समरूपता है द्वारा परिभाषित . इसके व्युत्क्रम द्वारा परिभाषित किया गया है . इस उदाहरण से पता चलता है कि अपरिवर्तनीय एफ़िन स्कीमों की योजनाओं का एक फाइबर उत्पाद अपरिवर्तनीय नहीं होना चाहिए।

विभाज्यता, प्रधान तत्व, और अलघुकरणीय तत्व

इस खंड में, R एक पूर्णांकीय प्रभाव क्षेत्र है।

R के तत्व a और b दिए गए हैं, कोई कहता है कि a, b को विभाजित करता है, या b की विभाज्यता है, या b, a का गुणक है, यदि R में कोई तत्व x सम्मलित है जैसे कि ax = b.

R की इकाई वे तत्व हैं जो 1 को विभाजित करते हैं; ये बिल्कुल R में उल्टे तत्व हैं। इकाइयां अन्य सभी तत्वों को विभाजित करती हैं।

यदि a, b को विभाजित करता है और b, a को विभाजित करता है, तो a और b 'सहयोगी तत्व' या 'सहयोगी' हैं।[9] समतुल्य रूप से, a और b सहयोगी हैं यदि a = ub किसी इकाई के लिए u हैं.

एक अलघुकरणीय तत्व एक गैर-शून्य गैर-इकाई है जिसे दो गैर-इकाइयों के उत्पाद के रूप में नहीं लिखा जा सकता है।

एक गैर-शून्य गैर-इकाई p एक प्रमुख तत्व है,यदि, जब भी p उत्पाद a, b को विभाजित करता है, तो p ,a को विभाजित करता है या p, b को विभाजित करता है। समतुल्य रूप से, एक तत्व p अभाज्य है यदि और केवल तभी जब मुख्य आदर्श (p) एक अशून्य अभाज्य आदर्श है।

अलघुकरणीय तत्वों और प्रधान तत्वों की दोनों धारणाएं वलय में अभाज्य संख्याओं की सामान्य परिभाषा को सामान्य करती हैं यदि कोई ऋणात्मक अभाज्यों को प्रधान मानता है।

प्रत्येक प्रमुख तत्व अलघुकरणीय है। इसका वार्तालाप सामान्य रूप से सत्य नहीं है: उदाहरण के लिए, द्विघात पूर्णांक वलय में तत्व 3 अलघुकरणीय है (यदि यह गैर-तुच्छ रूप से कारक है, तो कारकों में प्रत्येक के पास मानक 3 होना चाहिए, लेकिन कोई मानक 3 तत्व नहीं हैं क्योंकि कोई पूर्णांक समाधान नहीं है), लेकिन अभाज्य नहीं है (3 विभाजन के बाद से किसी भी कारक को विभाजित किए बिना)। एक अद्वितीय कारककरण प्रांत (या अधिक सामान्यतः, एक जीसीडी प्रभाव क्षेत्र ) में, एक अलघुकरणीय तत्व एक प्रमुख तत्व है।

जबकि अंकगणित का मौलिक प्रमेय लागू नहीं होता है , आइडियल (रिंग थ्योरी) का अनूठा गुणनखंड है। लस्कर-नोथेर प्रमेय देखें।

गुण

  • एक क्रमविनिमेय रिंग R एक अभिन्न प्रभाव क्षेत्र है यदि और केवल यदि R का आदर्श (0) एक प्रमुख आदर्श है।
  • यदि R एक क्रमविनिमेय वलय है और P, R में एक आदर्श है, तो भागफल वलय R/P एक अभिन्न प्रभाव क्षेत्र है यदि और केवल यदि P एक प्रमुख आदर्श है।
  • माना R एक पूर्णांकीय प्रभाव क्षेत्र है। फिर R पर बहुपद के छल्ले (किसी भी संख्या में अनिश्चित) अभिन्न प्रभाव क्षेत्र हैं। यह विशेष रूप से स्थिति है यदि R एक क्षेत्र (गणित) है।
  • रद्दीकरण संपत्ति किसी भी अभिन्न प्रभाव क्षेत्र में होती है: किसी भी a, b, और c के लिए एक अभिन्न प्रभाव क्षेत्र में, यदि a ≠ 0 और ab = ac तो b = c इसे बताने का दूसरा तरीका यह है कि फलन x ↦ ax प्रभाव क्षेत्र में किसी भी अशून्य a के लिए अंतःक्षेपी है।
  • रद्दीकरण संपत्ति किसी भी अभिन्न प्रभाव क्षेत्र में आदर्शों के लिए है: यदि xI = xJ, तो या तो x शून्य है या I = J है।
  • एक अभिन्न प्रभाव क्षेत्र अधिकतम आदर्शों पर एक अंगूठी के स्थानीयकरण के चौराहे के बराबर है।
  • अभिन्न प्रभाव क्षेत्र की आगमनात्मक सीमा एक अभिन्न प्रभाव क्षेत्र है।
  • यदि बीजगणितीय रूप से बंद क्षेत्र k पर अभिन्न प्रभाव क्षेत्र हैं, फिर एक अभिन्न प्रभाव क्षेत्र है। यह हिल्बर्ट के नलस्टेलनसैट्ज का परिणाम है,[note 1] और, बीजगणितीय ज्यामिति में, इसका तात्पर्य इस कथन से है कि बीजगणितीय रूप से बंद क्षेत्र पर दो एफ़िन बीजगणितीय प्रकार के उत्पाद का समन्वय वलय फिर से एक अभिन्न प्रभाव क्षेत्र है।

अंशों का क्षेत्र

अभिन्न प्रभाव क्षेत्र R के भिन्न K का क्षेत्र, R में a और b के साथ भिन्न a/b का समूह है और b ≠ 0 मॉड्यूल एक उपयुक्त तुल्यता संबंध है, जो सामान्य योग और गुणन संक्रियाओं से सुसज्जित है। यह इस अर्थ में R  वाला सबसे छोटा क्षेत्र है कि एक अंतःक्षेपी वलय समरूपता है RK ऐसा है कि कोई भी अंतःक्षेपक रिंग होमोमोर्फिज्म R से K के माध्यम से एक क्षेत्र कारक के लिए। पूर्णांकों के रिंग के अंशों का क्षेत्र परिमेय संख्याओं का क्षेत्र है किसी क्षेत्र के अंशों का क्षेत्र स्वयं क्षेत्र के लिए समरूपता है।

बीजगणितीय ज्यामिति

अभिन्न प्रभाव क्षेत्र की विशेषता इस स्थिति से होती है कि वे कम रिंग वाले होते हैं (अर्थात x2 = 0 का अर्थ है x = 0) और अपरिवर्तनीय (अर्थात् केवल एक न्यूनतम अभाज्य गुणजावली है)। पूर्व की स्थिति यह सुनिश्चित करती है कि रिंग का निरमूलक शून्य है, ताकि सभी रिंग के न्यूनतम अभाज्य का प्रतिच्छेदन शून्य हो। बाद की स्थिति यह है कि रिंग में केवल एक न्यूनतम अभाज्य होता है। यह इस प्रकार है कि एक कम और अलघुकरणीय अंगूठी का अद्वितीय न्यूनतम प्रधान आदर्श शून्य आदर्श है, इसलिए ऐसे छल्ले अभिन्न प्रभाव क्षेत्र हैं। इसका विलोम स्पष्ट है: एक अभिन्न प्रभाव क्षेत्र में कोई गैर शून्य नीलपोटेंट तत्व नहीं है, और शून्य आदर्श अद्वितीय न्यूनतम प्रधान आदर्श है।

यह बीजगणितीय ज्यामिति में, इस तथ्य में अनुवाद करता है कि एक एफ़िन बीजगणितीय समूह की समन्वय अंगूठी एक अभिन्न प्रभाव क्षेत्र है यदि और केवल यदि बीजगणितीय समूह एक बीजगणितीय विविधता है।

सामान्यतः, एक क्रमविनिमेय रिंग एक अभिन्न प्रभाव क्षेत्र है यदि और केवल यदि रिंग का स्पेक्ट्रम एक अभिन्न योजना एफ़िन स्कीम है।

विशेषता और समरूपता

एक अभिन्न प्रभाव क्षेत्र की विशेषता 0 या एक अभाज्य संख्या है।

यदि R प्रमुख विशेषता p का एक अभिन्न प्रभाव क्षेत्र है, तो फ्रोबेनियस एंडोमोर्फिज्म f(x) = x^p अंतःक्षेपक है।

यह भी देखें

  • डेडेकिंड-हासे आदर्श - एक अभिन्न प्रभाव क्षेत्र के प्रमुख होने के लिए आवश्यक अतिरिक्त संरचना
  • शून्य-उत्पाद संपत्ति

टिप्पणियाँ

  1. Proof: First assume A is finitely generated as a k-algebra and pick a -basis of . Suppose (only finitely many are nonzero). For each maximal ideal of , consider the ring homomorphism . Then the image is and thus either or and, by linear independence, for all or for all . Since is arbitrary, we have the intersection of all maximal ideals where the last equality is by the Nullstellensatz. Since is a prime ideal, this implies either or is the zero ideal; i.e., either are all zero or are all zero. Finally, is an inductive limit of finitely generated k-algebras that are integral domains and thus, using the previous property, is an integral domain.
  1. Bourbaki, p. 116.
  2. Dummit and Foote, p. 228.
  3. B.L. van der Waerden, Algebra Erster Teil, p. 36, Springer-Verlag, Berlin, Heidelberg 1966.
  4. I.N. Herstein, Topics in Algebra, p. 88-90, Blaisdell Publishing Company, London 1964.
  5. J.C. McConnell and J.C. Robson "Noncommutative Noetherian Rings" (Graduate Studies in Mathematics Vol. 30, AMS)
  6. Pages 91–92 of Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
  7. No label or title -- debug: Q24655880, Wikidata Q24655880
  8. No label or title -- debug: Q56049883, Wikidata Q56049883
  9. Durbin, John R. (1993). आधुनिक बीजगणित: एक परिचय (3rd ed.). John Wiley and Sons. p. 224. ISBN 0-471-51001-7. [एक अभिन्न डोमेन] के तत्व और बी को एसोसिएट्स कहा जाता है अगर {{cite book}}: Text "." ignored (help); Text "बी और बी" ignored (help)


संदर्भ


बाहरी संबंध