नियम (गणित): Difference between revisions
No edit summary |
No edit summary |
||
| (19 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
{{short description|Length in a vector space}} | {{short description|Length in a vector space}} | ||
{{about| | {{about|[[सामान्य सदिश स्थान]] के मानदंड|क्षेत्र सिद्धांत|फील्ड मानदंड|आदर्शों|आदर्श मानदंड|समूह सिद्धांत|सामान्य (समूह)|वर्णनात्मक सेट सिद्धांत में मानदंड|पूर्व आदेश}} | ||
एक | गणित में, प्रतिमान एक वास्तविक या सम्मिश्र सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं का एक फलन है जो मूल से दूरी जैसे निश्चित तरीकों से व्यवहार करता है: यह स्केलिंग के साथ चलता है, त्रिकोण असमानता के एक रूप का पालन करता है, और मात्र मूल बिंदु पर शून्य है। विशेष रूप से, मूल से एक सदिश की यूक्लिडियन दूरी एक प्रतिमान है, जिसे यूक्लिडियन प्रतिमान या 2-प्रतिमान कहा जाता है, जिसे स्वयं के साथ एक सदिश के आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है। | ||
''''आभासी | एक अर्धप्रतिमान प्रतिमान के पहले दो गुणों को संतुष्ट करता है, परन्तु मूल के अतिरिक्त अन्य सदिशों के लिए शून्य हो सकता है।<ref name="Knapp">{{cite book|title=बुनियादी वास्तविक विश्लेषण|publisher=Birkhäuser|author=Knapp, A.W.|year=2005|page=[https://books.google.fr/books?id=4ZZCAAAAQBAJ&pg=279#v=onepage&q&f=false] |isbn=978-0-817-63250-2}}</ref> विशिष्ट प्रतिमान के साथ एक सदिश स्थान को एक प्रतिमान सदिश स्थान कहा जाता है। इसी तरह अर्धप्रतिमान वाली सदिश समष्टि को अर्धप्रतिमान सदिश समष्टि कहते हैं। | ||
''''आभासी प्रतिमान'''<nowiki/>' शब्द का प्रयोग कई संबंधित अर्थों के लिए किया गया है। यह अर्धप्रतिमान का पर्यायवाची हो सकता है।<ref name="Knapp">{{cite book|title=बुनियादी वास्तविक विश्लेषण|publisher=Birkhäuser|author=Knapp, A.W.|year=2005|page=[https://books.google.fr/books?id=4ZZCAAAAQBAJ&pg=279#v=onepage&q&f=false] |isbn=978-0-817-63250-2}}</ref> एक आभासी प्रतिमान समान स्वयंसिद्धों को एक प्रतिमान के रूप में संतुष्ट कर सकता है,असमानता द्वारा प्रतिस्थापित समानता के साथ<math>\,\leq\,</math>रूपता सिद्धांत में उपलब्ध हैं।<ref>{{Cite web |title=छद्म मानदंड - गणित का विश्वकोश|url=https://encyclopediaofmath.org/wiki/Pseudo-norm |access-date=2022-05-12 |website=encyclopediaofmath.org}}</ref> यह प्रतिमान का भी उल्लेख कर सकता है जो अनंत मान ले सकता है,<ref>{{Cite web |title=स्यूडोनॉर्म|url=https://www.spektrum.de/lexikon/mathematik/pseudonorm/8161 |access-date=2022-05-12 |website=www.spektrum.de |language=de}}</ref> या निर्देशित समुच्चय द्वारा पैरामिट्रीकृत कुछ कार्यों के लिए।<ref>{{Cite journal |last=Hyers |first=D. H. |date=1939-09-01 |title=छद्म-मानकित रैखिक रिक्त स्थान और एबेलियन समूह|url=http://dx.doi.org/10.1215/s0012-7094-39-00551-x |journal=Duke Mathematical Journal |volume=5 |issue=3 |doi=10.1215/s0012-7094-39-00551-x |issn=0012-7094}}</ref> | |||
{{TOCLimit}} | {{TOCLimit}} | ||
== परिभाषा == | == परिभाषा == | ||
एक सदिश स्थान दिया गया है <math>X</math> फील्ड एक्सटेंशन पर <math>F</math> | एक सदिश स्थान दिया गया है <math>X</math> फील्ड एक्सटेंशन पर <math>F</math> सम्मिश्र संख्याओं का <math>\Complex,</math> एक प्रतिमान पर <math>X</math> एक वास्तविक मान फलन है <math>p : X \to \R</math> निम्नलिखित गुणों के साथ, जहाँ <math>|s|</math> एक अदिश के सामान्य निरपेक्ष मान <math>s</math> को दर्शाता है :<ref>{{cite book|title=वास्तविक गणितीय विश्लेषण|publisher=Springer |author=Pugh, C.C.|year=2015|page=[https://books.google.com.tr/books?id=2NVJCgAAQBAJ&pg=PA28 page 28]|isbn=978-3-319-17770-0}} {{cite book|title=Quantum Mechanics in Hilbert Space|author=Prugovečki, E.|year=1981|page=[https://books.google.com/books?id=GxmQxn2PF3IC&pg=PA20 page 20]}}</ref> | ||
# उप-योगात्मक कार्य / त्रिभुज असमानता: <math>p(x + y) \leq p(x) + p(y)</math> सभी के लिए <math>x, y \in X.</math> | # उप-योगात्मक कार्य / त्रिभुज असमानता: <math>p(x + y) \leq p(x) + p(y)</math> सभी के लिए <math>x, y \in X.</math> | ||
# सजातीय कार्य: <math>p(s x) = \left|s\right| p(x)</math> सभी के लिए <math>x \in X</math> और सभी | # सजातीय कार्य: <math>p(s x) = \left|s\right| p(x)</math> सभी के लिए <math>x \in X</math> और सभी अदिश <math>s.</math> | ||
# | #धनात्मक निश्चितता/{{Visible anchor|बिंदु-पृथक्करण}}: सभी के लिए <math>x \in X,</math> यदि <math>p(x) = 0</math> तब <math>x = 0.</math> | ||
#* क्योंकि गुण (2.) का तात्पर्य है <math>p(0) = 0,</math> कुछ लेखक गुण (3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए <math>x \in X,</math> <math>p(x) = 0</math> | #* क्योंकि गुण(2.) का तात्पर्य है <math>p(0) = 0,</math> कुछ लेखक गुण(3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए <math>x \in X,</math> <math>p(x) = 0</math> यदि और मात्र यदि <math>x = 0.</math> | ||
अर्धप्रतिमान पर <math>X</math> एक कार्य है <math>p : X \to \R</math> जिसमें गुण हैं(1.) और(2.)<ref>{{cite book|title=कार्यात्मक विश्लेषण|author=Rudin, W.|year=1991|page=25}}</ref> ताकि विशेष रूप से, प्रत्येक प्रतिमान भी एक अर्धप्रतिमान(और इस प्रकार एक उपरैखिक कार्यात्मक) भी हो। यद्यपि, ऐसे अर्धप्रतिमान उपस्थित हैं जो प्रतिमान नहीं हैं। गुण(1.) और(2.) का अर्थ है कि यदि <math>p</math> एक प्रतिमान(या अधिक प्रायः, एक अर्धप्रतिमान) है <math>p(0) = 0</math> और कि <math>p</math> निम्नलिखित गुण भी है: | |||
#<li मान = 4 > | #<li मान="4">ऋणात्मक | गैर-ऋणात्मकता: <math>p(x) \geq 0</math> सभी के लिए <math>x \in X.</math> | ||
कुछ लेखकों ने | कुछ लेखकों ने प्रतिमान की परिभाषा के भाग के रूप में गैर-ऋणात्मकता को सम्मिलित किया है, यद्यपि यह आवश्यक नहीं है। | ||
=== समतुल्य | === समतुल्य प्रतिमान === | ||
मान लो कि <math>p</math> तथा <math>q</math> सदिश स्थान पर दो | मान लो कि <math>p</math> तथा <math>q</math> सदिश स्थान पर दो प्रतिमान(या अर्धप्रतिमान) हैं <math>X.</math> तब <math>p</math> तथा <math>q</math> समतुल्य कहलाते हैं, यदि दो धनात्मक वास्तविक स्थिरांक उपस्थित हों <math>c</math> तथा <math>C</math> साथ <math>c > 0</math> ऐसा है कि हर सदिश के लिए <math>x \in X,</math> | ||
<math display="block">c q(x) \leq p(x) \leq C q(x).</math> | <math display="block">c q(x) \leq p(x) \leq C q(x).</math> | ||
सम्बन्ध<math>p</math> के बराबर है <math>q</math>स्वतुल्य संबंध है, सममित संबंध (<math>c q \leq p \leq C q</math> तात्पर्य <math>\tfrac{1}{C} p \leq q \leq \tfrac{1}{c} p</math>), और सकर्मक | सम्बन्ध <math>p</math> के बराबर है <math>q</math> स्वतुल्य संबंध है, सममित संबंध(<math>c q \leq p \leq C q</math> तात्पर्य <math>\tfrac{1}{C} p \leq q \leq \tfrac{1}{c} p</math>), और सकर्मक और इस प्रकार सभी प्रतिमानों के समूह पर एक समानता संबंध को परिभाषित करता है <math>X.</math>प्रतिमान <math>p</math> तथा <math>q</math> समतुल्य हैं यदि और मात्र यदि वे समान संस्थिति को प्रेरित करते हैं <math>X.</math><ref name="Conrad Equiv norms">{{cite web |url=https://kconrad.math.uconn.edu/blurbs/gradnumthy/equivnorms.pdf |title=मानदंडों की समानता|last=Conrad |first=Keith |website=kconrad.math.uconn.edu |access-date=September 7, 2020 }}</ref> परिमित-आयामी स्थान पर कोई भी दो प्रतिमान समतुल्य हैं परन्तु यह अनंत-आयामी स्थानों तक विस्तृत नहीं है।<ref name="Conrad Equiv norms"/> | ||
=== अंकन === | === अंकन === | ||
यदि एक | यदि एक प्रतिमान <math>p : X \to \R</math> एक सदिश स्थान पर दिया गया है <math>X,</math> तब एक सदिश का प्रतिमान <math>z \in X</math> प्रायः इसे दोहरी खड़ी रेखाएँ के भीतर संलग्न करके दर्शाया जाता है: <math>\|z\| = p(z).</math> इस तरह के अंकन का उपयोग कभी-कभी किया जाता है <math>p</math> मात्र एक अर्धप्रतिमान है। यूक्लिडियन स्थान में एक सदिश की लंबाई के लिए(जो एक प्रतिमान का एक उदाहरण है,जैसा कि नीचे बताया गया है), अंकन <math>|x|</math> एकल लंबवत रेखाओं के साथ भी व्यापक है। | ||
== उदाहरण == | == उदाहरण == | ||
प्रत्येक (वास्तविक या | प्रत्येक(वास्तविक या सम्मिश्र) सदिश स्थान एक प्रतिमान को स्वीकार करता है: यदि <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> सदिश समष्टि के लिए हामेल आधार है <math>X</math> तब वास्तविक-मानवान प्रतिमूर्ति जो भेजता है <math>x = \sum_{i \in I} s_i x_i \in X</math>(जहां सभी परन्तु निश्चित रूप से कई अदिश <math>s_i</math> हैं <math>0</math>) प्रति <math>\sum_{i \in I} \left|s_i\right|</math> पर एक प्रतिमान <math>X</math> है। {{sfn|Wilansky|2013|pp=20-21}} बड़ी संख्या में प्रतिमान भी हैं जो अतिरिक्त गुण प्रदर्शित करते हैं जो उन्हें विशिष्ट समस्याओं के लिए उपयोगी बनाते हैं। | ||
=== निरपेक्ष- | === निरपेक्ष-मान प्रतिमान === | ||
निरपेक्ष | निरपेक्ष मान | ||
<math display="block">\|x\| = |x|</math> | <math display="block">\|x\| = |x|</math> | ||
वास्तविक या सम्मिश्र संख्याओं द्वारा गठित एक-आयामी सदिश स्थान पर एक प्रतिमान है। | |||
कोई प्रतिमान <math>p</math> एक आयामी सदिश स्थान पर <math>X</math> निरपेक्ष मान प्रतिमान के समतुल्य(स्केलिंग तक) है, जिसका अर्थ है कि सदिश स्थान का एक प्रतिमान-संरक्षण समरूपता है <math>f : \mathbb{F} \to X,</math> जहाँ पर <math>\mathbb{F}</math> भी है <math>\R</math> या <math>\Complex,</math> और प्रतिमान-संरक्षण का अर्थ है <math>|x| = p(f(x)).</math>, यह समरूपता भेजकर दी जाती है <math>1 \isin \mathbb{F}</math> प्रतिमान के एक सदिश के लिए <math>1,</math> जो अस्तित्व में है क्योंकि इस तरह के एक सदिश को किसी गैर-शून्य सदिश को उसके प्रतिमान के व्युत्क्रम से गुणा करके प्राप्त किया जाता है। | |||
=== यूक्लिडियनप्रतिमान === | |||
<!-- [[L2 मानदंड]] और [[L2 दूरी]] यहां रीडायरेक्ट करते हैं --> | |||
{{Further|यूक्लिडियन नियम|यूक्लिडियन दूरी}} | |||
<math>n</math>-आयामी यूक्लिडियन स्थान <math>\R^n</math> पर, सदिश की लंबाई की सहज धारणा <math>\boldsymbol{x} = \left(x_1, x_2, \ldots, x_n\right)</math> सूत्र द्वारा ग्रहण किया गया है<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=वेक्टर नॉर्म|url=https://mathworld.wolfram.com/VectorNorm.html|access-date=2020-08-24|website=mathworld.wolfram.com|language=en}}</ref> | |||
<math display=block>\|\boldsymbol{x}\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}.</math>यह यूक्लिडियन प्रतिमान है, जो पाइथागोरस प्रमेय का एक परिणाम - मूल से बिंदु ''X'' तक सामान्य दूरी देता है। इस संचालन को "SRSS" के रूप में भी संदर्भित किया जा सकता है, जो वर्गों के योग के वर्गमूल के लिए एक संक्षिप्त नाम है।<ref>{{Cite book|title=संरचनाओं की गतिशीलता, चौथा संस्करण।|last=Chopra|first=Anil|publisher=Prentice-Hall|year=2012|isbn=978-0-13-285803-8}}</ref>यूक्लिडियन प्रतिमान अब तक <math>\R^n</math> का सबसे अधिक उपयोग किया जाने वाला प्रतिमान है,<ref name=":1" /> परन्तु इस सदिश स्थान पर अन्य प्रतिमान हैं जैसा कि नीचे दिखाया जाएगा। यद्यपि, ये सभी प्रतिमान इस मायने में समान हैं कि ये सभी एक ही सांस्थिति को परिभाषित करते हैं। | |||
यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक प्रसामान्य आधार पर उनके समन्वय सदिशों का बिंदु उत्पाद है। इसलिए यूक्लिडियन प्रतिमान को एक समन्वय-मुक्त रूप से लिखा जा सकता है | |||
पर | |||
<math>{\displaystyle {\displaystyle \|{\boldsymbol {x}}\|:={\sqrt {{\boldsymbol {x}}\cdot {\boldsymbol {x}}}}.}}</math> | |||
<math | |||
पर उनके समन्वय सदिशों का बिंदु उत्पाद है। | |||
इसलिए, यूक्लिडियन प्रतिमान को एक समन्वय-मुक्त रूप से लिखा जा सकता है<math display="block">\|\boldsymbol{x}\| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}.</math> | |||
==== | यूक्लिडियन प्रतिमान को भी <math>L^2</math>प्रतिमान कहा जाता है,<ref>{{Cite web|last=Weisstein|first=Eric W.|title=आदर्श|url=https://mathworld.wolfram.com/आदर्श.html|access-date=2020-08-24|website=mathworld.wolfram.com|language=en}}</ref> <math>\ell^2</math> प्रतिमान, 2-प्रतिमान, या वर्ग प्रतिमान; <math>{\displaystyle L^{p}}</math> स्थान देखें। यह यूक्लिडियन लंबाई नामक एक दूरी कार्य को परिभाषित करता है,<math>L^2</math> दूरी, या<math>\ell^2</math> दूरी। | ||
<math>\R^{n+1}</math> में सदिशों का समुच्चय जिसका यूक्लिडियन प्रतिमान दिया गया धनात्मक स्थिरांक है, एक <math>n</math>-वृत्त बनाता है। | |||
==== सम्मिश्र संख्याओं का यूक्लिडियन प्रतिमान ==== | |||
{{See also|बिंदु उत्पाद #सम्मिश्र सदिश }} | |||
किसी सम्मिश्र संख्या का यूक्लिडियन प्रतिमान उसका निरपेक्ष मान सम्मिश्र संख्याएँ(जिसे मापांक भी कहा जाता है) होता है, यदि सम्मिश्र तल की पहचान यूक्लिडियन तल <math>\R^2.</math> से की जाती है सम्मिश्र संख्या की यह पहचान <math>x + i y</math> यूक्लिडियन सतह में एक सदिश के रूप में, <math display="inline">\sqrt{x^2 + y^2}</math>(जैसा कि पहले यूलर द्वारा सुझाया गया था) सम्मिश्र संख्या से जुड़ा यूक्लिडियन प्रतिमान मात्रा बनाता है । | |||
=== | === चतुष्कोण और अष्टक === | ||
{{See also|चतुष्क|अष्टकैक}} | |||
वास्तविक संख्याओं के ऊपर ठीक चार हर्विट्ज़ प्रमेय(बीजगणित रचना) हैं। ये हैं वास्तविक संख्या <math>\R,</math> सम्मिश्र संख्याएँ <math>\Complex,</math> चतुष्कोण <math>\mathbb{H},</math> और अंत में ऑक्टोनियंस <math>\mathbb{O},</math> जहां वास्तविक संख्याओं पर इन स्थानों के आयाम <math>1, 2, 4, \text{ and } 8,</math> क्रमश: विहित प्रतिमान <math>\R</math> तथा <math>\Complex</math> उनके पूर्ण मान कार्य हैं, जैसा कि पहले चर्चा की गई थी। | |||
<math | |||
<math | |||
विहित प्रतिमान पर <math>\mathbb{H}</math> चतुष्कोणों द्वारा परिभाषित किया गया है | |||
<math display=block>\ | <math display=block>\lVert q \rVert = \sqrt{\,qq^*~} = \sqrt{\,q^*q~} = \sqrt{\, a^2 + b^2 + c^2 + d^2 ~}</math> | ||
हर चतुष्कोण के लिए <math>q = a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k</math> में <math>\mathbb{H}.</math> यह यूक्लिडियन प्रतिमान के समान <math>\mathbb{H}</math> के समान सदिश स्थान <math>\R^4.</math> के रूप में माना जाता है इसी तरह, अष्टकैक पर विहित प्रतिमान सिर्फ यूक्लिडियन प्रतिमान है <math>\R^8.</math> | |||
=== परिमित-आयामी सम्मिश्र प्रतिमान स्थान === | |||
एक पर <math>n</math>-आयामी सम्मिश्र स्थान का समन्वय करता है <math>\Complex^n,</math> सबसे सामान्य प्रतिमान है<math display=block>\|\boldsymbol{z}\| := \sqrt{\left|z_1\right|^2 + \cdots + \left|z_n\right|^2} = \sqrt{z_1 \bar z_1 + \cdots + z_n \bar z_n}.</math>इस स्थिति में,प्रतिमान को सदिश और स्वयं के आंतरिक उत्पाद के वर्गमूल के रूप में व्यक्त किया जा सकता है:<math display=block>\|\boldsymbol{x}\| := \sqrt{\boldsymbol{x}^H ~ \boldsymbol{x}},</math>जहाँ पर <math>\boldsymbol{x}</math> कॉलम सदिश के रूप में दर्शाया गया है <math>\begin{bmatrix} x_1 \; x_2 \; \dots \; x_n \end{bmatrix}^{\rm T}</math> तथा <math>\boldsymbol{x}^H</math> इसके संयुग्मी स्थानान्तरण को दर्शाता है। | |||
=== टैक्सीकैब | यह सूत्र किसी भी आंतरिक उत्पाद स्थान के लिए मान्य है, जिसमें यूक्लिडियन और सम्मिश्र स्थान सम्मिलित हैं। सम्मिश्र स्थान के लिए, आंतरिक उत्पाद सम्मिश्र बिंदु उत्पाद के बराबर होता है। इसलिए इस स्थिति में सूत्र को निम्नलिखित अंकन का उपयोग करके भी लिखा जा सकता है: | ||
{{Main| | <math display=block>\|\boldsymbol{x}\| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}.</math> | ||
=== टैक्सीकैब प्रतिमान या मैनहट्टन प्रतिमान === | |||
{{Main|टैक्सीकैब ज्यामिति}} | |||
<math display="block">\|\boldsymbol{x}\|_1 := \sum_{i=1}^n \left|x_i\right|.</math> | <math display="block">\|\boldsymbol{x}\|_1 := \sum_{i=1}^n \left|x_i\right|.</math> | ||
यह नाम उस दूरी से संबंधित है जो मूल से बिंदु तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड (मैनहट्टन के न्यूयॉर्क सिटी बोरो की तरह) में चलानी पड़ती | यह नाम उस दूरी से संबंधित है जो मूल से बिंदु <math>x</math> तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड(मैनहट्टन के न्यूयॉर्क सिटी बोरो की तरह) में चलानी पड़ती है।सदिशों का समूह जिसका 1-प्रतिमान दिया गया स्थिरांक है,प्रतिमान शून्य से 1 के बराबर आयाम के एक संकर पॉलीटॉप की सतह बनाता है। टैक्सीकैब प्रतिमान को <math>\ell^1</math> प्रतिमान भी कहा जाता है। इस प्रतिमान से प्राप्त दूरी को मैनहट्टन दूरी या <math>\ell_1</math> दूरी कहा जाता है। | ||
टैक्सीकैब | |||
1- | 1-प्रतिमान मात्र स्तंभों के निरपेक्ष मानों का योग है। | ||
इसके विपरीत, | इसके विपरीत, | ||
<math display="block">\sum_{i=1}^n x_i</math> | <math display="block">\sum_{i=1}^n x_i</math> | ||
यह | यह प्रतिमान नहीं है क्योंकि इसके ऋणात्मक परिणाम हो सकते हैं। | ||
=== पी- | === पी-प्रतिमान === | ||
{{Main|Lp | {{Main|Lp स्थान|l1=L<sup>p</sup> स्थान}} | ||
<math>p \geq 1</math> वास्तविक संख्या हो। <math>p</math>-प्रतिमान(जिसे <math>\ell_p</math>-प्रतिमान भी कहा जाता है) का सदिश <math>\mathbf{x} = (x_1, \ldots, x_n)</math> है<ref name=":1" /> | |||
<math display="block">\|\mathbf{x}\|_p := \left(\sum_{i=1}^n \left|x_i\right|^p\right)^{1/p}.</math> | <math display="block">\|\mathbf{x}\|_p := \left(\sum_{i=1}^n \left|x_i\right|^p\right)^{1/p}.</math> | ||
<math>p = 1</math> के लिये ,हमें '''टैक्सीकैब प्रतिमान''' मिलता है,<math>p = 2</math> हमें '''यूक्लिडियन प्रतिमान''' मिलता है, और जैसे <math>p</math> दृष्टिकोण <math>\infty</math> <math>p</math>-प्रतिमान अनंत प्रतिमान या अधिकतम प्रतिमान की ओर बढ़ता है:: | |||
<math display="block">\|\mathbf{x}\|_\infty := \max_i \left|x_i\right|.</math> | <math display="block">\|\mathbf{x}\|_\infty := \max_i \left|x_i\right|.</math> | ||
<math>p</math>>- | <math>p</math>>-प्रतिमान सामान्यीकृत माध्य या शक्ति माध्य से संबंधित है। | ||
<math>p = 2</math> के लिये, <math>\|\,\cdot\,\|_2</math>-प्रतिमान भी एक विहित आंतरिक उत्पाद <math>{\displaystyle \langle \,\cdot ,\,\cdot \rangle }</math> से प्रेरित है जिसका अर्थ है <math>\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}</math> सभी सदिशों के लिए <math>\mathbf{x}.</math> यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके प्रतिमान के रूप में व्यक्त किया जा सकता है।पर <math>\ell^2,</math> यह आंतरिक उत्पाद {{visible anchor|यूक्लिडियन आंतरिक उत्पाद}} द्वारा परिभाषित है | |||
<math display=block>\langle \left(x_n\right)_{n}, \left(y_n\right)_{n} \rangle_{\ell^2} ~=~ \sum_n \overline{x_n} y_n</math> | <math display=block>\langle \left(x_n\right)_{n}, \left(y_n\right)_{n} \rangle_{\ell^2} ~=~ \sum_n \overline{x_n} y_n</math> | ||
जबकि | जबकि स्थान के लिए <math>L^2(X, \mu)</math> एक माप(गणित) के साथ संबद्ध <math>(X, \Sigma, \mu)</math> है, जिसमें सभी वर्ग-अभिन्न कार्य होते हैं, यह आंतरिक उत्पाद है | ||
<math display=block>\langle f, g \rangle_{L^2} = \int_X \overline{f(x)} g(x)\, \mathrm dx.</math> | |||
यह परिभाषा अभी भी | यह परिभाषा अभी भी <math>0 < p < 1</math> रुचि की है परन्तु परिणामी कार्य एक प्रतिमान को परिभाषित नहीं करता है,<ref>Except in <math>\R^1,</math> where it coincides with the Euclidean norm, and <math>\R^0,</math> where it is trivial.</ref> क्योंकि यह त्रिभुज असमानता का उल्लंघन करता है। <math>0 < p < 1</math> इस स्थिति में क्या सत्य है, मापने योग्य अनुरूप में भी। वह <math>L^p</math> वर्ग एक सदिश स्थान संगत है, और यह भी सत्य है कि कार्य | ||
<math display="block">\int_X |f(x) - g(x)|^p ~ \mathrm d \mu</math> | <math display="block">\int_X |f(x) - g(x)|^p ~ \mathrm d \mu</math> | ||
(बिना <math>p</math>जड़) एक दूरी को परिभाषित करता है जो | (बिना <math>p</math>जड़) एक दूरी को परिभाषित करता है जो <math>L^p(X)</math> एक पूर्ण मापीय '''टोपोलॉजिकल सदिश स्थान''' में बनाता है। कार्यात्मक विश्लेषण, संभाव्यता सिद्धांत और लयबद्ध विश्लेषण में ये स्थान बहुत रुचि रखते हैं।यद्यपि, तुच्छ स्थितियों के छोड़कर यह टोपोलॉजिकल सदिश स्थान स्थानीय रूप से उत्तल नहीं है, और इसका कोई निरंतर गैर-शून्य रैखिक रूप नहीं है। इस प्रकार टोपोलॉजिकल द्वैत स्थान में मात्र शून्य कार्यात्मक होता है। | ||
<math>p</math>-प्रतिमान का आंशिक व्युत्पन्न द्वारा दिया गया है | |||
<math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_p = \frac{x_k \left|x_k\right|^{p-2}} { \|\mathbf{x}\|_p^{p-1}}.</math> | <math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_p = \frac{x_k \left|x_k\right|^{p-2}} { \|\mathbf{x}\|_p^{p-1}}.</math> | ||
इसलिए, <math>x</math> के संबंध में व्युत्पन्न , है | |||
<math display="block">\frac{\partial \|\mathbf{x}\|_p}{\partial \mathbf{x}} =\frac{\mathbf{x} \circ |\mathbf{x}|^{p-2}} {\|\mathbf{x}\|^{p-1}_p}.</math> | <math display="block">\frac{\partial \|\mathbf{x}\|_p}{\partial \mathbf{x}} =\frac{\mathbf{x} \circ |\mathbf{x}|^{p-2}} {\|\mathbf{x}\|^{p-1}_p}.</math> | ||
जहाँ पर <math>\circ</math> हैडमार्ड उत्पाद(मैट्रिसेस) को दर्शाता है और <math>|\cdot|</math> सदिश के प्रत्येक घटक के निरपेक्ष मान के लिए उपयोग किया जाता है। | |||
<math>p = 2</math> के विशेष स्थिति के लिए यह बन जाता है, | |||
<math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_2 = \frac{x_k}{\|\mathbf{x}\|_2},</math> | <math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_2 = \frac{x_k}{\|\mathbf{x}\|_2},</math> | ||
या | या | ||
| Line 135: | Line 122: | ||
=== अधिकतम | === अधिकतम प्रतिमान(विशेष स्थिति: अनंत प्रतिमान, समान प्रतिमान, या सर्वोच्च प्रतिमान) === | ||
[[File:Vector norm sup.svg|frame|right|<math>\|x\|_\infty = 1</math>]] | [[File:Vector norm sup.svg|frame|right|<math>\|x\|_\infty = 1</math>]] | ||
{{Main| | {{Main|अधिकतम नियम}} | ||
यदि <math>\mathbf{x}</math> कुछ | यदि <math>\mathbf{x}</math> कुछ सदिश ऐसा है <math>\mathbf{x} = (x_1, x_2, \ldots ,x_n),</math> तब: | ||
<math display="block">\|\mathbf{x}\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | <math display="block">\|\mathbf{x}\|_\infty := \max \left(\left|x_1\right| , \ldots , \left|x_n\right|\right).</math> | ||
सदिशों का समुच्चय जिसका अनंत | सदिशों का समुच्चय जिसका अनंत प्रतिमान एक नियतांक है, <math>c,</math> किनारे की लंबाई के साथ '''हाइपर क्यूब''' की सतह बनाता है <math>2 c.</math> | ||
=== शून्य | === शून्य प्रतिमान === | ||
संभाव्यता और कार्यात्मक विश्लेषण में, शून्य | संभाव्यता और कार्यात्मक विश्लेषण में, शून्य प्रतिमान मापने योग्य कार्यों के स्थान के लिए और f-प्रतिमान के साथ अनुक्रमों के f-स्थान के लिए एक पूर्ण मापीय सांस्थिति को प्रेरित करता है। <math display="inline">(x_n) \mapsto \sum_n{2^{-n} x_n/(1+x_n)}.</math><ref name="RolewiczControl">{{Citation |title=Functional analysis and control theory: Linear systems |last=Rolewicz |first=Stefan |year=1987 |isbn=90-277-2186-6 |publisher=D. Reidel Publishing Co.; PWN—Polish Scientific Publishers |oclc=13064804 |edition=Translated from the Polish by Ewa Bednarczuk |series=Mathematics and its Applications (East European Series) |location=Dordrecht; Warsaw |volume=29 |pages=xvi,524 |mr=920371 |doi=10.1007/978-94-015-7758-8}}</ref> यहां हमारा मतलब f-प्रतिमान से कुछ वास्तविक-मानवान कार्य है <math>\lVert \cdot \rVert</math> दूरी के साथ f-स्थान पर <math>d,</math> ऐसा है कि <math>\lVert x \rVert = d(x,0).</math> ऊपर वर्णित f-प्रतिमान सामान्य अर्थों में एक प्रतिमान नहीं है क्योंकि इसमें आवश्यक एक रूपता गुण का अभाव है। | ||
==== शून्य से | ==== शून्य से सदिश की हैमिंग दूरी ==== | ||
{{See also| | {{See also|हैमिंग दूरी|असतत मापीय }} | ||
मापीय ज्यामिति में, असतत मापीय अलग-अलग बिंदुओं और अन्यथा शून्य के लिए एक मान लेता है। जब सदिश स्थान के तत्वों के लिए समन्वय-ढंग लागू किया जाता है, तो असतत दूरी हैमिंग दूरी को परिभाषित करती है, जो संकेतीकरण सिद्धांत और सूचना सिद्धांत में महत्वपूर्ण है। वास्तविक या सम्मिश्र संख्याओं के क्षेत्र में, असतत मापीय की शून्य से दूरी गैर-शून्य बिंदु में सजातीय नहीं है; वास्तव में, शून्य से दूरी एक बनी रहती है क्योंकि इसका गैर-शून्य तर्क शून्य तक पहुंचता है। यद्यपि, शून्य से किसी संख्या की असतत दूरी प्रतिमान के अन्य गुणों, अर्थात् त्रिकोण असमानता और धनात्मक निश्चितता को संतुष्ट करती है। जब सदिशों पर घटक-वार लागू किया जाता है, तो शून्य से असतत दूरी एक गैर-सजातीयप्रतिमान की तरह व्यवहार करती है, जो इसके सदिश तर्क में गैर-शून्य घटकों की संख्या की गणना करता है; तब से, यह गैर-सजातीय प्रतिमान असंतत है। | |||
डोनोहो के अंकन के बाद, | |||
जब यह | '''संकेत प्रक्रमण''' और '''सांख्यिकी''' में, डेविड डोनोहो ने उद्धरण चिह्नों के साथ शून्य 'प्रतिमान' का उल्लेख किया। डोनोहो के अंकन के बाद, <math>x</math> का शून्य प्रतिमान के गैर-शून्य निर्देशांकों की संख्या है <math>x,</math> या शून्य से सदिश की हैमिंग दूरी। जब यह प्रतिमान एक सीमित समूह के लिए स्थानीयकृत होता है, तो इसकी सीमा <math>p</math>-प्रतिमान के रूप में <math>p</math><sub>0</sub> तक पहुंचती है। निःसंदेह, शून्य प्रतिमान वास्तव में एक प्रतिमान नहीं है, क्योंकि यह धनात्मक सजातीय नहीं है। निस्संदेह, यह ऊपर वर्णित अर्थ में एक f-प्रतिमान भी नहीं है, क्योंकि यह अदिश-सदिश गुणन में अदिश तर्क के संबंध में और इसके सदिश तर्क के संबंध में अलग-अलग, संयुक्त रूप से और अलग-अलग है। शब्दावली का दुरुपयोग, कुछ अभियान्ता{{Who|date=November 2015}} डोनोहो के उद्धरण चिह्नों को छोड़ दें और अनुपयुक्त रूप से संख्या-गैर-शून्य कार्य को <math>L^0</math> प्रतिमान कहते हैं, मापने योग्य कार्यों के लेबेस्ग स्थान के लिए संकेतन को प्रतिध्वनित करते हैं। | ||
शब्दावली का दुरुपयोग, कुछ | |||
=== अनंत आयाम === | === अनंत आयाम === | ||
घटकों की अनंत संख्या के लिए उपरोक्त | घटकों की अनंत संख्या के लिए उपरोक्त प्रतिमानों का सामान्यीकरण <math>\ell^p</math> तथा <math>L^p</math> स्थान की ओर जाता है,प्रतिमानों के साथ<math display="block">\|x\|_p = \bigg(\sum_{i \in \N} \left|x_i\right|^p\bigg)^{1/p} \text{ and }\ \|f\|_{p,X} = \bigg(\int_X |f(x)|^p ~ \mathrm d x\bigg)^{1/p}</math> | ||
सम्मिश्र-मानवान अनुक्रमों और कार्यों के लिए क्रमशः <math>X \sube \R^n</math>, जिसे और अधिक सामान्यीकृत किया जा सकता है('''हार माप''' देखें)। | |||
अन्य | <math display="inline">\|x\| := \sqrt{\langle x , x\rangle}</math> कोई भी आंतरिक उत्पाद स्वाभाविक रूप से प्रतिमान को प्रेरित करता है। | ||
अनंत-आयामी प्रतिमान सदिश स्थानों के अन्य उदाहरण '''बनच स्थान''' लेख में पाए जा सकते हैं। | |||
=== समग्र प्रतिमान === | |||
अन्य प्रतिमान चालू <math>\R^n</math> उपरोक्त को मिलाकर बनाया जा सकता है; उदाहरण के लिए | |||
<math display="block">\|x\| := 2 \left|x_1\right| + \sqrt{3 \left|x_2\right|^2 + \max (\left|x_3\right| , 2 \left|x_4\right|)^2}</math> | <math display="block">\|x\| := 2 \left|x_1\right| + \sqrt{3 \left|x_2\right|^2 + \max (\left|x_3\right| , 2 \left|x_4\right|)^2}</math> | ||
<math>\R^4</math>पर एक प्रतिमान है। | |||
किसी भी | |||
किसी भी प्रतिमान और अंतःक्षेपी रैखिक परिवर्तन के लिए <math>A</math> के लिये नया प्रतिमान <math>x</math> परिभाषित कर सकते हैं, जो बराबर है | |||
<math display="block">\|A x\|.</math> | <math display="block">\|A x\|.</math> | ||
2-डी में, <math>A</math> के 45 डिग्री घुमाव के साथ और एक उपयुक्त स्केलिंग, यह '''टैक्सिकैब प्रतिमान''' को '''अधिकतम प्रतिमान''' में बदल देता है। प्रत्येक <math>A</math> टैक्सिकैब प्रतिमान पर लागू होता है,अक्ष के व्युत्क्रमण और अदला-बदली तक, एक अलग इकाई गोलक देता है: एक विशेष आकार, आकार और अभिविन्यास का एक समानांतर चतुर्भुज। | |||
3-डी में, यह समान है परन्तु 1-प्रतिमान(अष्टफलक) और अधिकतम प्रतिमान {प्रिज्म(ज्यामिति) समांतर चतुर्भुज आधार के साथ}के लिए अलग है। | |||
ऐसे | ऐसे प्रतिमानों के उदाहरण हैं जिन्हें प्रवेशवार सूत्रों द्वारा परिभाषित नहीं किया गया है। उदाहरण के लिए, एक केंद्रीय-सममित उत्तल पिंड का '''मिन्कोव्स्की कार्यात्मक''' <math>\R^n</math>(शून्य पर केंद्रित) एक प्रतिमान को परिभाषित करता है <math>\R^n</math>( {{slink|| अर्धनियम का वर्गीकरण: नितांत उत्तल अवशोषक समूह }} नीचे देखें)। | ||
उपरोक्त सभी सूत्र भी | उपरोक्त सभी सूत्र भी संशोधन के बिना <math>\Complex^n</math> पर प्रतिमान उत्पन्न करते हैं। | ||
आव्यूह(वास्तविक या सम्मिश्र प्रविष्टियों के साथ) के स्थान पर भी प्रतिमान हैं, तथा कथित आव्यूह प्रतिमान। | |||
=== अमूर्त बीजगणित में === | === अमूर्त बीजगणित में === | ||
{{Main| | {{Main|क्षेत्र नियम }} | ||
मान लें कि <math>E</math> अविभाज्य परिमाण <math>k</math> के क्षेत्र <math>p^{\mu}</math> का एक परिमित विस्तार है,और मान लीजिए कि <math>k</math> में बीजगणितीय समापन <math>K</math> है। विशिष्ट क्षेत्र समरूपता <math>E</math> यदि <math>\left\{\sigma_j\right\}_j</math>हैं , तब एक तत्व का गैलोज़-सैद्धांतिक प्रतिमान <math>\alpha \in E</math> का मान <math display="inline">\left(\prod_j {\sigma_k(\alpha)}\right)^{p^{\mu}}</math>है जैसा कि कार्य एक क्षेत्र विस्तार परिमाण का सजातीय है<math>[E : k]</math>, गाल्वा-सैद्धांतिक प्रतिमान इस लेख के अर्थ में एक प्रतिमान नहीं है। यद्यपि <math>[E : k]</math>प्रतिमान की -th मूल(यह मानते हुए कि अवधारणा समझ में आता है) एक प्रतिमान है।<ref>{{Cite book|last=Lang|first=Serge|title=बीजगणित|publisher=Springer Verlag|year=2002|isbn=0-387-95385-X|edition=Revised 3rd|location=New York|pages=284|orig-year=1993}}</ref> | |||
==== | ==== संयोजन बीजगणित ==== | ||
संयोजन बीजगणित में प्रतिमान <math>N(z)</math> की अवधारणा मानक के सामान्य गुणों को साझा नहीं करती है क्योंकि यह <math>z \neq 0</math> के लिए ऋणात्मक या शून्य हो सकता है। एक संयोजन बीजगणित <math>(A, {}^*, N)</math> एक क्षेत्र <math>A</math>, एक '''जटिलता''' <math>{}^*,</math> और एक द्विघात रूप |<math>N(z) = z z^*</math> को "प्रतिमान" कहा जाता है। | |||
संयोजन बीजगणित की विशिष्ट विशेषता <math>N</math> की समरूपता गुण है: उत्पाद के लिए <math>w z</math> दो तत्वों का <math>w</math> तथा <math>z</math> संयोजन बीजगणित , <math>N(wz) = N(w) N(z)</math> प्रतिमान संतुष्ट करता है। के लिये <math>\R,</math> <math>\Complex,</math> <math>\mathbb{H},</math> और O संयोजन बीजगणित प्रतिमान ऊपर चर्चा किए गए प्रतिमान का वर्ग है। उन स्थितियों में प्रतिमान एक निश्चित द्विघात रूप है। अन्य संयोजन बीजगणित में प्रतिमान एक '''समदैशिक द्विघात रूप''' है। | |||
== गुण == | == गुण == | ||
किसी भी | किसी भी प्रतिमान के लिए <math>p : X \to \R</math> एक सदिश स्थान पर <math>X,</math> '''प्रतिलोम त्रिकोण विषमता''' रखती है: | ||
<math display="block">p(x \pm y) \geq |p(x) - p(y)| \text{ for all } x, y \in X.</math> | |||
यदि <math>u : X \to Y</math> | यदि <math>u : X \to Y</math>प्रतिमान स्थान के बीच एक निरंतर रेखीय मानचित्र है, तब <math>u</math> का प्रतिमान और <math>u</math> के स्थानांतरण के बराबर हैं।{{sfn|Trèves|2006|pp=242–243}} | ||
|<math>L^p</math>स्थान के लिए प्रतिमान, हमारे पास '''होल्डर की''' '''विषमता''' है<ref name="GOLUB">{{cite book|last1=Golub|first1=Gene|title=मैट्रिक्स संगणना|last2=Van Loan|first2=Charles F.|publisher=The Johns Hopkins University Press|year=1996|isbn=0-8018-5413-X|edition=Third|location=Baltimore|page=53|author-link1=Gene_H._Golub}}</ref> | |||
<math display="block">|\langle x, y \rangle| \leq \|x\|_p \|y\|_q \qquad \frac{1}{p} + \frac{1}{q} = 1.</math> | <math display="block">|\langle x, y \rangle| \leq \|x\|_p \|y\|_q \qquad \frac{1}{p} + \frac{1}{q} = 1.</math> | ||
इसका एक विशेष | इसका एक विशेष रूप '''कॉची-श्वार्ज़ विषमता''' है:<ref name="GOLUB" /> | ||
<math display="block">\left|\langle x, y \rangle\right| \leq \|x\|_2 \|y\|_2.</math> | <math display="block">\left|\langle x, y \rangle\right| \leq \|x\|_2 \|y\|_2.</math> | ||
[[File:Vector norms.svg|frame|right| | [[File:Vector norms.svg|frame|right|विभिन्नप्रतिमानों में इकाई हलकों के उदाहरण।]]प्रत्येक प्रतिमान एक अर्धप्रतिमान है और इस प्रकार सभी अर्धप्रतिमान बीजगणितीय गुणों को संतुष्ट करता है। बदले में, प्रत्येक अर्धप्रतिमान एक उपरेखीय कार्य है और इस प्रकार सभी उपरेखीय कार्य गुणों को संतुष्ट करता है। विशेष रूप से, प्रत्येक प्रतिमान एक '''उत्तल''' कार्य है। | ||
=== | === समतुल्यता === | ||
<!--[[ | <!--[[समतुल्य मानदंड]] यहां पुनर्निर्देश करता है--> | ||
इकाई वृत्त की अवधारणा( सभी सदिशों के प्रतिमान 1 का समूह) अलग-अलग प्रतिमानों में भिन्न है: 1-प्रतिमान के लिए, इकाई वृत्त एक वर्ग(ज्यामिति) है, 2-प्रतिमान(यूक्लिडियन प्रतिमान) के लिए, यह है प्रसिद्ध इकाई वृत्त है, जबकि अनन्तता प्रतिमान के लिए, यह एक अलग वर्ग है। किसी के लिए <math>p</math>-प्रतिमान, यह सर्वांगसम अक्षों के साथ एक उत्तमदीर्घवृत्त है(संलग्न चित्र देखें)। प्रतिमान की परिभाषा के कारण, इकाई वृत्त को उत्तल समूह और केंद्रीय रूप से सममित होना चाहिए(इसलिए, उदाहरण के लिए, इकाई वृत्त एक आयत हो सकती है परन्तु एक त्रिकोण नहीं हो सकती है, और <math>p \geq 1</math> एक <math>p</math>-प्रतिमान के लिए है।) | |||
सदिश स्थान के संदर्भ में, | सदिश स्थान के संदर्भ में, अर्धप्रतिमान स्थान पर एक सांस्थिति को परिभाषित करता है, और यह '''हॉसडॉर्फ''' स्थान सांस्थिति है, जब अर्धप्रतिमान अलग-अलग सदिशों के बीच अंतर कर सकता है, जो तब से अर्धप्रतिमान के एक प्रतिमान के बराबर है। इस प्रकार परिभाषित सांस्थिति(या तो एक प्रतिमान या एक अर्धप्रतिमान द्वारा) अनुक्रम या खुले समूह के संदर्भ में समझा जा सकता है। सदिशों का एक क्रम <math>\{v_n\}</math> सामान्य रूप से अभिसरण के तरीकों को कहा जाता है <math>v,</math> यदि <math>\left\|v_n - v\right\| \to 0</math> जैसा <math>n \to \infty.</math> समान रूप से, सांस्थिति में सभी समूह होते हैं जिन्हें खुला बॉल(गणित) के संघ के रूप में दर्शाया जा सकता है। यदि <math>(X, \|\cdot\|)</math> तब एक प्रतिमान स्थान है{{sfn|Narici|Beckenstein|2011|pp=107-113}} | ||
<math>\|x - y\| = \|x - z\| + \|z - y\| \text{ for all } x, y \in X \text{ and } z \in [x, y].</math> | |||
दो | <math>\|x - y\| = \|x - z\| + \|z - y\| \text{for all} x, y \in X \text{and} z \in [x, y].</math> | ||
दो प्रतिमान <math>\|\cdot\|_\alpha</math> तथा <math>\|\cdot\|_\beta</math> एक सदिश स्थान पर <math>X</math> को {{visible anchor|समतुल्य |Equivalent norms}} कहा जाता है यदि वे एक ही सांस्थिति को प्रेरित करते हैं,<ref name="Conrad Equiv norms">{{cite web |url=https://kconrad.math.uconn.edu/blurbs/gradnumthy/equivnorms.pdf |title=मानदंडों की समानता|last=Conrad |first=Keith |website=kconrad.math.uconn.edu |access-date=September 7, 2020 }}</ref> जो तब होता है जब धनात्मक वास्तविक संख्याएं उपस्थित होती हैं <math>C</math> तथा <math>D</math> ऐसा सभी के लिए <math>x \in X</math> तब होता है | |||
<math display="block">C \|x\|_\alpha \leq \|x\|_\beta \leq D \|x\|_\alpha.</math> | <math display="block">C \|x\|_\alpha \leq \|x\|_\beta \leq D \|x\|_\alpha.</math> | ||
उदाहरण के लिए, | उदाहरण के लिए, यदि <math>p > r \geq 1</math> पर <math>\Complex^n,</math> तब<ref name="पी-मानदंडों के बीच संबंध">{{cite web |url=https://math.stackexchange.com/questions/218046/relations-between-p-norms|title=पी-मानदंडों के बीच संबंध|website=Mathematics Stack Exchange}}</ref> | ||
<math display="block">\|x\|_p \leq \|x\|_r \leq n^{(1/r-1/p)} \|x\|_p.</math> | <math display="block">\|x\|_p \leq \|x\|_r \leq n^{(1/r-1/p)} \|x\|_p.</math> | ||
विशेष रूप से, | विशेष रूप से, | ||
<math display="block">\|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2</math> | <math display="block">\|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2</math><math display="block">\|x\|_\infty \leq \|x\|_2 \leq \sqrt{n} \|x\|_\infty</math><math display="block">\|x\|_\infty \leq \|x\|_1 \leq n \|x\|_\infty ,</math> | ||
<math display="block">\|x\|_\infty \leq \|x\|_2 \leq \sqrt{n} \|x\|_\infty</math> | वह है,<math display="block">\|x\|_\infty \leq \|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2 \leq n \|x\|_\infty.</math>यदि सदिश स्थान एक परिमित-आयामी वास्तविक या सम्मिश्र है, तो सभी प्रतिमान समान हैं। दूसरी ओर, अनंत-आयामी सदिश स्थान के स्थिति में, सभी प्रतिमान समान नहीं होते हैं। | ||
<math display="block">\|x\|_\infty \leq \|x\|_1 \leq n \|x\|_\infty ,</math> | समतुल्य प्रतिमान निरंतरता और अभिसरण की समान धारणाओं को परिभाषित करते हैं और कई उद्देश्यों के लिए इन्हें अलग करने की आवश्यकता नहीं है। अधिक यथार्थ होने के लिए सदिश स्थान पर समतुल्य प्रतिमानों द्वारा परिभाषित समान संरचना समान रूप से समरूप है। | ||
वह है, | |||
यदि सदिश स्थान एक परिमित-आयामी वास्तविक या | |||
== अर्धप्रतिमान का वर्गीकरण: नितांत उत्तल अवशोषक समूह == | |||
{{Main|सेमिनॉर्म}} | |||
सदिश स्थान पर सभी अर्धप्रतिमान <math>X</math>नितांत उत्तल अवशोषक समूह के रूप में वर्गीकृत किया जा सकता है <math>A</math> का <math>X.</math> ऐसे प्रत्येक उपसमुच्चय के लिए एक अर्धप्रतिमान मेल खाता है <math>p_A</math> का मिन्कोवस्की कार्यात्मक कहा जाता है <math>A,</math> के रूप में परिभाषित किया गया है | |||
सदिश स्थान पर सभी | |||
<math display="block>p_A(x) := \inf \{r \in \R : r > 0, x \in r A\}</math> | <math display="block>p_A(x) := \inf \{r \in \R : r > 0, x \in r A\}</math> | ||
जहाँ पर <math>\inf_{}</math> अनंत है, गुण के साथ जोकि | |||
<math display="block>\left\{x \in X : p_A(x) < 1\right\} ~\subseteq~ A ~\subseteq~ \left\{x \in X : p_A(x) \leq 1\right\}.</math> | <math display="block>\left\{x \in X : p_A(x) < 1\right\} ~\subseteq~ A ~\subseteq~ \left\{x \in X : p_A(x) \leq 1\right\}.</math> | ||
इसके विपरीत: | इसके विपरीत: | ||
किसी भी स्थानीय रूप से उत्तल टोपोलॉजिकल | किसी भी स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में एक स्थानीय आधार होता है जिसमें नितांत उत्तल समूह होते हैं। इस तरह के आधार का निर्माण करने के लिए एक सामान्य विधि <math>(p)</math> अर्धप्रतिमान <math>p</math> का उपयोग करना है जो बिंदुओं को अलग करता है: समूह के सभी परिमित का संग्रह <math>\{p < 1/n\}</math> स्थान को स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में बदल देता है जिससे प्रत्येक p '''निरंतर''' हो। | ||
इस तरह की विधि का उपयोग | इस तरह की विधि का उपयोग '''कमजोर और कमजोर *''' सांस्थिति की रचना करने के लिए किया जाता है। | ||
प्रतिमान स्थिति: | |||
: मान लीजिए कि अब <math>(p)</math> एक | : मान लीजिए कि अब <math>(p)</math> में एक <math>p:</math> है चूँकि <math>(p)</math>वियोजक है, <math>p</math> एक प्रतिमान है, और <math>A = \{p < 1\}</math> इसकी खुला इकाई बॉल है। तब <math>A</math> 0 का नितांत उत्तल घिरा समूह निकटतम है,और <math>p = p_A</math> निरंतर है। | ||
:विपरीत एंड्री कोलमोगोरोव के कारण है: कोई भी स्थानीय रूप से उत्तल और स्थानीय रूप से घिरा टोपोलॉजिकल | :यथार्थ रूप से: विपरीत '''एंड्री कोलमोगोरोव''' के कारण है: कोई भी स्थानीय रूप से उत्तल और स्थानीय रूप से घिरा टोपोलॉजिकल सदिश स्थान सामान्य है। | ||
:यदि <math>X</math> 0 | :यदि <math>X</math> 0 का नितांत उत्तल परिबद्ध निकटतम है, गेज <math>g_X</math>(जोकि <math>X = \{g_X < 1\}</math> एक प्रतिमान है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|असममित नियम }} | ||
* {{annotated link|F- | * {{annotated link|F-अर्धनियम }} | ||
* {{annotated link| | * {{annotated link|गोवेर्स नियम }} | ||
* {{annotated link| | * {{annotated link|कैडक नियम }} | ||
* {{annotated link| | * {{annotated link|अल्पतम-वर्ग वर्णक्रमीय विश्लेषण}} | ||
* {{annotated link| | * {{annotated link|महालनोबिस दूरी}} | ||
* {{annotated link| | * {{annotated link|परिमाण(गणित)}} | ||
* {{annotated link| | * {{annotated link|आव्यूह नियम }} | ||
* {{annotated link| | * {{annotated link|मिन्कोव्स्की दूरी}} | ||
* {{annotated link| | * {{annotated link|मिन्कोव्स्की कार्यात्मक}} | ||
* {{annotated link| | * {{annotated link|प्रचालक नियम }} | ||
* {{annotated link| | * {{annotated link|पैरानियम }} | ||
* {{annotated link| | * {{annotated link|नियम और आव्यूह का संबंध}} | ||
* {{annotated link| | * {{annotated link|अर्धनियम }} | ||
* {{annotated link| | * {{annotated link|उपरेखीय कार्य}} | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
==ग्रन्थसूची== | ==ग्रन्थसूची== | ||
* {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}} <!--{{sfn|Bourbaki|1987|p=}}--> | * {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}}<!--{{sfn|Bourbaki|1987|p=}}--> | ||
* {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!--{{sfn|Khaleelulla|1982|p=}}--> | * {{Khaleelulla Counterexamples in Topological Vector Spaces}}<!--{{sfn|Khaleelulla|1982|p=}}--> | ||
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!--{{sfn|Narici|Beckenstein|2011|p=}}--> | * {{Narici Beckenstein Topological Vector Spaces|edition=2}}<!--{{sfn|Narici|Beckenstein|2011|p=}}--> | ||
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!--{{sfn|Schaefer|1999|p=}}--> | * {{Schaefer Wolff Topological Vector Spaces|edition=2}}<!--{{sfn|Schaefer|1999|p=}}--> | ||
* {{Trèves François Topological vector spaces, distributions and kernels}} <!--{{sfn|Trèves|2006|p=}}--> | * {{Trèves François Topological vector spaces, distributions and kernels}}<!--{{sfn|Trèves|2006|p=}}--> | ||
* {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} | * {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} | ||
| Line 291: | Line 267: | ||
{{DEFAULTSORT:Norm (Mathematics)}} | {{DEFAULTSORT:Norm (Mathematics)}} | ||
[[Category: | |||
[[Category: | [[Category:All articles with specifically marked weasel-worded phrases|Norm (Mathematics)]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Norm (Mathematics)]] | |||
[[Category:Articles with short description|Norm (Mathematics)]] | |||
[[Category:Articles with specifically marked weasel-worded phrases from November 2015|Norm (Mathematics)]] | |||
[[Category:CS1 Deutsch-language sources (de)]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates|Norm (Mathematics)]] | |||
[[Category:Created On 25/11/2022|Norm (Mathematics)]] | |||
[[Category:Machine Translated Page|Norm (Mathematics)]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Norm (Mathematics)]] | |||
[[Category:Pages with script errors|Norm (Mathematics)]] | |||
[[Category:Short description with empty Wikidata description|Norm (Mathematics)]] | |||
[[Category:Sidebars with styles needing conversion|Norm (Mathematics)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats|Norm (Mathematics)]] | |||
[[Category:Templates that are not mobile friendly|Norm (Mathematics)]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData|Norm (Mathematics)]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates|Norm (Mathematics)]] | |||
[[Category:कार्यात्मक विश्लेषण|Norm (Mathematics)]] | |||
[[Category:मानदंड (गणित)| ]] | [[Category:मानदंड (गणित)| ]] | ||
[[Category:रैखिक बीजगणित|Norm (Mathematics)]] | |||
[[Category: | |||
Latest revision as of 09:57, 10 December 2022
गणित में, प्रतिमान एक वास्तविक या सम्मिश्र सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं का एक फलन है जो मूल से दूरी जैसे निश्चित तरीकों से व्यवहार करता है: यह स्केलिंग के साथ चलता है, त्रिकोण असमानता के एक रूप का पालन करता है, और मात्र मूल बिंदु पर शून्य है। विशेष रूप से, मूल से एक सदिश की यूक्लिडियन दूरी एक प्रतिमान है, जिसे यूक्लिडियन प्रतिमान या 2-प्रतिमान कहा जाता है, जिसे स्वयं के साथ एक सदिश के आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है।
एक अर्धप्रतिमान प्रतिमान के पहले दो गुणों को संतुष्ट करता है, परन्तु मूल के अतिरिक्त अन्य सदिशों के लिए शून्य हो सकता है।[1] विशिष्ट प्रतिमान के साथ एक सदिश स्थान को एक प्रतिमान सदिश स्थान कहा जाता है। इसी तरह अर्धप्रतिमान वाली सदिश समष्टि को अर्धप्रतिमान सदिश समष्टि कहते हैं।
'आभासी प्रतिमान' शब्द का प्रयोग कई संबंधित अर्थों के लिए किया गया है। यह अर्धप्रतिमान का पर्यायवाची हो सकता है।[1] एक आभासी प्रतिमान समान स्वयंसिद्धों को एक प्रतिमान के रूप में संतुष्ट कर सकता है,असमानता द्वारा प्रतिस्थापित समानता के साथरूपता सिद्धांत में उपलब्ध हैं।[2] यह प्रतिमान का भी उल्लेख कर सकता है जो अनंत मान ले सकता है,[3] या निर्देशित समुच्चय द्वारा पैरामिट्रीकृत कुछ कार्यों के लिए।[4]
परिभाषा
एक सदिश स्थान दिया गया है फील्ड एक्सटेंशन पर सम्मिश्र संख्याओं का एक प्रतिमान पर एक वास्तविक मान फलन है निम्नलिखित गुणों के साथ, जहाँ एक अदिश के सामान्य निरपेक्ष मान को दर्शाता है :[5]
- उप-योगात्मक कार्य / त्रिभुज असमानता: सभी के लिए
- सजातीय कार्य: सभी के लिए और सभी अदिश
- धनात्मक निश्चितता/बिंदु-पृथक्करण: सभी के लिए यदि तब
- क्योंकि गुण(2.) का तात्पर्य है कुछ लेखक गुण(3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए यदि और मात्र यदि
अर्धप्रतिमान पर एक कार्य है जिसमें गुण हैं(1.) और(2.)[6] ताकि विशेष रूप से, प्रत्येक प्रतिमान भी एक अर्धप्रतिमान(और इस प्रकार एक उपरैखिक कार्यात्मक) भी हो। यद्यपि, ऐसे अर्धप्रतिमान उपस्थित हैं जो प्रतिमान नहीं हैं। गुण(1.) और(2.) का अर्थ है कि यदि एक प्रतिमान(या अधिक प्रायः, एक अर्धप्रतिमान) है और कि निम्नलिखित गुण भी है:
- ऋणात्मक | गैर-ऋणात्मकता: सभी के लिए
कुछ लेखकों ने प्रतिमान की परिभाषा के भाग के रूप में गैर-ऋणात्मकता को सम्मिलित किया है, यद्यपि यह आवश्यक नहीं है।
समतुल्य प्रतिमान
मान लो कि तथा सदिश स्थान पर दो प्रतिमान(या अर्धप्रतिमान) हैं तब तथा समतुल्य कहलाते हैं, यदि दो धनात्मक वास्तविक स्थिरांक उपस्थित हों तथा साथ ऐसा है कि हर सदिश के लिए
अंकन
यदि एक प्रतिमान एक सदिश स्थान पर दिया गया है तब एक सदिश का प्रतिमान प्रायः इसे दोहरी खड़ी रेखाएँ के भीतर संलग्न करके दर्शाया जाता है: इस तरह के अंकन का उपयोग कभी-कभी किया जाता है मात्र एक अर्धप्रतिमान है। यूक्लिडियन स्थान में एक सदिश की लंबाई के लिए(जो एक प्रतिमान का एक उदाहरण है,जैसा कि नीचे बताया गया है), अंकन एकल लंबवत रेखाओं के साथ भी व्यापक है।
उदाहरण
प्रत्येक(वास्तविक या सम्मिश्र) सदिश स्थान एक प्रतिमान को स्वीकार करता है: यदि सदिश समष्टि के लिए हामेल आधार है तब वास्तविक-मानवान प्रतिमूर्ति जो भेजता है (जहां सभी परन्तु निश्चित रूप से कई अदिश हैं ) प्रति पर एक प्रतिमान है। [8] बड़ी संख्या में प्रतिमान भी हैं जो अतिरिक्त गुण प्रदर्शित करते हैं जो उन्हें विशिष्ट समस्याओं के लिए उपयोगी बनाते हैं।
निरपेक्ष-मान प्रतिमान
निरपेक्ष मान
कोई प्रतिमान एक आयामी सदिश स्थान पर निरपेक्ष मान प्रतिमान के समतुल्य(स्केलिंग तक) है, जिसका अर्थ है कि सदिश स्थान का एक प्रतिमान-संरक्षण समरूपता है जहाँ पर भी है या और प्रतिमान-संरक्षण का अर्थ है , यह समरूपता भेजकर दी जाती है प्रतिमान के एक सदिश के लिए जो अस्तित्व में है क्योंकि इस तरह के एक सदिश को किसी गैर-शून्य सदिश को उसके प्रतिमान के व्युत्क्रम से गुणा करके प्राप्त किया जाता है।
यूक्लिडियनप्रतिमान
-आयामी यूक्लिडियन स्थान पर, सदिश की लंबाई की सहज धारणा सूत्र द्वारा ग्रहण किया गया है[9]
यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक प्रसामान्य आधार पर उनके समन्वय सदिशों का बिंदु उत्पाद है। इसलिए यूक्लिडियन प्रतिमान को एक समन्वय-मुक्त रूप से लिखा जा सकता है
पर उनके समन्वय सदिशों का बिंदु उत्पाद है। इसलिए, यूक्लिडियन प्रतिमान को एक समन्वय-मुक्त रूप से लिखा जा सकता है
यूक्लिडियन प्रतिमान को भी प्रतिमान कहा जाता है,[11] प्रतिमान, 2-प्रतिमान, या वर्ग प्रतिमान; स्थान देखें। यह यूक्लिडियन लंबाई नामक एक दूरी कार्य को परिभाषित करता है, दूरी, या दूरी।
में सदिशों का समुच्चय जिसका यूक्लिडियन प्रतिमान दिया गया धनात्मक स्थिरांक है, एक -वृत्त बनाता है।
सम्मिश्र संख्याओं का यूक्लिडियन प्रतिमान
किसी सम्मिश्र संख्या का यूक्लिडियन प्रतिमान उसका निरपेक्ष मान सम्मिश्र संख्याएँ(जिसे मापांक भी कहा जाता है) होता है, यदि सम्मिश्र तल की पहचान यूक्लिडियन तल से की जाती है सम्मिश्र संख्या की यह पहचान यूक्लिडियन सतह में एक सदिश के रूप में, (जैसा कि पहले यूलर द्वारा सुझाया गया था) सम्मिश्र संख्या से जुड़ा यूक्लिडियन प्रतिमान मात्रा बनाता है ।
चतुष्कोण और अष्टक
वास्तविक संख्याओं के ऊपर ठीक चार हर्विट्ज़ प्रमेय(बीजगणित रचना) हैं। ये हैं वास्तविक संख्या सम्मिश्र संख्याएँ चतुष्कोण और अंत में ऑक्टोनियंस जहां वास्तविक संख्याओं पर इन स्थानों के आयाम क्रमश: विहित प्रतिमान तथा उनके पूर्ण मान कार्य हैं, जैसा कि पहले चर्चा की गई थी।
विहित प्रतिमान पर चतुष्कोणों द्वारा परिभाषित किया गया है
परिमित-आयामी सम्मिश्र प्रतिमान स्थान
एक पर -आयामी सम्मिश्र स्थान का समन्वय करता है सबसे सामान्य प्रतिमान है
यह सूत्र किसी भी आंतरिक उत्पाद स्थान के लिए मान्य है, जिसमें यूक्लिडियन और सम्मिश्र स्थान सम्मिलित हैं। सम्मिश्र स्थान के लिए, आंतरिक उत्पाद सम्मिश्र बिंदु उत्पाद के बराबर होता है। इसलिए इस स्थिति में सूत्र को निम्नलिखित अंकन का उपयोग करके भी लिखा जा सकता है:
टैक्सीकैब प्रतिमान या मैनहट्टन प्रतिमान
1-प्रतिमान मात्र स्तंभों के निरपेक्ष मानों का योग है।
इसके विपरीत,
पी-प्रतिमान
वास्तविक संख्या हो। -प्रतिमान(जिसे -प्रतिमान भी कहा जाता है) का सदिश है[9]
>-प्रतिमान सामान्यीकृत माध्य या शक्ति माध्य से संबंधित है।
के लिये, -प्रतिमान भी एक विहित आंतरिक उत्पाद से प्रेरित है जिसका अर्थ है सभी सदिशों के लिए यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके प्रतिमान के रूप में व्यक्त किया जा सकता है।पर यह आंतरिक उत्पाद यूक्लिडियन आंतरिक उत्पाद द्वारा परिभाषित है
-प्रतिमान का आंशिक व्युत्पन्न द्वारा दिया गया है
के विशेष स्थिति के लिए यह बन जाता है,
अधिकतम प्रतिमान(विशेष स्थिति: अनंत प्रतिमान, समान प्रतिमान, या सर्वोच्च प्रतिमान)
यदि कुछ सदिश ऐसा है तब:
शून्य प्रतिमान
संभाव्यता और कार्यात्मक विश्लेषण में, शून्य प्रतिमान मापने योग्य कार्यों के स्थान के लिए और f-प्रतिमान के साथ अनुक्रमों के f-स्थान के लिए एक पूर्ण मापीय सांस्थिति को प्रेरित करता है। [13] यहां हमारा मतलब f-प्रतिमान से कुछ वास्तविक-मानवान कार्य है दूरी के साथ f-स्थान पर ऐसा है कि ऊपर वर्णित f-प्रतिमान सामान्य अर्थों में एक प्रतिमान नहीं है क्योंकि इसमें आवश्यक एक रूपता गुण का अभाव है।
शून्य से सदिश की हैमिंग दूरी
मापीय ज्यामिति में, असतत मापीय अलग-अलग बिंदुओं और अन्यथा शून्य के लिए एक मान लेता है। जब सदिश स्थान के तत्वों के लिए समन्वय-ढंग लागू किया जाता है, तो असतत दूरी हैमिंग दूरी को परिभाषित करती है, जो संकेतीकरण सिद्धांत और सूचना सिद्धांत में महत्वपूर्ण है। वास्तविक या सम्मिश्र संख्याओं के क्षेत्र में, असतत मापीय की शून्य से दूरी गैर-शून्य बिंदु में सजातीय नहीं है; वास्तव में, शून्य से दूरी एक बनी रहती है क्योंकि इसका गैर-शून्य तर्क शून्य तक पहुंचता है। यद्यपि, शून्य से किसी संख्या की असतत दूरी प्रतिमान के अन्य गुणों, अर्थात् त्रिकोण असमानता और धनात्मक निश्चितता को संतुष्ट करती है। जब सदिशों पर घटक-वार लागू किया जाता है, तो शून्य से असतत दूरी एक गैर-सजातीयप्रतिमान की तरह व्यवहार करती है, जो इसके सदिश तर्क में गैर-शून्य घटकों की संख्या की गणना करता है; तब से, यह गैर-सजातीय प्रतिमान असंतत है।
संकेत प्रक्रमण और सांख्यिकी में, डेविड डोनोहो ने उद्धरण चिह्नों के साथ शून्य 'प्रतिमान' का उल्लेख किया। डोनोहो के अंकन के बाद, का शून्य प्रतिमान के गैर-शून्य निर्देशांकों की संख्या है या शून्य से सदिश की हैमिंग दूरी। जब यह प्रतिमान एक सीमित समूह के लिए स्थानीयकृत होता है, तो इसकी सीमा -प्रतिमान के रूप में 0 तक पहुंचती है। निःसंदेह, शून्य प्रतिमान वास्तव में एक प्रतिमान नहीं है, क्योंकि यह धनात्मक सजातीय नहीं है। निस्संदेह, यह ऊपर वर्णित अर्थ में एक f-प्रतिमान भी नहीं है, क्योंकि यह अदिश-सदिश गुणन में अदिश तर्क के संबंध में और इसके सदिश तर्क के संबंध में अलग-अलग, संयुक्त रूप से और अलग-अलग है। शब्दावली का दुरुपयोग, कुछ अभियान्ता[who?] डोनोहो के उद्धरण चिह्नों को छोड़ दें और अनुपयुक्त रूप से संख्या-गैर-शून्य कार्य को प्रतिमान कहते हैं, मापने योग्य कार्यों के लेबेस्ग स्थान के लिए संकेतन को प्रतिध्वनित करते हैं।
अनंत आयाम
घटकों की अनंत संख्या के लिए उपरोक्त प्रतिमानों का सामान्यीकरण तथा स्थान की ओर जाता है,प्रतिमानों के साथ
सम्मिश्र-मानवान अनुक्रमों और कार्यों के लिए क्रमशः , जिसे और अधिक सामान्यीकृत किया जा सकता है(हार माप देखें)।
कोई भी आंतरिक उत्पाद स्वाभाविक रूप से प्रतिमान को प्रेरित करता है।
अनंत-आयामी प्रतिमान सदिश स्थानों के अन्य उदाहरण बनच स्थान लेख में पाए जा सकते हैं।
समग्र प्रतिमान
अन्य प्रतिमान चालू उपरोक्त को मिलाकर बनाया जा सकता है; उदाहरण के लिए
किसी भी प्रतिमान और अंतःक्षेपी रैखिक परिवर्तन के लिए के लिये नया प्रतिमान परिभाषित कर सकते हैं, जो बराबर है
3-डी में, यह समान है परन्तु 1-प्रतिमान(अष्टफलक) और अधिकतम प्रतिमान {प्रिज्म(ज्यामिति) समांतर चतुर्भुज आधार के साथ}के लिए अलग है।
ऐसे प्रतिमानों के उदाहरण हैं जिन्हें प्रवेशवार सूत्रों द्वारा परिभाषित नहीं किया गया है। उदाहरण के लिए, एक केंद्रीय-सममित उत्तल पिंड का मिन्कोव्स्की कार्यात्मक (शून्य पर केंद्रित) एक प्रतिमान को परिभाषित करता है ( § अर्धनियम का वर्गीकरण: नितांत उत्तल अवशोषक समूह नीचे देखें)।
उपरोक्त सभी सूत्र भी संशोधन के बिना पर प्रतिमान उत्पन्न करते हैं।
आव्यूह(वास्तविक या सम्मिश्र प्रविष्टियों के साथ) के स्थान पर भी प्रतिमान हैं, तथा कथित आव्यूह प्रतिमान।
अमूर्त बीजगणित में
मान लें कि अविभाज्य परिमाण के क्षेत्र का एक परिमित विस्तार है,और मान लीजिए कि में बीजगणितीय समापन है। विशिष्ट क्षेत्र समरूपता यदि हैं , तब एक तत्व का गैलोज़-सैद्धांतिक प्रतिमान का मान है जैसा कि कार्य एक क्षेत्र विस्तार परिमाण का सजातीय है, गाल्वा-सैद्धांतिक प्रतिमान इस लेख के अर्थ में एक प्रतिमान नहीं है। यद्यपि प्रतिमान की -th मूल(यह मानते हुए कि अवधारणा समझ में आता है) एक प्रतिमान है।[14]
संयोजन बीजगणित
संयोजन बीजगणित में प्रतिमान की अवधारणा मानक के सामान्य गुणों को साझा नहीं करती है क्योंकि यह के लिए ऋणात्मक या शून्य हो सकता है। एक संयोजन बीजगणित एक क्षेत्र , एक जटिलता और एक द्विघात रूप | को "प्रतिमान" कहा जाता है।
संयोजन बीजगणित की विशिष्ट विशेषता की समरूपता गुण है: उत्पाद के लिए दो तत्वों का तथा संयोजन बीजगणित , प्रतिमान संतुष्ट करता है। के लिये और O संयोजन बीजगणित प्रतिमान ऊपर चर्चा किए गए प्रतिमान का वर्ग है। उन स्थितियों में प्रतिमान एक निश्चित द्विघात रूप है। अन्य संयोजन बीजगणित में प्रतिमान एक समदैशिक द्विघात रूप है।
गुण
किसी भी प्रतिमान के लिए एक सदिश स्थान पर प्रतिलोम त्रिकोण विषमता रखती है:
|स्थान के लिए प्रतिमान, हमारे पास होल्डर की विषमता है[16]
प्रत्येक प्रतिमान एक अर्धप्रतिमान है और इस प्रकार सभी अर्धप्रतिमान बीजगणितीय गुणों को संतुष्ट करता है। बदले में, प्रत्येक अर्धप्रतिमान एक उपरेखीय कार्य है और इस प्रकार सभी उपरेखीय कार्य गुणों को संतुष्ट करता है। विशेष रूप से, प्रत्येक प्रतिमान एक उत्तल कार्य है।
समतुल्यता
इकाई वृत्त की अवधारणा( सभी सदिशों के प्रतिमान 1 का समूह) अलग-अलग प्रतिमानों में भिन्न है: 1-प्रतिमान के लिए, इकाई वृत्त एक वर्ग(ज्यामिति) है, 2-प्रतिमान(यूक्लिडियन प्रतिमान) के लिए, यह है प्रसिद्ध इकाई वृत्त है, जबकि अनन्तता प्रतिमान के लिए, यह एक अलग वर्ग है। किसी के लिए -प्रतिमान, यह सर्वांगसम अक्षों के साथ एक उत्तमदीर्घवृत्त है(संलग्न चित्र देखें)। प्रतिमान की परिभाषा के कारण, इकाई वृत्त को उत्तल समूह और केंद्रीय रूप से सममित होना चाहिए(इसलिए, उदाहरण के लिए, इकाई वृत्त एक आयत हो सकती है परन्तु एक त्रिकोण नहीं हो सकती है, और एक -प्रतिमान के लिए है।)
सदिश स्थान के संदर्भ में, अर्धप्रतिमान स्थान पर एक सांस्थिति को परिभाषित करता है, और यह हॉसडॉर्फ स्थान सांस्थिति है, जब अर्धप्रतिमान अलग-अलग सदिशों के बीच अंतर कर सकता है, जो तब से अर्धप्रतिमान के एक प्रतिमान के बराबर है। इस प्रकार परिभाषित सांस्थिति(या तो एक प्रतिमान या एक अर्धप्रतिमान द्वारा) अनुक्रम या खुले समूह के संदर्भ में समझा जा सकता है। सदिशों का एक क्रम सामान्य रूप से अभिसरण के तरीकों को कहा जाता है यदि जैसा समान रूप से, सांस्थिति में सभी समूह होते हैं जिन्हें खुला बॉल(गणित) के संघ के रूप में दर्शाया जा सकता है। यदि तब एक प्रतिमान स्थान है[17]
दो प्रतिमान तथा एक सदिश स्थान पर को समतुल्य कहा जाता है यदि वे एक ही सांस्थिति को प्रेरित करते हैं,[7] जो तब होता है जब धनात्मक वास्तविक संख्याएं उपस्थित होती हैं तथा ऐसा सभी के लिए तब होता है
अर्धप्रतिमान का वर्गीकरण: नितांत उत्तल अवशोषक समूह
सदिश स्थान पर सभी अर्धप्रतिमान नितांत उत्तल अवशोषक समूह के रूप में वर्गीकृत किया जा सकता है का ऐसे प्रत्येक उपसमुच्चय के लिए एक अर्धप्रतिमान मेल खाता है का मिन्कोवस्की कार्यात्मक कहा जाता है के रूप में परिभाषित किया गया है
किसी भी स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में एक स्थानीय आधार होता है जिसमें नितांत उत्तल समूह होते हैं। इस तरह के आधार का निर्माण करने के लिए एक सामान्य विधि अर्धप्रतिमान का उपयोग करना है जो बिंदुओं को अलग करता है: समूह के सभी परिमित का संग्रह स्थान को स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में बदल देता है जिससे प्रत्येक p निरंतर हो।
इस तरह की विधि का उपयोग कमजोर और कमजोर * सांस्थिति की रचना करने के लिए किया जाता है।
प्रतिमान स्थिति:
- मान लीजिए कि अब में एक है चूँकि वियोजक है, एक प्रतिमान है, और इसकी खुला इकाई बॉल है। तब 0 का नितांत उत्तल घिरा समूह निकटतम है,और निरंतर है।
- यथार्थ रूप से: विपरीत एंड्री कोलमोगोरोव के कारण है: कोई भी स्थानीय रूप से उत्तल और स्थानीय रूप से घिरा टोपोलॉजिकल सदिश स्थान सामान्य है।
- यदि 0 का नितांत उत्तल परिबद्ध निकटतम है, गेज (जोकि एक प्रतिमान है।
यह भी देखें
- असममित नियम
- F-अर्धनियम
- गोवेर्स नियम
- कैडक नियम
- अल्पतम-वर्ग वर्णक्रमीय विश्लेषण
- महालनोबिस दूरी
- परिमाण(गणित)
- आव्यूह नियम
- मिन्कोव्स्की दूरी
- मिन्कोव्स्की कार्यात्मक
- प्रचालक नियम
- पैरानियम
- नियम और आव्यूह का संबंध
- अर्धनियम
- उपरेखीय कार्य
संदर्भ
- ↑ 1.0 1.1 Knapp, A.W. (2005). बुनियादी वास्तविक विश्लेषण. Birkhäuser. p. [1]. ISBN 978-0-817-63250-2.
- ↑ "छद्म मानदंड - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2022-05-12.
- ↑ "स्यूडोनॉर्म". www.spektrum.de (in Deutsch). Retrieved 2022-05-12.
- ↑ Hyers, D. H. (1939-09-01). "छद्म-मानकित रैखिक रिक्त स्थान और एबेलियन समूह". Duke Mathematical Journal. 5 (3). doi:10.1215/s0012-7094-39-00551-x. ISSN 0012-7094.
- ↑ Pugh, C.C. (2015). वास्तविक गणितीय विश्लेषण. Springer. p. page 28. ISBN 978-3-319-17770-0. Prugovečki, E. (1981). Quantum Mechanics in Hilbert Space. p. page 20.
- ↑ Rudin, W. (1991). कार्यात्मक विश्लेषण. p. 25.
- ↑ 7.0 7.1 7.2 Conrad, Keith. "मानदंडों की समानता" (PDF). kconrad.math.uconn.edu. Retrieved September 7, 2020.
- ↑ Wilansky 2013, pp. 20–21.
- ↑ 9.0 9.1 9.2 Weisstein, Eric W. "वेक्टर नॉर्म". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
- ↑ Chopra, Anil (2012). संरचनाओं की गतिशीलता, चौथा संस्करण।. Prentice-Hall. ISBN 978-0-13-285803-8.
- ↑ Weisstein, Eric W. "आदर्श". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
- ↑ Except in where it coincides with the Euclidean norm, and where it is trivial.
- ↑ Rolewicz, Stefan (1987), Functional analysis and control theory: Linear systems, Mathematics and its Applications (East European Series), vol. 29 (Translated from the Polish by Ewa Bednarczuk ed.), Dordrecht; Warsaw: D. Reidel Publishing Co.; PWN—Polish Scientific Publishers, pp. xvi, 524, doi:10.1007/978-94-015-7758-8, ISBN 90-277-2186-6, MR 0920371, OCLC 13064804
- ↑ Lang, Serge (2002) [1993]. बीजगणित (Revised 3rd ed.). New York: Springer Verlag. p. 284. ISBN 0-387-95385-X.
- ↑ Trèves 2006, pp. 242–243.
- ↑ 16.0 16.1 Golub, Gene; Van Loan, Charles F. (1996). मैट्रिक्स संगणना (Third ed.). Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
- ↑ Narici & Beckenstein 2011, pp. 107–113.
- ↑ "पी-मानदंडों के बीच संबंध". Mathematics Stack Exchange.
ग्रन्थसूची
- Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
- Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.