परिमेय मूल प्रमेय: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Relationship between the rational roots of a polynomial and its extreme coefficients}} बीजगणित में, परिमेय मूल...")
 
Line 99: Line 99:




==इस पेज में लापता आंतरिक लिंक की सूची==
*समीकरण हल करना
*एक बहुपद की जड़
*सापेक्षतः अभाज्य
*स्थायी अवधि
*गुणक
*बहुपद लंबा विभाजन
*बीजगणतीय अभिव्यक्ति
*महत्तम सामान्य भाजक
==बाहरी संबंध==
==बाहरी संबंध==
*{{MathWorld|urlname=RationalZeroTheorem|title=Rational Zero Theorem}}
*{{MathWorld|urlname=RationalZeroTheorem|title=Rational Zero Theorem}}

Revision as of 11:34, 28 November 2022

बीजगणित में, परिमेय मूल प्रमेय (या परिमेय मूल परीक्षण, परिमेय शून्य प्रमेय, परिमेय शून्य परीक्षण याp/q प्रमेय) एक बहुपद समीकरण के परिमेय संख्या समीकरण को हल करने पर एक बाधा बताता है

पूर्णांक गुणांक के साथ तथा . समीकरण के हल को बहुपद का मूल या बहुपद का बायीं ओर का शून्यक भी कहा जाता है।

प्रमेय कहता है कि प्रत्येक तर्कसंगत संख्या समाधान x = pq, सबसे कम शब्दों में लिखा है ताकि p तथा q अपेक्षाकृत प्रमुख हैं, संतुष्ट हैं:

  • p अचर पद का पूर्णांक विभाजक है a0, तथा
  • q अग्रणी गुणांक का एक पूर्णांक कारक है an.

तर्कसंगत जड़ प्रमेय गॉस की लेम्मा (बहुपद) का एक विशेष मामला है (एकल रैखिक कारक के लिए) | गॉस की लेम्मा बहुपदों के गुणन पर। इंटीग्रल रूट प्रमेय तर्कसंगत रूट प्रमेय का विशेष मामला है जब अग्रणी गुणांक होता हैan = 1.

आवेदन

प्रमेय का उपयोग बहुपद की सभी परिमेय जड़ों को खोजने के लिए किया जाता है, यदि कोई हो। यह संभावित अंशों की एक परिमित संख्या देता है जिसे यह देखने के लिए जांचा जा सकता है कि क्या वे जड़ें हैं। यदि एक तर्कसंगत जड़ x = r पाया जाता है, एक रैखिक बहुपद (xr) बहुपद लंबे विभाजन का उपयोग करके बहुपद से बाहर किया जा सकता है, जिसके परिणामस्वरूप कम डिग्री का बहुपद होता है जिसकी जड़ें मूल बहुपद की जड़ें भी होती हैं।

घन समीकरण

सामान्य घन समीकरण

पूर्णांक गुणांक के साथ जटिल विमान में तीन समाधान होते हैं। यदि तर्कसंगत जड़ परीक्षण में कोई तर्कसंगत समाधान नहीं मिलता है, तो समाधान को व्यक्त करने का एकमात्र तरीका बीजगणितीय अभिव्यक्ति क्यूबिक फ़ंक्शन का उपयोग करता है। लेकिन अगर परीक्षण एक तर्कसंगत समाधान पाता है r, फिर फैक्टरिंग करें (xr) एक द्विघात बहुपद छोड़ता है जिसकी दो जड़ें, द्विघात सूत्र के साथ पाई जाती हैं, घन की शेष दो जड़ें हैं, घनमूल से बचती हैं।

प्रमाण

प्रारंभिक प्रमाण

होने देना साथ मान लीजिए P(p/q) = 0 कुछ सह अभाज्य के लिए p, q:

हर को स्पष्ट करने के लिए, दोनों पक्षों को से गुणा करें qn:

शिफ्ट कर रहा है a0 टर्म को दाईं ओर और फैक्टरिंग आउट p बाईं ओर पैदा करता है:

इस प्रकार, p विभाजित a0qn. परंतु p कोप्राइम है q और इसलिए qn, इसलिए यूक्लिड की लेम्मा द्वारा p शेष कारक को विभाजित करना चाहिए a0.

दूसरी ओर, स्थानांतरित कर रहा है an टर्म को दाईं ओर और फैक्टरिंग आउट q बाईं ओर पैदा करता है:

पहले की तरह तर्क करना, यह उसका अनुसरण करता है q विभाजित an.[1]


=== गॉस लेम्मा === का उपयोग करके सबूत

क्या बहुपद के सभी गुणांकों को विभाजित करने वाला एक गैर-तुच्छ कारक होना चाहिए, तो कोई गुणांक के सबसे बड़े सामान्य विभाजक द्वारा विभाजित कर सकता है ताकि गॉस के लेम्मा (बहुपद) के अर्थ में एक आदिम बहुपद प्राप्त किया जा सके। गॉस की लेम्मा; यह तर्कसंगत जड़ों के सेट को नहीं बदलता है और केवल विभाज्यता स्थितियों को मजबूत करता है। वह लेम्मा कहती है कि यदि बहुपद कारकों में Q[X], तो यह भी कारक है Z[X] आदिम बहुपदों के उत्पाद के रूप में। अब कोई तर्कसंगत जड़ p/q डिग्री 1 के कारक से मेल खाती है Q[X] बहुपद का, और इसका आदिम प्रतिनिधि तब है qxp, ऐसा मानते हुए p तथा q कोप्राइम हैं। लेकिन कोई भी बहु Z[X] का qxp द्वारा अग्रणी शब्द विभाज्य है q और निरंतर पद से विभाज्य p, जो कथन को सिद्ध करता है। इस तर्क से पता चलता है कि अधिक आम तौर पर, का कोई अलघुकरणीय कारक P माना जा सकता है कि पूर्णांक गुणांक हैं, और अग्रणी और निरंतर गुणांक इसी गुणांक को विभाजित करते हैंP.

उदाहरण

पहला

बहुपद में

किसी भी परिमेय मूल को पूरी तरह से कम करने के लिए एक ऐसा अंश होना चाहिए जो 1 में समान रूप से विभाजित हो और एक भाजक जो 2 में समान रूप से विभाजित हो। इसलिए केवल संभव परिमेय मूल ±1/2 और ±1 हैं; चूंकि इनमें से कोई भी बहुपद को शून्य के बराबर नहीं करता है, इसलिए इसका कोई परिमेय मूल नहीं है।

दूसरा

बहुपद में

एकमात्र संभव परिमेय मूल में एक अंश होगा जो 6 को विभाजित करता है और एक भाजक जो 1 को विभाजित करता है, संभावनाओं को ±1, ±2, ±3, और ±6 तक सीमित करता है। इनमें से 1, 2 और -3 बहुपद को शून्य के बराबर करते हैं, और इसलिए इसके परिमेय मूल हैं। (वास्तव में ये इसकी एकमात्र जड़ें हैं क्योंकि एक घन में केवल तीन जड़ें होती हैं; सामान्य तौर पर, एक बहुपद में कुछ परिमेय और कुछ अपरिमेय संख्या जड़ें हो सकती हैं।)

तीसरा

बहुपद की हर तर्कसंगत जड़

प्रतीकात्मक रूप से दर्शाई गई संख्याओं में से होना चाहिए:

ये 8 रूट कैंडिडेट हैं x = r मूल्यांकन करके परखा जा सकता है P(r), उदाहरण के लिए हॉर्नर की विधि का उपयोग करना। यह पता चला है कि बिल्कुल एक है P(r) = 0.

इस प्रक्रिया को और अधिक कुशल बनाया जा सकता है: यदि P(r) ≠ 0, इसका उपयोग शेष उम्मीदवारों की सूची को छोटा करने के लिए किया जा सकता है।[2] उदाहरण के लिए, x = 1 काम नहीं करता, के रूप में P(1) = 1. स्थानापन्न x = 1 + t में एक बहुपद देता हैt निरंतर अवधि के साथ P(1) = 1, जबकि का गुणांक t3 के गुणांक के समान रहता है x3. परिमेय मूल प्रमेय को लागू करने से संभावित मूल प्राप्त होते हैं , ताकि

ट्रू रूट्स दोनों सूचियों पर होने चाहिए, इसलिए तर्कसंगत रूट उम्मीदवारों की सूची सिकुड़ कर सिर्फ हो गई है x = 2 तथा x = 2/3.

यदि k ≥ 1 तर्कसंगत जड़ें पाई जाती हैं, हॉर्नर की विधि भी डिग्री के बहुपद का उत्पादन करेगी nk जिसकी जड़ें, तर्कसंगत जड़ों के साथ मूल बहुपद की जड़ें हैं। यदि कोई भी उम्मीदवार समाधान नहीं है, तो कोई तर्कसंगत समाधान नहीं हो सकता है।

यह भी देखें

टिप्पणियाँ

  1. Arnold, D.; Arnold, G. (1993). चार इकाई गणित. Edward Arnold. pp. 120–121. ISBN 0-340-54335-3.
  2. King, Jeremy D. (November 2006). "बहुपदों की पूर्णांक जड़ें". Mathematical Gazette. 90: 455–456.


संदर्भ

  • Charles D. Miller, Margaret L. Lial, David I. Schneider: Fundamentals of College Algebra. Scott & Foresman/Little & Brown Higher Education, 3rd edition 1990, ISBN 0-673-38638-4, pp. 216–221
  • Phillip S. Jones, Jack D. Bedient: The historical roots of elementary mathematics. Dover Courier Publications 1998, ISBN 0-486-25563-8, pp. 116–117 (online copy, p. 116, at Google Books)
  • Ron Larson: Calculus: An Applied Approach. Cengage Learning 2007, ISBN 978-0-618-95825-2, pp. 23–24 (online copy, p. 23, at Google Books)


बाहरी संबंध