एलओसीसी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 42: Line 42:


ऐसी क्वांटम स्थितियाँ हैं, जिन्हें LOCC संचालन से भिन्न नहीं किया जा सकता है।<ref>{{cite journal |author=Charles H. Bennett |author2=David P. DiVincenzo |author3=Christopher A. Fuchs |author4=Tal Mor |author5=Eric Rains |author6=Peter W. Shor |author7=John A. Smolin |author8=William K. Wootters |title=उलझाव के बिना क्वांटम गैर-स्थानीयता|journal=Phys. Rev. A |volume=59 |pages=1070–1091 |year=1999 |issue=2 |doi=10.1103/PhysRevA.59.1070 |arxiv= quant-ph/9804053|bibcode=1999PhRvA..59.1070B |s2cid=15282650 }}</ref>
ऐसी क्वांटम स्थितियाँ हैं, जिन्हें LOCC संचालन से भिन्न नहीं किया जा सकता है।<ref>{{cite journal |author=Charles H. Bennett |author2=David P. DiVincenzo |author3=Christopher A. Fuchs |author4=Tal Mor |author5=Eric Rains |author6=Peter W. Shor |author7=John A. Smolin |author8=William K. Wootters |title=उलझाव के बिना क्वांटम गैर-स्थानीयता|journal=Phys. Rev. A |volume=59 |pages=1070–1091 |year=1999 |issue=2 |doi=10.1103/PhysRevA.59.1070 |arxiv= quant-ph/9804053|bibcode=1999PhRvA..59.1070B |s2cid=15282650 }}</ref>
=== Entanglement transformations ===


===उलझाव परिवर्तन===
===उलझाव परिवर्तन===
जबकि LOCC उत्पाद राज्यों से उलझी हुई अवस्थाएँ उत्पन्न नहीं कर सकता है, उनका उपयोग उलझी हुई अवस्थाओं को अन्य उलझी हुई अवस्थाओं में बदलने के लिए किया जा सकता है। एलओसीसी पर प्रतिबंध गंभीर रूप से सीमित करता है कि कौन से परिवर्तन संभव हैं।
जबकि LOCC उत्पाद राज्यों से उलझी हुई अवस्थाएँ उत्पन्न नहीं कर सकता है, उनका उपयोग उलझी हुई अवस्थाओं को अन्य उलझी हुई अवस्थाओं में बदलने के लिए किया जा सकता है। एलओसीसी पर प्रतिबंध गंभीर रूप से सीमित करता है कि कौन से परिवर्तन संभव हैं.


====उलझाव रूपांतरण====
====उलझाव रूपांतरण====


नील्सन <ref>{{cite journal |author=M. A. Nielsen |title=उलझाव परिवर्तनों के एक वर्ग के लिए शर्तें|journal=Phys. Rev. Lett. |volume=83 |pages=436–439 |year=1999 |issue=2 |doi=10.1103/PhysRevLett.83.436 |arxiv=quant-ph/9811053|bibcode=1999PhRvL..83..436N |s2cid=17928003 }}</ref> यह निर्धारित करने के लिए एक सामान्य शर्त निकाली गई है कि क्या द्विदलीय क्वांटम प्रणाली की एक शुद्ध अवस्था को मात्र LOCC का उपयोग करके दूसरे में बदला जा सकता है। पूर्ण विवरण पहले संदर्भित पेपर में पाया जा सकता है, परिणाम यहां दिए गए हैं।
नील्सन <ref>{{cite journal |author=M. A. Nielsen |title=उलझाव परिवर्तनों के एक वर्ग के लिए शर्तें|journal=Phys. Rev. Lett. |volume=83 |pages=436–439 |year=1999 |issue=2 |doi=10.1103/PhysRevLett.83.436 |arxiv=quant-ph/9811053|bibcode=1999PhRvL..83..436N |s2cid=17928003 }}</ref> ने यह निर्धारित करने के लिए एक सामान्य शर्त निकाली है. कि क्या द्विदलीय क्वांटम प्रणाली की एक शुद्ध अवस्था को मात्र LOCC का उपयोग करके दूसरे रूप में बदला जा सकता है। पूर्ण विवरण पहले संदर्भित पेपर में पाया जा सकता है, जिसके परिणाम यहां दिए गए हैं।


आयाम के [[हिल्बर्ट स्थान]] में दो कणों पर विचार करें <math>d</math> कण अवस्थाओं के साथ <math>|\psi\rangle</math> और <math>|\phi\rangle</math> श्मिट विघटन के साथ
आयाम के [[हिल्बर्ट स्थान]] में दो कणों पर विचार करें <math>d</math> कण अवस्थाओं के साथ <math>|\psi\rangle</math> और <math>|\phi\rangle</math> श्मिट विघटन के साथ
Line 69: Line 59:
</math>
</math>


  <math>\sqrt{\omega_i}</math>इन्हें श्मिट अपघटन के रूप में जाना जाता है। यदि उन्हें सबसे बड़े से लेकर सबसे छोटे (अर्थात्, के साथ) ऑर्डर किया गया है <math>\omega_1>\omega_d</math>) तब <math>|\psi\rangle</math> में ही रूपांतरित किया जा सकता है <math>|\phi\rangle</math> मात्र स्थानीय संचालन का उपयोग करना यदि और मात्र यदि सभी के लिए <math>k</math> सीमा में <math>1\leq k \leq d</math>
  <math>\sqrt{\omega_i}</math>इन्हें श्मिट अपघटन के रूप में जाना जाता है। यदि उन्हें सबसे बड़े से लेकर सबसे छोटे अर्थात् के साथ ऑर्डर किया गया है <math>\omega_1>\omega_d</math>) तब <math>|\psi\rangle</math> में ही रूपांतरित किया जा सकता है <math>|\phi\rangle</math> मात्र स्थानीय संचालन का उपयोग करना यदि और मात्र यदि सभी के लिए <math>k</math> सीमा में <math>1\leq k \leq d</math>
:<math>
:<math>
\sum_{i=1}^k\omega_i\leq\sum_{i=1}^k\omega_i'
\sum_{i=1}^k\omega_i\leq\sum_{i=1}^k\omega_i'
Line 77: Line 67:
|\psi\rangle\rightarrow|\phi\rangle\quad\text{iff}\quad\omega \prec \omega'
|\psi\rangle\rightarrow|\phi\rangle\quad\text{iff}\quad\omega \prec \omega'
</math>
</math>
यह उससे भी अधिक प्रतिबंधात्मक स्थिति है कि स्थानीय परिचालन क्वांटम उलझाव # उलझाव माध्यमों को नहीं बढ़ा सकते हैं। यह पूर्णतया संभव है <math>|\psi\rangle</math> और <math>|\phi\rangle</math> समान मात्रा में उलझाव है लेकिन एक को दूसरे में परिवर्तित करना संभव नहीं है और यहां तक ​​कि किसी भी दिशा में रूपांतरण असंभव है क्योंकि श्मिट गुणांक का कोई भी समूह दूसरे को [[प्रमुखीकरण]] नहीं करता है। बड़े के लिए <math>d</math> यदि सभी श्मिट अपघटन गैर-शून्य हैं तो गुणांकों के एक समूह के मेजराइजेशन और दूसरे समूह की संभावना नगण्य हो जाती है। इसलिए, बड़े के लिए <math>d</math> एलओसीसी के माध्यम से किसी भी मनमाने राज्य के दूसरे में परिवर्तनीय होने की संभावना नगण्य हो जाती है।
यह इससे भी अधिक प्रतिबंधात्मक स्थिति है, कि स्थानीय परिचालन क्वांटम उलझाव माध्यमों को नहीं बढ़ा सकते हैं। यह पूर्णतया संभव है <math>|\psi\rangle</math> और <math>|\phi\rangle</math> समान मात्रा में उलझाव है, लेकिन एक को दूसरे में परिवर्तित करना संभव नहीं है और यहां तक ​​कि किसी भी दिशा में रूपांतरण असंभव है, क्योंकि श्मिट गुणांक का कोई भी समूह दूसरे को [[प्रमुखीकरण]] नहीं करता है। बड़े के लिए <math>d</math> यदि सभी श्मिट अपघटन गैर-शून्य हैं, तो गुणांकों के एक समूह के मेजराइजेशन और दूसरे समूह की संभावना नगण्य हो जाती है। इसलिए बड़े के लिए <math>d</math> एलओसीसी के माध्यम से किसी भी मनमाने राज्य के दूसरे में परिवर्तनीय होने की संभावना नगण्य हो जाती है।


अब तक वर्णित ऑपरेशन नियतात्मक हैं,  अर्थात, वे 100% संभावना के साथ सफल होते हैं। यदि कोई संभाव्य परिवर्तनों से संतुष्ट है, तो एलओसीसी का उपयोग करके कई और परिवर्तन संभव हैं।<ref name="Vidal2000">{{cite journal |author=Guifré Vidal |title=नीरस उलझाव|journal=J. Mod. Opt. |volume=47 |page=355 |year=2000 |issue=2–3 |doi=10.1080/09500340008244048 |arxiv=quant-ph/9807077|bibcode=2000JMOp...47..355V |s2cid=119347961 }}</ref> इन ऑपरेशनों को स्टोकेस्टिक एलओसीसी (एसएलओसीसी) कहा जाता है। विशेष रूप से बहु-पक्षीय राज्यों के लिए एसएलओसीसी के अनुसार परिवर्तनीयता का अध्ययन सम्मिलित राज्यों के उलझाव गुणों में गुणात्मक अंतर्दृष्टि प्राप्त करने के लिए किया जाता है।<ref name="GoWa2013">{{cite journal |author1=G. Gour |author2=N. R. Wallach |title=सभी परिमित आयामों के बहुपक्षीय उलझाव का वर्गीकरण|journal=Phys. Rev. Lett. |volume=111 |page=060502 |year=2013 |issue=6 |doi=10.1103/PhysRevLett.111.060502 |arxiv=1304.7259|bibcode=2013PhRvL.111f0502G |pmid=23971544 |s2cid=1570745 }}</ref>
अब तक वर्णित ऑपरेशन नियतात्मक हैं,  अर्थात, वे 100% संभावना के साथ सफल होते हैं। यदि कोई संभाव्य परिवर्तनों से संतुष्ट है, तो एलओसीसी का उपयोग करके कई और परिवर्तन संभव हैं।<ref name="Vidal2000">{{cite journal |author=Guifré Vidal |title=नीरस उलझाव|journal=J. Mod. Opt. |volume=47 |page=355 |year=2000 |issue=2–3 |doi=10.1080/09500340008244048 |arxiv=quant-ph/9807077|bibcode=2000JMOp...47..355V |s2cid=119347961 }}</ref> इन ऑपरेशनों को स्टोकेस्टिक एलओसीसी (एसएलओसीसी) कहा जाता है। विशेष रूप से बहु-पक्षीय राज्यों के लिए एसएलओसीसी के अनुसार परिवर्तनीयता का अध्ययन सम्मिलित राज्यों के उलझाव गुणों में गुणात्मक अंतर्दृष्टि प्राप्त करने के लिए किया जाता है।<ref name="GoWa2013">{{cite journal |author1=G. Gour |author2=N. R. Wallach |title=सभी परिमित आयामों के बहुपक्षीय उलझाव का वर्गीकरण|journal=Phys. Rev. Lett. |volume=111 |page=060502 |year=2013 |issue=6 |doi=10.1103/PhysRevLett.111.060502 |arxiv=1304.7259|bibcode=2013PhRvL.111f0502G |pmid=23971544 |s2cid=1570745 }}</ref>
====एलओसीसी से आगे जाना: उत्प्रेरक रूपांतरण====
====एलओसीसी से आगे जाना: उत्प्रेरक रूपांतरण====
यदि उलझे हुए राज्य एक संसाधन के रूप में उपलब्ध हैं, तो ये एलओसीसी के साथ मिलकर बहुत बड़े वर्ग के परिवर्तनों की अनुमति देते हैं। यह स्थिति तब भी है जब इन संसाधन स्थितियों का प्रक्रिया में उपभोग नहीं किया जाता है (उदाहरण के लिए, [[क्वांटम टेलीपोर्टेशन]] में)। इस प्रकार परिवर्तनों को उलझाव उत्प्रेरण कहा जाता है।<ref>{{cite journal |author1=D. Jonathan |author2=M. B. Plenio |title=शुद्ध क्वांटम अवस्थाओं का उलझाव-सहायता प्राप्त स्थानीय हेरफेर|journal=Phys. Rev. Lett. |volume=83 |year=1999 |issue=17 |pages=3566–3569 |doi=10.1103/PhysRevLett.83.3566 |arxiv=quant-ph/9905071|bibcode=1999PhRvL..83.3566J |s2cid=392419 }}</ref> इस प्रक्रिया में, प्रारंभिक अवस्था को अंतिम अवस्था में बदलना जो कि LOCC के साथ असंभव है, उत्प्रेरक अवस्था के साथ प्रारंभिक अवस्था का टेंसर उत्पाद लेकर संभव बनाया जाता है। <math>|c\rangle</math> और यह आवश्यक है कि यह स्थिति रूपांतरण प्रक्रिया के अंत में भी उपलब्ध रहे।  अर्थात, उत्प्रेरक स्थिति को रूपांतरण द्वारा अपरिवर्तित छोड़ दिया जाता है और फिर मात्र वांछित अंतिम स्थिति को छोड़कर हटाया जा सकता है। राज्यों पर विचार करें,
यदि उलझे हुए राज्य एक संसाधन के रूप में उपलब्ध हैं, तो ये एलओसीसी के साथ मिलकर बहुत बड़े वर्ग के परिवर्तनों की अनुमति देते हैं। यह स्थिति तब भी है जब इन संसाधन स्थितियों का प्रक्रिया में उपभोग नहीं किया जाता है (उदाहरण के लिए, [[क्वांटम टेलीपोर्टेशन]] में)। इस प्रकार परिवर्तनों को उलझाव उत्प्रेरण कहा जाता है।<ref>{{cite journal |author1=D. Jonathan |author2=M. B. Plenio |title=शुद्ध क्वांटम अवस्थाओं का उलझाव-सहायता प्राप्त स्थानीय हेरफेर|journal=Phys. Rev. Lett. |volume=83 |year=1999 |issue=17 |pages=3566–3569 |doi=10.1103/PhysRevLett.83.3566 |arxiv=quant-ph/9905071|bibcode=1999PhRvL..83.3566J |s2cid=392419 }}</ref> इस प्रक्रिया में, प्रारंभिक अवस्था को अंतिम अवस्था में बदलना जो कि LOCC के साथ असंभव है, उत्प्रेरक अवस्था के साथ प्रारंभिक अवस्था का टेंसर उत्पाद लेकर संभव बनाया जाता है। <math>|c\rangle</math> और यह आवश्यक है कि यह स्थिति रूपांतरण प्रक्रिया के अंत में भी उपलब्ध रहे।  अर्थात, उत्प्रेरक स्थिति को रूपांतरण द्वारा अपरिवर्तित छोड़ दिया जाता है और फिर मात्र वांछित अंतिम स्थिति को छोड़कर हटाया जा सकता है। राज्यों पर विचार करें,

Revision as of 23:44, 6 December 2023

एलओसीसी प्रतिमान: पार्टियों को कणों का सुसंगत रूप से आदान-प्रदान करने की अनुमति नहीं है। मात्र स्थानीय संचालन और मौलिक संचार की अनुमति है

एलओसीसी या स्थानीय संचालन और मौलिक संचार क्वांटम सूचना सिद्धांत एक विधि के रूप में है, जहां एक स्थानीय उत्पाद ऑपरेशन सिस्टम के भाग पर निष्पादित की जाती है और जहां उस ऑपरेशन का परिणाम मौलिक रूप से दूसरे भाग में संचारित किया जाता है, जहां सामान्यतः पर एक और स्थानीय ऑपरेशन वातानुकूलित किया जाता है, जो जानकारी प्राप्त हुई है।

गणितीय गुण

एलओसीसी संचालन के समूह की औपचारिक परिभाषा इस तथ्य के कारण सम्मिश्र है, कि पश्चात के स्थानीय संचालन सामान्य रूप से पिछले सभी मौलिक संचार पर निर्भर करते हैं और संचार दौरों की असीमित संख्या के कारण। किसी भी परिमित संख्या के लिए कोई परिभाषित कर सकता है , LOCC परिचालनों का समूह जिसके साथ प्राप्त किया जा सकता है मौलिक संचार के दौर समूह कभी भी बड़ा हो जाता है बढ़ा दिया गया है और अनंत कई राउंड की सीमा को परिभाषित करने का ध्यान रखना होगा। विशेष रूप से समूह एलओसीसी टोपोलॉजिकल रूप से संवृत नहीं है, अर्थात ऐसे क्वांटम ऑपरेशन हैं जिन्हें एलओसीसी द्वारा मनमाने ढंग से निकटता से अनुमानित किया जा सकता है, लेकिन वे स्वयं एलओसीसी नहीं हैं।[1]

एक-राउंड एलओसीसी यह एक क्वांटम उपकरण के रूप में है , जिसके लिए ट्रेस-गैर-बढ़ते पूरी प्रकार से धनात्मक मानचित्र (सीपीएम) सभी माप परिणामों के लिए स्थानीय हैं , अर्थात। और एक साइट है जैसे कि मात्र पर वो नक्शा ट्रेस-संरक्षण नहीं है.

इसका अर्थ यह है कि उपकरण को पार्टी द्वारा साइट पर ही प्राप्त किया जा सकता है (स्थानीय) उपकरण के रूप में लगाना और मौलिक परिणाम संप्रेषित करना अन्य सभी पक्षों के लिए, जो तब प्रत्येक प्रदर्शन शर्त पर करते हैं ट्रेस-संरक्षण नियतात्मक स्थानीय क्वांटम संचालन के रूप में है .

तब पुनरावर्ती रूप से उन ऑपरेशनों के रूप में परिभाषित किया गया है, जिन्हें किसी ऑपरेशन का अनुसरण करके अनुभव किया जा सकता है के साथ -संचालन। यहां यह अनुमति है, कि जो पार्टी अनुवर्ती कार्रवाई के रूप में करती है, वह पिछले दौर के परिणाम पर निर्भर करती है। इसके अतिरिक्त हम मोटे अनाज की भी अनुमति देते हैं,अर्थात माप परिणामों के सभी राउंड में एन्कोड की गई, कुछ मौलिक जानकारी को हटा देते हैं।

सबका मिलन संचालन द्वारा निरूपित किया जाता है और इसमें ऐसे उपकरण सम्मिलित हैं, जिनका अधिक एलओसीसी राउंड के साथ उत्तम और उत्तम अनुमान लगाया जा सकता है। इसका टोपोलॉजिकल समापन इसमें ऐसे सभी ऑपरेशन सम्मिलित हैं।

यह दिखाया जा सकता है, कि ये सभी समूह भिन्न-भिन्न हैं:[1]:

सभी एलओसीसी परिचालनों का समूह समूह में समाहित है सभी वियोज्य परिचालनों का. इसमें वे सभी ऑपरेशन सम्मिलित हैं, जिन्हें क्वांटम ऑपरेशन क्रॉस ऑपरेटरों का उपयोग करके लिखा जा सकता है, जिनके पास सभी उत्पाद के रूप हैं,अर्थात,

साथ . में सभी ऑपरेशन नहीं एलओसीसी हैं,

अर्थात, ऐसे उदाहरण हैं, जिन्हें संचार के अनंत दौर के साथ भी स्थानीय स्तर पर लागू नहीं किया जा सकता है।[1]

LOCC क्वांटम उलझाव में मुफ्त संचालन हैं, एक संसाधन के रूप में उलझाव: LOCC के साथ भिन्न-भिन्न राज्यों से उलझाव का उत्पादन नहीं किया जा सकता है और यदि स्थानीय पार्टियां सभी LOCC संचालन करने में सक्षम होने के अतिरिक्त कुछ उलझे हुए राज्यों से भी सुसज्जित हैं, तो अकेले एलओसीसी की तुलना में अधिक संचालन का अनुभव कर सकते हैं।

उदाहरण

एलओसीसी संचालन राज्य की तैयारी, राज्य भेदभाव और उलझाव परिवर्तनों के लिए उपयोगी हैं।

राज्य की तैयारी

ऐलिस और बॉब को उत्पाद अवस्था में एक क्वांटम प्रणाली के रूप में दी गई है . उनका कार्य पृथक्करणीय राज्य का निर्माण करना है . अकेले स्थानीय संचालन के साथ इसे प्राप्त नहीं किया जा सकता है, क्योंकि वे उपस्थित मौलिक सहसंबंध उत्पन्न नहीं कर सकते हैं . चूंकि LOCC के साथ संचार के एक दौर के साथ तैयार किया जा सकता है: ऐलिस एक निष्पक्ष सिक्का फेंकता है (जो 50% संभावना के साथ प्रत्येक को हेड या टेल दिखाता है) और अपनी कक्षा को पलट देता है (से) ) यदि सिक्का पूंछ दिखाता है, अन्यथा इसे अपरिवर्तित छोड़ दिया जाता है। फिर वह बॉब को कॉइन-फ़्लिप (मौलिक जानकारी) का परिणाम भेजती है, जो संदेश टेल्स प्राप्त होने पर अपनी क्वबिट भी फ़्लिप करता है। परिणामी अवस्था है . सामान्य तौर पर, सभी भिन्न-भिन्न राज्यों (और मात्र इन्हें) को अकेले एलओसीसी संचालन वाले उत्पाद राज्यों से तैयार किया जा सकता है।[1]

राज्य भेदभाव

दो क्वांटम अवस्थाएँ दी गई हैं द्वि- या बहुपक्षीय हिल्बर्ट स्थान पर , कार्य यह निर्धारित करता हैं।  कि दो या अधिक संभावित स्थितियों में से कौन सी स्थिति है यह है। एक सरल उदाहरण के रूप में, दो बेल अवस्थाओं पर विचार करें.

मान लीजिए कि दो-क्विबिट प्रणाली भिन्न हो गई है, जहां पहली क्विबिट ऐलिस को दी गई है और दूसरी बॉब को दी गई है। संचार के बिना, ऐलिस और बॉब दो राज्यों में अंतर नहीं कर सकते, क्योंकि सभी स्थानीय मापों के लिए सभी माप आँकड़े पूर्णतया समान हैं, दोनों राज्यों में समान कम घनत्व आव्यूह है। उदाहरण के लिए, मान लें कि ऐलिस पहली कक्षा को मापती है और परिणाम 0 प्राप्त करती है। चूंकि यह परिणाम दोनों स्थितियों में से प्रत्येक में 50% संभावना के साथ समान रूप से होने की संभावना है, इसलिए उसे कोई जानकारी नहीं मिलती है, कि उसे कौन सी बेल जोड़ी दी गई थी और यही बात बॉब पर भी लागू होती है, यदि वह कोई माप करता है। लेकिन अब ऐलिस को क्लासिकल चैनल पर अपना परिणाम बॉब को भेजने दें। अब बॉब अपने परिणाम की तुलना उसके परिणाम से कर सकता है और यदि वे समान हैं, तो वह यह निष्कर्ष निकाल सकता है, कि दिया गया जोड़ा था , क्योंकि मात्र यही संयुक्त माप परिणाम की अनुमति देता है . इस प्रकार एलओसीसी और दो मापों से इन दोनों स्थितियों को पूरी प्रकार से भिन्न किया जा सकता है। ध्यान दें कि वैश्विक (क्वांटम गैरस्थानीयता या क्वांटम उलझाव) माप के साथ एक एकल माप संयुक्त हिल्बर्ट स्थान पर इन दोनों क्वांटम यांत्रिकी में पारस्परिक रूप से ऑर्थोगोनल स्थिति को भिन्न करने के लिए पर्याप्त है।

ऐसी क्वांटम स्थितियाँ हैं, जिन्हें LOCC संचालन से भिन्न नहीं किया जा सकता है।[2]

उलझाव परिवर्तन

जबकि LOCC उत्पाद राज्यों से उलझी हुई अवस्थाएँ उत्पन्न नहीं कर सकता है, उनका उपयोग उलझी हुई अवस्थाओं को अन्य उलझी हुई अवस्थाओं में बदलने के लिए किया जा सकता है। एलओसीसी पर प्रतिबंध गंभीर रूप से सीमित करता है कि कौन से परिवर्तन संभव हैं.

उलझाव रूपांतरण

नील्सन [3] ने यह निर्धारित करने के लिए एक सामान्य शर्त निकाली है. कि क्या द्विदलीय क्वांटम प्रणाली की एक शुद्ध अवस्था को मात्र LOCC का उपयोग करके दूसरे रूप में बदला जा सकता है। पूर्ण विवरण पहले संदर्भित पेपर में पाया जा सकता है, जिसके परिणाम यहां दिए गए हैं।

आयाम के हिल्बर्ट स्थान में दो कणों पर विचार करें कण अवस्थाओं के साथ और श्मिट विघटन के साथ

इन्हें श्मिट अपघटन के रूप में जाना जाता है। यदि उन्हें सबसे बड़े से लेकर सबसे छोटे अर्थात् के साथ ऑर्डर किया गया है ) तब  में ही रूपांतरित किया जा सकता है  मात्र स्थानीय संचालन का उपयोग करना यदि और मात्र यदि सभी के लिए  सीमा में 

अधिक संक्षिप्त संकेतन में:

यह इससे भी अधिक प्रतिबंधात्मक स्थिति है, कि स्थानीय परिचालन क्वांटम उलझाव माध्यमों को नहीं बढ़ा सकते हैं। यह पूर्णतया संभव है और समान मात्रा में उलझाव है, लेकिन एक को दूसरे में परिवर्तित करना संभव नहीं है और यहां तक ​​कि किसी भी दिशा में रूपांतरण असंभव है, क्योंकि श्मिट गुणांक का कोई भी समूह दूसरे को प्रमुखीकरण नहीं करता है। बड़े के लिए यदि सभी श्मिट अपघटन गैर-शून्य हैं, तो गुणांकों के एक समूह के मेजराइजेशन और दूसरे समूह की संभावना नगण्य हो जाती है। इसलिए बड़े के लिए एलओसीसी के माध्यम से किसी भी मनमाने राज्य के दूसरे में परिवर्तनीय होने की संभावना नगण्य हो जाती है।

अब तक वर्णित ऑपरेशन नियतात्मक हैं, अर्थात, वे 100% संभावना के साथ सफल होते हैं। यदि कोई संभाव्य परिवर्तनों से संतुष्ट है, तो एलओसीसी का उपयोग करके कई और परिवर्तन संभव हैं।[4] इन ऑपरेशनों को स्टोकेस्टिक एलओसीसी (एसएलओसीसी) कहा जाता है। विशेष रूप से बहु-पक्षीय राज्यों के लिए एसएलओसीसी के अनुसार परिवर्तनीयता का अध्ययन सम्मिलित राज्यों के उलझाव गुणों में गुणात्मक अंतर्दृष्टि प्राप्त करने के लिए किया जाता है।[5]

एलओसीसी से आगे जाना: उत्प्रेरक रूपांतरण

यदि उलझे हुए राज्य एक संसाधन के रूप में उपलब्ध हैं, तो ये एलओसीसी के साथ मिलकर बहुत बड़े वर्ग के परिवर्तनों की अनुमति देते हैं। यह स्थिति तब भी है जब इन संसाधन स्थितियों का प्रक्रिया में उपभोग नहीं किया जाता है (उदाहरण के लिए, क्वांटम टेलीपोर्टेशन में)। इस प्रकार परिवर्तनों को उलझाव उत्प्रेरण कहा जाता है।[6] इस प्रक्रिया में, प्रारंभिक अवस्था को अंतिम अवस्था में बदलना जो कि LOCC के साथ असंभव है, उत्प्रेरक अवस्था के साथ प्रारंभिक अवस्था का टेंसर उत्पाद लेकर संभव बनाया जाता है। और यह आवश्यक है कि यह स्थिति रूपांतरण प्रक्रिया के अंत में भी उपलब्ध रहे। अर्थात, उत्प्रेरक स्थिति को रूपांतरण द्वारा अपरिवर्तित छोड़ दिया जाता है और फिर मात्र वांछित अंतिम स्थिति को छोड़कर हटाया जा सकता है। राज्यों पर विचार करें,

इन अवस्थाओं को श्मिट अपघटन के रूप में और अवरोही क्रम में लिखा जाता है। हम के गुणांकों के योग की तुलना करते हैं और

0 0.4 0.5
1 0.8 0.75
2 0.9 1.0
3 1.0 1.0

टेबल में लाल रंग डाला जाता है यदि , हरा रंग डाला जाता है यदि , और सफेद रंग रह जाता है यदि . तालिका बनाने के पश्चात, कोई भी सरली से पता लगा सकता है कि क्या और में रंग देखकर परिवर्तनीय हैं दिशा। में परिवर्तित किया जा सकता है यदि सभी रंग हरे या सफेद हैं तो एलओसीसी द्वारा, और में परिवर्तित किया जा सकता है यदि सभी रंग लाल या सफेद हैं तो एलओसीसी द्वारा। जब तालिका लाल और हरे दोनों रंग प्रस्तुत करती है, तो स्थितियाँ परिवर्तनीय नहीं होती हैं।

अब हम उत्पाद स्थितियों पर विचार करते हैं और

इसी प्रकार, हम तालिका बनाते हैं:

0 0.24 0.30
1 0.48 0.50
2 0.64 0.65
3 0.80 0.80
4 0.86 0.90
5 0.92 1.00
6 0.96 1.00
7 1.00 1.00

में रंग नील्सन प्रमेय के अनुसार, सभी दिशाएँ हरी या सफेद हैं, में परिवर्तित किया जाना संभव है एलओसीसी द्वारा. उत्प्रेरक अवस्था धर्मांतरण के पश्चात हटा लिया जाता है. अंततः हम पाते हैं एलओसीसी द्वारा.

यदि सिस्टम और उत्प्रेरक के बीच सहसंबंधों की अनुमति दी जाती है, तो द्विदलीय शुद्ध अवस्थाओं के बीच उत्प्रेरक परिवर्तनों को उलझाव एन्ट्रापी के माध्यम से चित्रित किया जाता है।[7] अधिक विस्तार से, एक शुद्ध अवस्था दूसरी शुद्ध अवस्था में परिवर्तित किया जा सकता है उत्प्रेरक LOCC के माध्यम से यदि और मात्र यदि

,

कहाँ वॉन न्यूमैन एन्ट्रापी है, और और का आंशिक निशान हैं और , क्रमश। सामान्य तौर पर, रूपांतरण उपयुक्त नहीं होता है, लेकिन मनमानी उपयुक्तता के साथ किया जा सकता है। सिस्टम और उत्प्रेरक के बीच सहसंबंधों की मात्रा को भी मनमाने ढंग से छोटा किया जा सकता है।

यह भी देखें

  • क्वांटम टेलीपोर्टेशन

संदर्भ

  1. 1.0 1.1 1.2 1.3 Chitambar, E.; Leung, D.; Mancinska, L.; Ozols, M.; Winter, A. (2012). "एलओसीसी के बारे में वह सब कुछ जो आप हमेशा से जानना चाहते थे (लेकिन पूछने से डरते थे)". Commun. Math. Phys. 328 (1): 303. arXiv:1210.4583. Bibcode:2014CMaPh.328..303C. doi:10.1007/s00220-014-1953-9. S2CID 118478457.
  2. Charles H. Bennett; David P. DiVincenzo; Christopher A. Fuchs; Tal Mor; Eric Rains; Peter W. Shor; John A. Smolin; William K. Wootters (1999). "उलझाव के बिना क्वांटम गैर-स्थानीयता". Phys. Rev. A. 59 (2): 1070–1091. arXiv:quant-ph/9804053. Bibcode:1999PhRvA..59.1070B. doi:10.1103/PhysRevA.59.1070. S2CID 15282650.
  3. M. A. Nielsen (1999). "उलझाव परिवर्तनों के एक वर्ग के लिए शर्तें". Phys. Rev. Lett. 83 (2): 436–439. arXiv:quant-ph/9811053. Bibcode:1999PhRvL..83..436N. doi:10.1103/PhysRevLett.83.436. S2CID 17928003.
  4. Guifré Vidal (2000). "नीरस उलझाव". J. Mod. Opt. 47 (2–3): 355. arXiv:quant-ph/9807077. Bibcode:2000JMOp...47..355V. doi:10.1080/09500340008244048. S2CID 119347961.
  5. G. Gour; N. R. Wallach (2013). "सभी परिमित आयामों के बहुपक्षीय उलझाव का वर्गीकरण". Phys. Rev. Lett. 111 (6): 060502. arXiv:1304.7259. Bibcode:2013PhRvL.111f0502G. doi:10.1103/PhysRevLett.111.060502. PMID 23971544. S2CID 1570745.
  6. D. Jonathan; M. B. Plenio (1999). "शुद्ध क्वांटम अवस्थाओं का उलझाव-सहायता प्राप्त स्थानीय हेरफेर". Phys. Rev. Lett. 83 (17): 3566–3569. arXiv:quant-ph/9905071. Bibcode:1999PhRvL..83.3566J. doi:10.1103/PhysRevLett.83.3566. S2CID 392419.
  7. Kondra, Tulja Varun; Datta, Chandan; Streltsov, Alexander (2021-10-05). "शुद्ध उलझी हुई अवस्थाओं का उत्प्रेरक परिवर्तन". Physical Review Letters. 127 (15): 150503. arXiv:2102.11136. Bibcode:2021PhRvL.127o0503K. doi:10.1103/PhysRevLett.127.150503. PMID 34678004. S2CID 237532098.


अग्रिम पठन