नियम (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Length in a vector space}}
{{short description|Length in a vector space}}
{{about|norms of [[normed vector space]]s|field theory|Field norm|ideals|Ideal norm|group theory|Norm (group)|norms in descriptive set theory|prewellordering}}
{{about|norms of [[normed vector space]]s|field theory|Field norm|ideals|Ideal norm|group theory|Norm (group)|norms in descriptive set theory|prewellordering}}
गणित में, नियम एक वास्तविक या सम्मिश्र सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं का एक फलन है जो मूल से दूरी जैसे निश्चित तरीकों से व्यवहार करता है: यह स्केलिंग के साथ चलता है, त्रिकोण असमानता के एक रूप का पालन करता है, और केवल मूल बिंदु पर शून्य है।विशेष रूप से, मूल से एक सदिश की यूक्लिडियन दूरी एक नियम है, जिसे यूक्लिडियन नियम या 2-नियम कहा जाता है, जिसे स्वयं के साथ एक सदिश के आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है।
गणित में, नियम एक वास्तविक या सम्मिश्र सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं का एक फलन है जो मूल से दूरी जैसे निश्चित तरीकों से व्यवहार करता है: यह स्केलिंग के साथ चलता है, त्रिकोण असमानता के एक रूप का पालन करता है, और मात्र  मूल बिंदु पर शून्य है।विशेष रूप से, मूल से एक सदिश की यूक्लिडियन दूरी एक नियम है, जिसे यूक्लिडियन नियम या 2-नियम कहा जाता है, जिसे स्वयं के साथ एक सदिश के आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है।


एक अर्धनियम नियम के पहले दो गुणों को संतुष्ट करता है, परन्तु  मूल के अतिरिक्त अन्य सदिशों  के लिए शून्य हो सकता है।<ref name="Knapp">{{cite book|title=बुनियादी वास्तविक विश्लेषण|publisher=Birkhäuser|author=Knapp, A.W.|year=2005|page=[https://books.google.fr/books?id=4ZZCAAAAQBAJ&pg=279#v=onepage&q&f=false] |isbn=978-0-817-63250-2}}</ref> एक विशिष्ट नियम के साथ एक सदिश स्थान को एक नियम सदिश स्थान कहा जाता है। इसी तरह से, अर्धनियम वाली सदिश समष्टि को अर्धनियम सदिश समष्टि कहते हैं।
एक अर्धनियम नियम के पहले दो गुणों को संतुष्ट करता है, परन्तु  मूल के अतिरिक्त अन्य सदिशों  के लिए शून्य हो सकता है।<ref name="Knapp">{{cite book|title=बुनियादी वास्तविक विश्लेषण|publisher=Birkhäuser|author=Knapp, A.W.|year=2005|page=[https://books.google.fr/books?id=4ZZCAAAAQBAJ&pg=279#v=onepage&q&f=false] |isbn=978-0-817-63250-2}}</ref> एक विशिष्ट नियम के साथ एक सदिश स्थान को एक नियम सदिश स्थान कहा जाता है। इसी तरह से, अर्धनियम वाली सदिश समष्टि को अर्धनियम सदिश समष्टि कहते हैं।
Line 16: Line 16:
# सजातीय कार्य: <math>p(s x) = \left|s\right| p(x)</math> सभी के लिए <math>x \in X</math> और सभी अदिश्स <math>s.</math>
# सजातीय कार्य: <math>p(s x) = \left|s\right| p(x)</math> सभी के लिए <math>x \in X</math> और सभी अदिश्स <math>s.</math>
#सकारात्मक निश्चितता/{{Visible anchor|बिंदु-पृथक्करण}}: सभी के लिए <math>x \in X,</math> यदि <math>p(x) = 0</math> फिर <math>x = 0.</math>
#सकारात्मक निश्चितता/{{Visible anchor|बिंदु-पृथक्करण}}: सभी के लिए <math>x \in X,</math> यदि <math>p(x) = 0</math> फिर <math>x = 0.</math>
#* क्योंकि गुण (2.) का तात्पर्य है <math>p(0) = 0,</math> कुछ लेखक गुण (3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए <math>x \in X,</math> <math>p(x) = 0</math> यदि और केवल यदि  <math>x = 0.</math>
#* क्योंकि गुण (2.) का तात्पर्य है <math>p(0) = 0,</math> कुछ लेखक गुण (3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए <math>x \in X,</math> <math>p(x) = 0</math> यदि और मात्र  यदि  <math>x = 0.</math>
एक अर्धनियम पर <math>X</math> एक कार्य है <math>p : X \to \R</math> जिसमें गुण हैं (1.) और (2.)<ref>{{cite book|title=कार्यात्मक विश्लेषण|author=Rudin, W.|year=1991|page=25}}</ref> ताकि विशेष रूप से, प्रत्येक नियम भी एक अर्धनियम (और इस प्रकार एक उपरैखिक कार्यात्मक) भी हो। यद्यपि, ऐसे अर्धनियम उपस्थित हैं जो नियम नहीं हैं। गुण (1.) और (2.) का अर्थ है कि यदि <math>p</math> एक नियम (या अधिक प्रायः, एक अर्धनियम) है <math>p(0) = 0</math> और कि <math>p</math> निम्नलिखित गुण भी है:
एक अर्धनियम पर <math>X</math> एक कार्य है <math>p : X \to \R</math> जिसमें गुण हैं (1.) और (2.)<ref>{{cite book|title=कार्यात्मक विश्लेषण|author=Rudin, W.|year=1991|page=25}}</ref> ताकि विशेष रूप से, प्रत्येक नियम भी एक अर्धनियम (और इस प्रकार एक उपरैखिक कार्यात्मक) भी हो। यद्यपि, ऐसे अर्धनियम उपस्थित हैं जो नियम नहीं हैं। गुण (1.) और (2.) का अर्थ है कि यदि <math>p</math> एक नियम (या अधिक प्रायः, एक अर्धनियम) है <math>p(0) = 0</math> और कि <math>p</math> निम्नलिखित गुण भी है:


Line 27: Line 27:
मान लो कि <math>p</math> तथा <math>q</math> सदिश स्थान पर दो नियम (या अर्धनियम) हैं <math>X.</math> फिर <math>p</math> तथा <math>q</math> समतुल्य कहलाते हैं, यदि दो सकारात्मक वास्तविक स्थिरांक उपस्थित हों <math>c</math> तथा <math>C</math> साथ <math>c > 0</math> ऐसा है कि हर सदिश के लिए <math>x \in X,</math>
मान लो कि <math>p</math> तथा <math>q</math> सदिश स्थान पर दो नियम (या अर्धनियम) हैं <math>X.</math> फिर <math>p</math> तथा <math>q</math> समतुल्य कहलाते हैं, यदि दो सकारात्मक वास्तविक स्थिरांक उपस्थित हों <math>c</math> तथा <math>C</math> साथ <math>c > 0</math> ऐसा है कि हर सदिश के लिए <math>x \in X,</math>
<math display="block">c q(x) \leq p(x) \leq C q(x).</math>
<math display="block">c q(x) \leq p(x) \leq C q(x).</math>
सम्बन्ध <math>p</math> के बराबर है <math>q</math> स्वतुल्य संबंध है, सममित संबंध (<math>c q \leq p \leq C q</math> तात्पर्य <math>\tfrac{1}{C} p \leq q \leq \tfrac{1}{c} p</math>), और सकर्मक और इस प्रकार सभी नियमों के समूह पर एक समानता संबंध को परिभाषित करता है <math>X.</math>नियम <math>p</math> तथा <math>q</math> समतुल्य हैं यदि और केवल यदि वे समान संस्थिति को प्रेरित करते हैं <math>X.</math><ref name="Conrad Equiv norms">{{cite web |url=https://kconrad.math.uconn.edu/blurbs/gradnumthy/equivnorms.pdf |title=मानदंडों की समानता|last=Conrad |first=Keith |website=kconrad.math.uconn.edu |access-date=September 7, 2020 }}</ref> परिमित-आयामी स्थान पर कोई भी दो नियम समतुल्य हैं परन्तु  यह अनंत-आयामी स्थानों तक विस्तृत नहीं है।<ref name="Conrad Equiv norms"/>
सम्बन्ध <math>p</math> के बराबर है <math>q</math> स्वतुल्य संबंध है, सममित संबंध (<math>c q \leq p \leq C q</math> तात्पर्य <math>\tfrac{1}{C} p \leq q \leq \tfrac{1}{c} p</math>), और सकर्मक और इस प्रकार सभी नियमों के समूह पर एक समानता संबंध को परिभाषित करता है <math>X.</math>नियम <math>p</math> तथा <math>q</math> समतुल्य हैं यदि और मात्र  यदि वे समान संस्थिति को प्रेरित करते हैं <math>X.</math><ref name="Conrad Equiv norms">{{cite web |url=https://kconrad.math.uconn.edu/blurbs/gradnumthy/equivnorms.pdf |title=मानदंडों की समानता|last=Conrad |first=Keith |website=kconrad.math.uconn.edu |access-date=September 7, 2020 }}</ref> परिमित-आयामी स्थान पर कोई भी दो नियम समतुल्य हैं परन्तु  यह अनंत-आयामी स्थानों तक विस्तृत नहीं है।<ref name="Conrad Equiv norms"/>




=== अंकन ===
=== अंकन ===


यदि एक नियम <math>p : X \to \R</math> एक सदिश स्थान पर दिया गया है <math>X,</math> फिर एक सदिश का नियम <math>z \in X</math> प्रायः इसे दोहरी खड़ी रेखाएँ के भीतर संलग्न करके दर्शाया जाता है: <math>\|z\| = p(z).</math> इस तरह के अंकन का उपयोग कभी-कभी किया जाता है <math>p</math> केवल एक अर्धनियम है। यूक्लिडियन स्थान में एक सदिश की लंबाई के लिए (जो एक नियम का एक उदाहरण है,जैसा कि नीचे बताया गया है), अंकन <math>|x|</math> एकल लंबवत रेखाओं के साथ भी व्यापक है।
यदि एक नियम <math>p : X \to \R</math> एक सदिश स्थान पर दिया गया है <math>X,</math> फिर एक सदिश का नियम <math>z \in X</math> प्रायः इसे दोहरी खड़ी रेखाएँ के भीतर संलग्न करके दर्शाया जाता है: <math>\|z\| = p(z).</math> इस तरह के अंकन का उपयोग कभी-कभी किया जाता है <math>p</math> मात्र  एक अर्धनियम है। यूक्लिडियन स्थान में एक सदिश की लंबाई के लिए (जो एक नियम का एक उदाहरण है,जैसा कि नीचे बताया गया है), अंकन <math>|x|</math> एकल लंबवत रेखाओं के साथ भी व्यापक है।


== उदाहरण ==
== उदाहरण ==
Line 57: Line 57:
यूक्लिडियन नियम अब तक  <math>\R^n</math> का सबसे अधिक इस्तेमाल किया जाने वाला नियम है,<ref name=":1" />परन्तु  इस सदिश स्थान पर अन्य नियम हैं जैसा कि नीचे दिखाया जाएगा।यद्यपि, ये सभी नियम इस मायने में समान हैं कि ये सभी एक ही सांस्थिति को परिभाषित करते हैं।
यूक्लिडियन नियम अब तक  <math>\R^n</math> का सबसे अधिक इस्तेमाल किया जाने वाला नियम है,<ref name=":1" />परन्तु  इस सदिश स्थान पर अन्य नियम हैं जैसा कि नीचे दिखाया जाएगा।यद्यपि, ये सभी नियम इस मायने में समान हैं कि ये सभी एक ही सांस्थिति को परिभाषित करते हैं।


यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक  प्रसामान्य आधार पर उनके समन्वय सदिशों का बिंदु उत्पाद है।इसलिए, यूक्लिडियन नियम को एक समन्वय-मुक्त तरीके से लिखा जा सकता है
यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक  प्रसामान्य आधार पर उनके समन्वय सदिशों का बिंदु उत्पाद है।इसलिए, यूक्लिडियन नियम को एक समन्वय-मुक्त रूप  से लिखा जा सकता है


<math>{\displaystyle {\displaystyle \|{\boldsymbol {x}}\|:={\sqrt {{\boldsymbol {x}}\cdot {\boldsymbol {x}}}}.}}</math>
<math>{\displaystyle {\displaystyle \|{\boldsymbol {x}}\|:={\sqrt {{\boldsymbol {x}}\cdot {\boldsymbol {x}}}}.}}</math>


पर उनके समन्वय सदिशों का बिंदु  उत्पाद है।
पर उनके समन्वय सदिशों का बिंदु  उत्पाद है।
इसलिए, यूक्लिडियननियम को एक समन्वय-मुक्त तरीके से लिखा जा सकता है<math display="block">\|\boldsymbol{x}\| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}.</math>
इसलिए, यूक्लिडियननियम को एक समन्वय-मुक्त रूप से लिखा जा सकता है<math display="block">\|\boldsymbol{x}\| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}.</math>




Line 102: Line 102:
यह नाम उस दूरी से संबंधित है जो मूल से बिंदु  <math>x</math> तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड (मैनहट्टन के न्यूयॉर्क सिटी बोरो की तरह) में चलानी पड़ती है।सदिशों का समूह जिसका 1-नियम दिया गया स्थिरांक है,नियम शून्य से 1 के बराबर आयाम के एक संकर पॉलीटॉप की सतह बनाता है। टैक्सीकैब नियम को <math>\ell^1</math>नियम भी कहा जाता है। इस नियम से प्राप्त दूरी को मैनहट्टन दूरी या  <math>\ell_1</math> दूरी कहा जाता है।
यह नाम उस दूरी से संबंधित है जो मूल से बिंदु  <math>x</math> तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड (मैनहट्टन के न्यूयॉर्क सिटी बोरो की तरह) में चलानी पड़ती है।सदिशों का समूह जिसका 1-नियम दिया गया स्थिरांक है,नियम शून्य से 1 के बराबर आयाम के एक संकर पॉलीटॉप की सतह बनाता है। टैक्सीकैब नियम को <math>\ell^1</math>नियम भी कहा जाता है। इस नियम से प्राप्त दूरी को मैनहट्टन दूरी या  <math>\ell_1</math> दूरी कहा जाता है।


1-नियम केवल स्तंभों के निरपेक्ष मानों का योग है।
1-नियम मात्र  स्तंभों के निरपेक्ष मानों का योग है।


इसके विपरीत,
इसके विपरीत,
Line 116: Line 116:
<math display="block">\|\mathbf{x}\|_\infty := \max_i \left|x_i\right|.</math>
<math display="block">\|\mathbf{x}\|_\infty := \max_i \left|x_i\right|.</math>
  <math>p</math>>-नियम सामान्यीकृत माध्य या शक्ति माध्य से संबंधित है।
  <math>p</math>>-नियम सामान्यीकृत माध्य या शक्ति माध्य से संबंधित है।
<math>p = 2</math> के लिये,  <math>\|\,\cdot\,\|_2</math>-नियम भी एक विहित आंतरिक उत्पाद <math>{\displaystyle \langle \,\cdot ,\,\cdot \rangle }</math> से प्रेरित है जिसका अर्थ है <math>\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}</math> सभी सदिशों  के लिए <math>\mathbf{x}.</math> यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके नियम के रूप में व्यक्त किया जा सकता है।पर <math>\ell^2,</math> यह आंतरिक उत्पाद {{visible anchor|यूक्लिडियन आंतरिक उत्पाद}}द्वारा परिभाषित है
<math>p = 2</math> के लिये,  <math>\|\,\cdot\,\|_2</math>-नियम भी एक विहित आंतरिक उत्पाद <math>{\displaystyle \langle \,\cdot ,\,\cdot \rangle }</math> से प्रेरित है जिसका अर्थ है <math>\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}</math> सभी सदिशों  के लिए <math>\mathbf{x}.</math> यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके नियम के रूप में व्यक्त किया जा सकता है।पर <math>\ell^2,</math> यह आंतरिक उत्पाद {{visible anchor|यूक्लिडियन आंतरिक उत्पाद}} द्वारा परिभाषित है
<math display=block>\langle \left(x_n\right)_{n}, \left(y_n\right)_{n} \rangle_{\ell^2} ~=~ \sum_n \overline{x_n} y_n</math>
<math display=block>\langle \left(x_n\right)_{n}, \left(y_n\right)_{n} \rangle_{\ell^2} ~=~ \sum_n \overline{x_n} y_n</math>
जबकि स्थान के लिए <math>L^2(X, \mu)</math> एक माप (गणित) के साथ संबद्ध <math>(X, \Sigma, \mu)</math> है, जिसमें सभी वर्ग-अभिन्न कार्य होते हैं, यह आंतरिक उत्पाद है
जबकि स्थान के लिए <math>L^2(X, \mu)</math> एक माप (गणित) के साथ संबद्ध <math>(X, \Sigma, \mu)</math> है, जिसमें सभी वर्ग-अभिन्न कार्य होते हैं, यह आंतरिक उत्पाद है
<math display=block>\langle f, g \rangle_{L^2} = \int_X \overline{f(x)} g(x)\, \mathrm dx.</math>
<math display=block>\langle f, g \rangle_{L^2} = \int_X \overline{f(x)} g(x)\, \mathrm dx.</math>
यह परिभाषा अभी भी  <math>0 < p < 1</math> रुचि की है परन्तु परिणामी कार्य एक नियम को परिभाषित नहीं करता है,<ref>Except in <math>\R^1,</math> where it coincides with the Euclidean norm, and <math>\R^0,</math> where it is trivial.</ref> क्योंकि यह त्रिभुज असमानता का उल्लंघन करता है। इस स्थिति में क्या सत्य है <math>0 < p < 1,</math> मापने योग्य अनुरूप में भी में क्या सत्य है, वह  <math>L^p</math> वर्ग  एक सदिश स्थान संगत है , और यह भी सत्य है कि function
यह परिभाषा अभी भी  <math>0 < p < 1</math> रुचि की है परन्तु परिणामी कार्य एक नियम को परिभाषित नहीं करता है,<ref>Except in <math>\R^1,</math> where it coincides with the Euclidean norm, and <math>\R^0,</math> where it is trivial.</ref> क्योंकि यह त्रिभुज असमानता का उल्लंघन करता है।  <math>0 < p < 1</math> इस स्थिति में क्या सत्य है, मापने योग्य अनुरूप में भी। वह  <math>L^p</math> वर्ग  एक सदिश स्थान संगत है, और यह भी सत्य है कि कार्य
<math display="block">\int_X |f(x) - g(x)|^p ~ \mathrm d \mu</math>
<math display="block">\int_X |f(x) - g(x)|^p ~ \mathrm d \mu</math>
(बिना <math>p</math>जड़) एक दूरी को परिभाषित करता है जो बनाता है <math>L^p(X)</math> एक पूर्ण मीट्रिक टोपोलॉजिकल सदिश स्थान में। कार्यात्मक विश्लेषण, संभाव्यता सिद्धांत और हार्मोनिक विश्लेषण में ये रिक्त स्थान बहुत रुचि रखते हैं।
(बिना <math>p</math>जड़) एक दूरी को परिभाषित करता है जो <math>L^p(X)</math> एक पूर्ण मापीय '''टोपोलॉजिकल सदिश स्थान''' में बनाता है। कार्यात्मक विश्लेषण, संभाव्यता सिद्धांत और लयबद्ध विश्लेषण में ये स्थान बहुत रुचि रखते हैं।यद्यपि, तुच्छ मामलों के छोड़कर यह टोपोलॉजिकल सदिश स्थान स्थानीय रूप से उत्तल नहीं है, और इसका कोई निरंतर गैर-शून्य रैखिक रूप नहीं है। इस प्रकार टोपोलॉजिकल द्वैत स्थान में मात्र शून्य कार्यात्मक होता है।
यद्यपि, तुच्छ मामलों के अलावा, यह टोपोलॉजिकल सदिश स्थान स्थानीय रूप से उत्तल नहीं है, और इसका कोई निरंतर गैर-शून्य रैखिक रूप नहीं है। इस प्रकार टोपोलॉजिकल डुअल स्थान में केवल शून्य कार्यात्मक होता है।


का आंशिक व्युत्पन्न <math>p</math>-नियम द्वारा दिया गया है
<math>p</math>-नियम का आंशिक व्युत्पन्न द्वारा दिया गया है
<math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_p = \frac{x_k \left|x_k\right|^{p-2}} { \|\mathbf{x}\|_p^{p-1}}.</math>
<math display="block">\frac{\partial}{\partial x_k} \|\mathbf{x}\|_p = \frac{x_k \left|x_k\right|^{p-2}} { \|\mathbf{x}\|_p^{p-1}}.</math>
के संबंध में व्युत्पन्न <math>x,</math> इसलिए, है
इसलिए, <math>x</math> के संबंध में व्युत्पन्न , है
<math display="block">\frac{\partial \|\mathbf{x}\|_p}{\partial \mathbf{x}} =\frac{\mathbf{x} \circ |\mathbf{x}|^{p-2}} {\|\mathbf{x}\|^{p-1}_p}.</math>
<math display="block">\frac{\partial \|\mathbf{x}\|_p}{\partial \mathbf{x}} =\frac{\mathbf{x} \circ |\mathbf{x}|^{p-2}} {\|\mathbf{x}\|^{p-1}_p}.</math>
जहाँ पर  <math>\circ</math> हैडमार्ड उत्पाद (मैट्रिसेस) को दर्शाता है और <math>|\cdot|</math> सदिश के प्रत्येक घटक के निरपेक्ष मान के लिए उपयोग किया जाता है।
जहाँ पर  <math>\circ</math> हैडमार्ड उत्पाद (मैट्रिसेस) को दर्शाता है और <math>|\cdot|</math> सदिश के प्रत्येक घटक के निरपेक्ष मान के लिए उपयोग किया जाता है।
Line 212: Line 211:
इसका एक विशेष मामला कॉची-श्वार्ज़ असमानता है:<ref name="GOLUB" />
इसका एक विशेष मामला कॉची-श्वार्ज़ असमानता है:<ref name="GOLUB" />
<math display="block">\left|\langle x, y \rangle\right| \leq \|x\|_2 \|y\|_2.</math>
<math display="block">\left|\langle x, y \rangle\right| \leq \|x\|_2 \|y\|_2.</math>
[[File:Vector norms.svg|frame|right|विभिन्ननियमों में इकाई हलकों के उदाहरण।]]प्रत्येकनियम एक सेमिनियम है और इस प्रकार सभी सेमिनियम#बीजगणितीय_गुणों को संतुष्ट करता है। बदले में, प्रत्येक सेमिनियम एक उपरेखीय कार्य है और इस प्रकार सभी Sublinear_function#Properties को संतुष्ट करता है। विशेष रूप से, प्रत्येकनियम एक उत्तल कार्य है।
[[File:Vector norms.svg|frame|right|विभिन्ननियमों में इकाई हलकों के उदाहरण।]]प्रत्येकनियम एक सेमिनियम है और इस प्रकार सभी सेमिनियम#बीजगणितीय_गुणों को संतुष्ट करता है। बदले में, प्रत्येक सेमिनियम एक उपरेखीय कार्य है और इस प्रकार सभी Sublinear_कार्य#Properties को संतुष्ट करता है। विशेष रूप से, प्रत्येकनियम एक उत्तल कार्य है।


=== समानता ===
=== समानता ===

Revision as of 12:48, 2 December 2022

गणित में, नियम एक वास्तविक या सम्मिश्र सदिश स्थान से गैर-ऋणात्मक वास्तविक संख्याओं का एक फलन है जो मूल से दूरी जैसे निश्चित तरीकों से व्यवहार करता है: यह स्केलिंग के साथ चलता है, त्रिकोण असमानता के एक रूप का पालन करता है, और मात्र मूल बिंदु पर शून्य है।विशेष रूप से, मूल से एक सदिश की यूक्लिडियन दूरी एक नियम है, जिसे यूक्लिडियन नियम या 2-नियम कहा जाता है, जिसे स्वयं के साथ एक सदिश के आंतरिक उत्पाद के वर्गमूल के रूप में भी परिभाषित किया जा सकता है।

एक अर्धनियम नियम के पहले दो गुणों को संतुष्ट करता है, परन्तु मूल के अतिरिक्त अन्य सदिशों के लिए शून्य हो सकता है।[1] एक विशिष्ट नियम के साथ एक सदिश स्थान को एक नियम सदिश स्थान कहा जाता है। इसी तरह से, अर्धनियम वाली सदिश समष्टि को अर्धनियम सदिश समष्टि कहते हैं।

'आभासी नियम' शब्द का प्रयोग कई संबंधित अर्थों के लिए किया गया है। यह अर्धनियम का पर्यायवाची हो सकता है।[1] एक आभासी नियम समान स्वयंसिद्धों को एक नियम के रूप में संतुष्ट कर सकता है,असमानता द्वारा प्रतिस्थापित समानता के साथएक रूपता सिद्धांत में।[2]यह एक नियम का भी उल्लेख कर सकता है जो अनंत मान ले सकता है,[3] या निर्देशित समुच्चय द्वारा पैरामिट्रीकृत कुछ कार्यों के लिए।[4]


परिभाषा

एक सदिश स्थान दिया गया है फील्ड एक्सटेंशन पर सम्मिश्र संख्याओं का एक नियम पर एक वास्तविक मान फलन है निम्नलिखित गुणों के साथ, जहाँ एक अदिश के सामान्य निरपेक्ष मान को दर्शाता है :[5]

  1. उप-योगात्मक कार्य / त्रिभुज असमानता: सभी के लिए
  2. सजातीय कार्य: सभी के लिए और सभी अदिश्स
  3. सकारात्मक निश्चितता/बिंदु-पृथक्करण: सभी के लिए यदि फिर
    • क्योंकि गुण (2.) का तात्पर्य है कुछ लेखक गुण (3.) को समतुल्य स्थिति से प्रतिस्थापित करते हैं: प्रत्येक के लिए यदि और मात्र यदि

एक अर्धनियम पर एक कार्य है जिसमें गुण हैं (1.) और (2.)[6] ताकि विशेष रूप से, प्रत्येक नियम भी एक अर्धनियम (और इस प्रकार एक उपरैखिक कार्यात्मक) भी हो। यद्यपि, ऐसे अर्धनियम उपस्थित हैं जो नियम नहीं हैं। गुण (1.) और (2.) का अर्थ है कि यदि एक नियम (या अधिक प्रायः, एक अर्धनियम) है और कि निम्नलिखित गुण भी है:

  1. नकारात्मक|गैर-नकारात्मकता: सभी के लिए

कुछ लेखकों ने नियम की परिभाषा के भाग के रूप में गैर-नकारात्मकता को सम्मिलित किया है, यद्यपि यह आवश्यक नहीं है।

समतुल्यनियम

मान लो कि तथा सदिश स्थान पर दो नियम (या अर्धनियम) हैं फिर तथा समतुल्य कहलाते हैं, यदि दो सकारात्मक वास्तविक स्थिरांक उपस्थित हों तथा साथ ऐसा है कि हर सदिश के लिए

सम्बन्ध के बराबर है स्वतुल्य संबंध है, सममित संबंध ( तात्पर्य ), और सकर्मक और इस प्रकार सभी नियमों के समूह पर एक समानता संबंध को परिभाषित करता है नियम तथा समतुल्य हैं यदि और मात्र यदि वे समान संस्थिति को प्रेरित करते हैं [7] परिमित-आयामी स्थान पर कोई भी दो नियम समतुल्य हैं परन्तु यह अनंत-आयामी स्थानों तक विस्तृत नहीं है।[7]


अंकन

यदि एक नियम एक सदिश स्थान पर दिया गया है फिर एक सदिश का नियम प्रायः इसे दोहरी खड़ी रेखाएँ के भीतर संलग्न करके दर्शाया जाता है: इस तरह के अंकन का उपयोग कभी-कभी किया जाता है मात्र एक अर्धनियम है। यूक्लिडियन स्थान में एक सदिश की लंबाई के लिए (जो एक नियम का एक उदाहरण है,जैसा कि नीचे बताया गया है), अंकन एकल लंबवत रेखाओं के साथ भी व्यापक है।

उदाहरण

प्रत्येक (वास्तविक या सम्मिश्र) सदिश स्थान एक नियम को स्वीकार करता है: यदि सदिश समष्टि के लिए हामेल आधार है फिर वास्तविक-मूल्यवान प्रतिमूर्ति जो भेजता है (जहां सभी परन्तु निश्चित रूप से कई अदिश हैं ) प्रति पर एक नियम है। [8] बड़ी संख्या में नियम भी हैं जो अतिरिक्त गुण प्रदर्शित करते हैं जो उन्हें विशिष्ट समस्याओं के लिए उपयोगी बनाते हैं।

निरपेक्ष-मूल्यनियम

निरपेक्ष मूल्य

वास्तविक या सम्मिश्र संख्याओं द्वारा गठित एक-आयामी सदिश स्थान पर एक नियम है।

कोई नियम एक आयामी सदिश स्थान पर निरपेक्ष मान नियम के समतुल्य (स्केलिंग तक) है, जिसका अर्थ है कि सदिश स्थान का एक नियम-संरक्षण समरूपता है जहाँ पर भी है या और नियम-संरक्षण का अर्थ है यह समरूपता भेजकर दी जाती है नियम के एक सदिश के लिए जो अस्तित्व में है क्योंकि इस तरह के एक सदिश को किसी गैर-शून्य सदिश को उसके नियम के व्युत्क्रम से गुणा करके प्राप्त किया जाता है।

यूक्लिडियननियम

-आयामी यूक्लिडियन स्थान पर, सदिश की लंबाई की सहज धारणा सूत्र द्वारा ग्रहण किया गया है[9]

यह यूक्लिडियन नियम है, जो पाइथागोरस प्रमेय का एक परिणाम - मूल से बिंदु X तक सामान्य दूरी देता है। इस संचालन को "SRSS" के रूप में भी संदर्भित किया जा सकता है, जो वर्गों के योग के वर्गमूल के लिए एक संक्षिप्त नाम है।[10]

यूक्लिडियन नियम अब तक का सबसे अधिक इस्तेमाल किया जाने वाला नियम है,[9]परन्तु इस सदिश स्थान पर अन्य नियम हैं जैसा कि नीचे दिखाया जाएगा।यद्यपि, ये सभी नियम इस मायने में समान हैं कि ये सभी एक ही सांस्थिति को परिभाषित करते हैं।

यूक्लिडियन सदिश स्थान के दो सदिशों का आंतरिक उत्पाद एक प्रसामान्य आधार पर उनके समन्वय सदिशों का बिंदु उत्पाद है।इसलिए, यूक्लिडियन नियम को एक समन्वय-मुक्त रूप से लिखा जा सकता है

पर उनके समन्वय सदिशों का बिंदु उत्पाद है। इसलिए, यूक्लिडियननियम को एक समन्वय-मुक्त रूप से लिखा जा सकता है


यूक्लिडियन नियम को भी नियम कहा जाता है,[11] नियम, 2-नियम, या वर्ग नियम; स्थान देखें।यह यूक्लिडियन लंबाई नामक एक दूरी कार्य को परिभाषित करता है, दूरी, या दूरी।

में सदिशों का समुच्चय जिसका यूक्लिडियन नियम  दिया गया धनात्मक स्थिरांक है, एक -वृत्त बनाता है।

सम्मिश्र संख्याओं का यूक्लिडियन नियम

किसी सम्मिश्र संख्या का यूक्लिडियन नियम उसका निरपेक्ष मान#सम्मिश्र संख्याएँ (जिसे मापांक भी कहा जाता है) होता है, यदि सम्मिश्र तल की पहचान यूक्लिडियन तल से की जाती है सम्मिश्र संख्या की यह पहचान यूक्लिडियन विमान में एक सदिश के रूप में, (जैसा कि पहले यूलर द्वारा सुझाया गया था) सम्मिश्र संख्या से जुड़ा यूक्लिडियन नियम मात्रा बनाता है ।

चतुष्कोण और अष्टक

वास्तविक संख्याओं के ऊपर ठीक चार हर्विट्ज़ प्रमेय (बीजगणित रचना) हैं। ये हैं वास्तविक संख्या सम्मिश्र संख्याएँ चतुष्कोण और अंत में ऑक्टोनियंस जहां वास्तविक संख्याओं पर इन स्थानों के आयाम क्रमश: विहित नियम तथा उनके पूर्ण मूल्य कार्य हैं, जैसा कि पहले चर्चा की गई थी।

विहित नियम पर चतुष्कोणों द्वारा परिभाषित किया गया है

हर चतुष्कोण के लिए में यह यूक्लिडियन नियम के समान के समान सदिश स्थान के रूप में माना जाता है इसी तरह, अष्टकैक पर विहित नियम सिर्फ यूक्लिडियन नियम है


परिमित-आयामी सम्मिश्र नियम स्थान

एक पर -आयामी सम्मिश्र स्थान का समन्वय करता है सबसे सामान्य नियम है

इस स्थिति में,नियम को सदिश और स्वयं के आंतरिक उत्पाद के वर्गमूल के रूप में व्यक्त किया जा सकता है:
जहाँ पर कॉलम सदिश के रूप में दर्शाया गया है तथा इसके संयुग्मी स्थानान्तरण को दर्शाता है।

यह सूत्र किसी भी आंतरिक उत्पाद स्थान के लिए मान्य है, जिसमें यूक्लिडियन और सम्मिश्र स्थान सम्मिलित हैं। सम्मिश्र स्थान के लिए, आंतरिक उत्पाद सम्मिश्र बिंदु उत्पाद के बराबर होता है। इसलिए इस स्थिति में सूत्र को निम्नलिखित अंकन का उपयोग करके भी लिखा जा सकता है:


टैक्सीकैब नियम या मैनहट्टन नियम

यह नाम उस दूरी से संबंधित है जो मूल से बिंदु तक जाने के लिए एक टैक्सी को एक आयताकार स्ट्रीट ग्रिड (मैनहट्टन के न्यूयॉर्क सिटी बोरो की तरह) में चलानी पड़ती है।सदिशों का समूह जिसका 1-नियम दिया गया स्थिरांक है,नियम शून्य से 1 के बराबर आयाम के एक संकर पॉलीटॉप की सतह बनाता है। टैक्सीकैब नियम को नियम भी कहा जाता है। इस नियम से प्राप्त दूरी को मैनहट्टन दूरी या दूरी कहा जाता है।

1-नियम मात्र स्तंभों के निरपेक्ष मानों का योग है।

इसके विपरीत,

यह नियम नहीं है क्योंकि इसके नकारात्मक परिणाम हो सकते हैं।

पी-नियम

वास्तविक संख्या हो। -नियम (जिसे -नियम भी कहा जाता है) का सदिश है[9]

के लिये ,हमें टैक्सीकैब नियम  मिलता है, हमें यूक्लिडियन नियम मिलता है, और जैसे दृष्टिकोण -नियम अनंत नियम या अधिकतम नियम की ओर बढ़ता है::

>-नियम सामान्यीकृत माध्य या शक्ति माध्य से संबंधित है।

के लिये, -नियम भी एक विहित आंतरिक उत्पाद से प्रेरित है जिसका अर्थ है सभी सदिशों के लिए यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके नियम के रूप में व्यक्त किया जा सकता है।पर यह आंतरिक उत्पाद यूक्लिडियन आंतरिक उत्पाद द्वारा परिभाषित है

जबकि स्थान के लिए एक माप (गणित) के साथ संबद्ध है, जिसमें सभी वर्ग-अभिन्न कार्य होते हैं, यह आंतरिक उत्पाद है
यह परिभाषा अभी भी रुचि की है परन्तु परिणामी कार्य एक नियम को परिभाषित नहीं करता है,[12] क्योंकि यह त्रिभुज असमानता का उल्लंघन करता है। इस स्थिति में क्या सत्य है, मापने योग्य अनुरूप में भी। वह वर्ग एक सदिश स्थान संगत है, और यह भी सत्य है कि कार्य
(बिना जड़) एक दूरी को परिभाषित करता है जो एक पूर्ण मापीय टोपोलॉजिकल सदिश स्थान में बनाता है। कार्यात्मक विश्लेषण, संभाव्यता सिद्धांत और लयबद्ध विश्लेषण में ये स्थान बहुत रुचि रखते हैं।यद्यपि, तुच्छ मामलों के छोड़कर यह टोपोलॉजिकल सदिश स्थान स्थानीय रूप से उत्तल नहीं है, और इसका कोई निरंतर गैर-शून्य रैखिक रूप नहीं है। इस प्रकार टोपोलॉजिकल द्वैत स्थान में मात्र शून्य कार्यात्मक होता है।

-नियम का आंशिक व्युत्पन्न द्वारा दिया गया है

इसलिए, के संबंध में व्युत्पन्न , है
जहाँ पर हैडमार्ड उत्पाद (मैट्रिसेस) को दर्शाता है और सदिश के प्रत्येक घटक के निरपेक्ष मान के लिए उपयोग किया जाता है।

के विशेष स्थिति के लिए यह बन जाता है

या


अधिकतमनियम (विशेष मामला: अनंतनियम, समाननियम, या सर्वोच्चनियम)

यदि कुछ सदिश ऐसा है फिर:

सदिशों का समुच्चय जिसका अनंतनियम एक नियतांक है, किनारे की लंबाई के साथ हाइपरक्यूब की सतह बनाता है


शून्यनियम

संभाव्यता और कार्यात्मक विश्लेषण में, शून्यनियम मापने योग्य कार्यों के स्थान के लिए और एफ-नियम के साथ अनुक्रमों के एफ-स्थान के लिए एक पूर्ण मीट्रिक सांस्थिति को प्रेरित करता है। [13] यहां हमारा मतलब एफ-नियम से कुछ वास्तविक-मूल्यवान फ़ंक्शन है दूरी के साथ एफ-स्थान पर ऐसा है कि ऊपर वर्णित एफ-नियम सामान्य अर्थों में एक नियम नहीं है क्योंकि इसमें आवश्यक एकरूपता गुण का अभाव है।

शून्य से सदिश की हैमिंग दूरी

मीट्रिक ज्यामिति में, असतत मीट्रिक अलग-अलग बिंदुओं के लिए एक मान लेता है और अन्यथा शून्य। जब सदिश स्थान के तत्वों के लिए समन्वय-वार लागू किया जाता है, तो असतत दूरी हैमिंग दूरी को परिभाषित करती है, जो कोडिंग सिद्धांत और सूचना सिद्धांत में महत्वपूर्ण है। वास्तविक या सम्मिश्र संख्याओं के क्षेत्र में, असतत मीट्रिक की शून्य से दूरी गैर-शून्य बिंदु में सजातीय नहीं है; वास्तव में, शून्य से दूरी एक बनी रहती है क्योंकि इसका गैर-शून्य तर्क शून्य तक पहुंचता है। यद्यपि, शून्य से किसी संख्या की असतत दूरीनियम के अन्य गुणों, अर्थात् त्रिकोण असमानता और सकारात्मक निश्चितता को संतुष्ट करती है। जब सदिशों पर घटक-वार लागू किया जाता है, तो शून्य से असतत दूरी एक गैर-सजातीयनियम की तरह व्यवहार करती है, जो इसके सदिश तर्क में गैर-शून्य घटकों की संख्या की गणना करता है; फिर से, यह गैर-सजातीयनियम विच्छिन्न है।

सिग्नल प्रोसेसिंग और सांख्यिकी में, डेविड डोनोहो ने उद्धरण चिह्नों के साथ शून्य 'नियम' का उल्लेख किया। डोनोहो के अंकन के बाद, का शून्यनियम के गैर-शून्य निर्देशांकों की संख्या है या शून्य से सदिश की हैमिंग दूरी। जब यहनियम एक सीमित समूहके लिए स्थानीयकृत होता है, तो इसकी सीमा होती है -नियम के रूप में 0 तक पहुँचता है। बेशक, शून्यनियम वास्तव में एक नियम नहीं है, क्योंकि यह सजातीय कार्य नहीं है # सकारात्मक समरूपता। दरअसल, यह ऊपर वर्णित अर्थ में एक एफ-नियम भी नहीं है, क्योंकि यह अदिश-सदिश गुणन में अदिश तर्क के संबंध में और इसके सदिश तर्क के संबंध में अलग-अलग, संयुक्त रूप से और अलग-अलग है। शब्दावली का दुरुपयोग, कुछ इंजीनियर[who?] डोनोहो के उद्धरण चिह्नों को छोड़ दें और अनुपयुक्त रूप से संख्या-गैर-शून्य फ़ंक्शन को कॉल करें नियम, मापने योग्य कार्यों के एलपी स्थान के लिए संकेतन को प्रतिध्वनित करना।

अनंत आयाम

घटकों की अनंत संख्या के लिए उपरोक्तनियमों का सामान्यीकरण एलपी स्थान की ओर जाता है तथा रिक्त स्थान,नियमों के साथ

सम्मिश्र-मूल्यवान अनुक्रमों और कार्यों के लिए क्रमशः, जिसे और अधिक सामान्यीकृत किया जा सकता है (हार उपाय देखें)।

कोई भी आंतरिक उत्पाद स्वाभाविक रूप से नियम को प्रेरित करता है अनंत-आयामी नियम सदिश स्थानों के अन्य उदाहरण बनच स्थान लेख में पाए जा सकते हैं।

समग्रनियम

अन्यनियम चालू उपरोक्त को मिलाकर बनाया जा सकता है; उदाहरण के लिए

पर एक नियम है किसी भीनियम और किसी भी इंजेक्शन कार्य रैखिक परिवर्तन के लिए का एक नयानियम परिभाषित कर सकते हैं के बराबर
2डी में, के साथ 45 डिग्री का रोटेशन और एक उपयुक्त स्केलिंग, यह टैक्सीकेबनियम को अधिकतमनियम में बदल देता है। प्रत्येक टैक्सिकैबनियम पर लागू, कुल्हाड़ियों के व्युत्क्रम और इंटरचेंजिंग तक, एक अलग यूनिट बॉल देता है: एक विशेष आकार, आकार और अभिविन्यास का एक समानांतर चतुर्भुज।

3डी में, यह समान है परन्तु 1-नियम (ऑक्टाहेड्रॉन) और अधिकतम नियम (प्रिज्म (ज्यामिति) समांतर चतुर्भुज आधार के साथ) के लिए अलग है।

ऐसेनियमों के उदाहरण हैं जिन्हें प्रवेशवार सूत्रों द्वारा परिभाषित नहीं किया गया है। उदाहरण के लिए, एक केंद्रीय-सममित उत्तल पिंड का मिन्कोव्स्की कार्यात्मक (शून्य पर केंद्रित) एकनियम को परिभाषित करता है (देखना § Classification of seminorms: absolutely convex absorbing sets नीचे)।

उपरोक्त सभी सूत्र भीनियम उत्पन्न करते हैं बिना संशोधन के।

मैट्रिसेस (वास्तविक या सम्मिश्र प्रविष्टियों के साथ) के रिक्त स्थान पर भीनियम हैं, तथाकथित मैट्रिक्सनियम।

अमूर्त बीजगणित में

होने देना एक क्षेत्र का परिमित विस्तार हो अविभाज्य डिग्री का और जाने बीजगणितीय बंद है यदि विशिष्ट क्षेत्र समरूपता हैं फिर एक तत्व का गैलोज़-सैद्धांतिकनियम मूल्य है जैसा कि कार्य एक क्षेत्र विस्तार की डिग्री डिग्री का सजातीय है, गाल्वा-सैद्धांतिकनियम इस लेख के अर्थ में एक नियम नहीं है। यद्यपि नियम की -थ रूट (यह मानते हुए कि अवधारणा समझ में आता है) एक नियम है।[14]


रचना बीजगणित

नियम की अवधारणा रचना में बीजगणित करता है not नियम के सामान्य गुणों को साझा करें क्योंकि यह नकारात्मक या शून्य हो सकता है एक रचना बीजगणित एक क्षेत्र पर एक बीजगणित के होते हैं एक समावेशन (गणित) और एक द्विघात रूप एक क्षेत्र विस्तार की डिग्री |नियम कहा जाता है।

रचना बीजगणित की विशेषता विशेषता समरूपता की गुण है : उत्पाद के लिए दो तत्वों का तथा रचना बीजगणित की, इसकानियम संतुष्ट करता है के लिये और O रचना बीजगणितनियम ऊपर चर्चा किए गएनियम का वर्ग है। उन मामलों में नियम एक निश्चित द्विघात रूप है। अन्य रचना बीजगणित में नियम एक आइसोट्रोपिक द्विघात रूप है।

गुण

किसी भी नियम के लिए एक सदिश स्थान पर रिवर्स त्रिकोण असमानता रखती है:

यदि नियम रिक्त स्थान के बीच एक निरंतर रेखीय मानचित्र है, फिर कानियम और के स्थानांतरण कानियम बराबर हैं।[15] एलपी स्थान के लिए |नियम, हमारे पास होल्डर की असमानता है[16]
इसका एक विशेष मामला कॉची-श्वार्ज़ असमानता है:[16]

विभिन्ननियमों में इकाई हलकों के उदाहरण।

प्रत्येकनियम एक सेमिनियम है और इस प्रकार सभी सेमिनियम#बीजगणितीय_गुणों को संतुष्ट करता है। बदले में, प्रत्येक सेमिनियम एक उपरेखीय कार्य है और इस प्रकार सभी Sublinear_कार्य#Properties को संतुष्ट करता है। विशेष रूप से, प्रत्येकनियम एक उत्तल कार्य है।

समानता

यूनिट सर्कल की अवधारणा (नियम 1 के सभी सदिशों ों का सेट) अलग-अलगनियमों में भिन्न है: 1-नियम के लिए, इकाई चक्र एक वर्ग (ज्यामिति) है, 2-नियम (यूक्लिडियननियम) के लिए, यह है प्रसिद्ध यूनिट सर्कल, जबकि इन्फिनिटीनियम के लिए, यह एक अलग वर्ग है। किसी के लिए -नियम, यह सर्वांगसम अक्षों के साथ एक सुपरलिप्स है (साथ में चित्रण देखें)।नियम की परिभाषा के कारण, यूनिट सर्कल को उत्तल समूहऔर केंद्रीय रूप से सममित होना चाहिए (इसलिए, उदाहरण के लिए, यूनिट बॉल एक आयत हो सकती है परन्तु एक त्रिकोण नहीं हो सकती है, और एक के लिए -नियम)।

सदिश स्थान के संदर्भ में, सेमिनियम स्थान पर एक सांस्थिति को परिभाषित करता है, और यह हॉसडॉर्फ स्थान सांस्थिति है, जब सेमिनियम अलग-अलग सदिशों ों के बीच अंतर कर सकता है, जो फिर से अर्धनियम के एक नियम के बराबर है। इस प्रकार परिभाषित सांस्थिति (या तो एक नियम या एक अर्धनियम द्वारा) अनुक्रम या खुले समूहके संदर्भ में समझा जा सकता है। सदिशों का एक क्रम सामान्य रूप से अभिसरण के तरीकों को कहा जाता है यदि जैसा समान रूप से, सांस्थिति में सभी समूहहोते हैं जिन्हें ओपन बॉल (गणित) के संघ के रूप में दर्शाया जा सकता है। यदि तब एक नियम स्थान है[17] दोनियम तथा एक सदिश स्थान पर कहा जाता हैequivalentयदि वे एक ही सांस्थिति को प्रेरित करते हैं,[7] जो तब होता है जब सकारात्मक वास्तविक संख्याएं उपस्थित होती हैं तथा ऐसा कि सभी के लिए

उदाहरण के लिए, अगर पर फिर[18]
विशेष रूप से,
वह है,

यदि सदिश स्थान एक परिमित-आयामी वास्तविक या सम्मिश्र है, तो सभीनियम समान हैं। दूसरी ओर, अनंत-आयामी सदिश रिक्त स्थान के स्थिति में, सभी नियम समान नहीं होते हैं।

समतुल्यनियम निरंतरता और अभिसरण की समान धारणाओं को परिभाषित करते हैं और कई उद्देश्यों के लिए इन्हें अलग करने की आवश्यकता नहीं है। अधिक सटीक होने के लिए सदिश स्थान पर समतुल्यनियमों द्वारा परिभाषित समान संरचना समान रूप से आइसोमॉर्फिक है।

सेमीनियम्स का वर्गीकरण: बिल्कुल उत्तल अवशोषक सेट

सदिश स्थान पर सभी सेमीनियम्स बिल्कुल उत्तल अवशोषक समूहके रूप में वर्गीकृत किया जा सकता है का ऐसे प्रत्येक उपसमुच्चय के लिए एक सेमिनियम मेल खाता है का मिन्कोवस्की कार्यात्मक कहा जाता है के रूप में परिभाषित किया गया है

जहाँ पर अनंत है, गुण के साथ कि
इसके विपरीत:

किसी भी स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में एक स्थानीय आधार होता है जिसमें बिल्कुल उत्तल समूहहोते हैं। इस तरह के आधार का निर्माण करने का एक सामान्य तरीका एक परिवार का उपयोग करना है अर्धनियम्स का वह अलगाव स्वयंसिद्ध: समूहके सभी परिमित चौराहों का संग्रह स्थान को स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थान में बदल देता है ताकि प्रत्येक पी निरंतर कार्य हो।

इस तरह की विधि का उपयोग कमजोर सांस्थिति | कमजोर और कमजोर * सांस्थिति को डिजाइन करने के लिए किया जाता है।

सामान्य मामला:

मान लीजिए कि अब एक सम्मिलित है जबसे जुदाई स्वयंसिद्ध है, एक नियम है, और इसकी ओपन यूनिट बॉल है। फिर 0 का बिल्कुल उत्तल घिरा समूहपड़ोस है, और निरंतर है।
विपरीत एंड्री कोलमोगोरोव के कारण है: कोई भी स्थानीय रूप से उत्तल और स्थानीय रूप से घिरा टोपोलॉजिकल सदिश स्थान सामान्य है। सटीक रूप से:
यदि 0, गेज का बिल्कुल उत्तल परिबद्ध पड़ोस है (ताकि एक नियम है।

यह भी देखें


संदर्भ

  1. 1.0 1.1 Knapp, A.W. (2005). बुनियादी वास्तविक विश्लेषण. Birkhäuser. p. [1]. ISBN 978-0-817-63250-2.
  2. "छद्म मानदंड - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2022-05-12.
  3. "स्यूडोनॉर्म". www.spektrum.de (in Deutsch). Retrieved 2022-05-12.
  4. Hyers, D. H. (1939-09-01). "छद्म-मानकित रैखिक रिक्त स्थान और एबेलियन समूह". Duke Mathematical Journal. 5 (3). doi:10.1215/s0012-7094-39-00551-x. ISSN 0012-7094.
  5. Pugh, C.C. (2015). वास्तविक गणितीय विश्लेषण. Springer. p. page 28. ISBN 978-3-319-17770-0. Prugovečki, E. (1981). Quantum Mechanics in Hilbert Space. p. page 20.
  6. Rudin, W. (1991). कार्यात्मक विश्लेषण. p. 25.
  7. 7.0 7.1 7.2 Conrad, Keith. "मानदंडों की समानता" (PDF). kconrad.math.uconn.edu. Retrieved September 7, 2020.
  8. Wilansky 2013, pp. 20–21.
  9. 9.0 9.1 9.2 Weisstein, Eric W. "वेक्टर नॉर्म". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  10. Chopra, Anil (2012). संरचनाओं की गतिशीलता, चौथा संस्करण।. Prentice-Hall. ISBN 978-0-13-285803-8.
  11. Weisstein, Eric W. "आदर्श". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  12. Except in where it coincides with the Euclidean norm, and where it is trivial.
  13. Rolewicz, Stefan (1987), Functional analysis and control theory: Linear systems, Mathematics and its Applications (East European Series), vol. 29 (Translated from the Polish by Ewa Bednarczuk ed.), Dordrecht; Warsaw: D. Reidel Publishing Co.; PWN—Polish Scientific Publishers, pp. xvi, 524, doi:10.1007/978-94-015-7758-8, ISBN 90-277-2186-6, MR 0920371, OCLC 13064804
  14. Lang, Serge (2002) [1993]. बीजगणित (Revised 3rd ed.). New York: Springer Verlag. p. 284. ISBN 0-387-95385-X.
  15. Trèves 2006, pp. 242–243.
  16. 16.0 16.1 Golub, Gene; Van Loan, Charles F. (1996). मैट्रिक्स संगणना (Third ed.). Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  17. Narici & Beckenstein 2011, pp. 107–113.
  18. "पी-मानदंडों के बीच संबंध". Mathematics Stack Exchange.


इस पेज में लापता आंतरिक लिंक की सूची

ग्रन्थसूची