क्वांटम गैरस्थानीयता

From Vigyanwiki

सैद्धांतिक भौतिकी में, क्वांटम गैर-स्थानीयता उस घटना को संदर्भित करती है जिसके द्वारा बहुपक्षीय क्वांटम प्रणाली के क्वांटम यांत्रिकी आंकड़ों में माप स्थानीय यथार्थवाद सिद्धांत के संदर्भ में व्याख्या को स्वीकार नहीं करते हैं। क्वांटम गैर-स्थानीयता को विभिन्न भौतिक मान्यताओं के अनुसार प्रयोगात्मक रूप से सत्यापित किया गया है।[1][2][3][4][5] कोई भी भौतिक सिद्धांत जिसका उद्देश्य क्वांटम सिद्धांत को प्रतिस्थापित करना है, उसे ऐसे प्रयोगों का ध्यान रखना चाहिए और इसलिए वह स्थानीय यथार्थवाद को पूरा नहीं कर सकता है; क्वांटम नॉनलोकैलिटी ब्रह्मांड की संपत्ति है जो प्रकृति के हमारे विवरण से स्वतंत्र है।

क्वांटम गैर-स्थानीयता सुपरल्यूमिनल संचार प्रकाश से भी तेज़ संचार या दूरी पर कार्य की अनुमति नहीं देती है,[6] और इसलिए विशेष सापेक्षता और वस्तुओं की इसकी सार्वभौमिक गति सीमा के साथ संगत है। इस प्रकार, क्वांटम सिद्धांत विशेष सापेक्षता द्वारा परिभाषित सख्त अर्थ में स्थानीयता का सिद्धांत है और, इस प्रकार, क्वांटम गैर-स्थानीयता शब्द को कभी-कभी मिथ्या नाम माना जाता है। फिर भी, यह अनेक क्वांटम आधारों का संकेत देता है।

इतिहास

आइंस्टीन, पोडॉल्स्की और रोसेन

1935 में, अल्बर्ट आइंस्टीन, बोरिस पोडॉल्स्की और नाथन रोसेन ने विचार प्रयोग प्रकाशित किया जाता है, जिसके साथ उन्होंने सूक्ष्म मापदंड पर स्थानीयता के सिद्धांत के उल्लंघन के संबंध में क्वांटम यांत्रिकी की कोपेनहेगन व्याख्या की अपूर्णता को प्रदर्शित करने की आशा की जाती है।[7] Afterwards, Einstein presented a variant of these ideas in a letter to Erwin Schrödinger,[8] which is the version that is presented here. The state and notation used here are more modern, and akin to David Bohm's take on EPR.[9] The quantum state of the two particles prior to measurement can be written as

where .[10]

यहां, सबस्क्रिप्ट "A" और "B" दो कणों को भिन्न करते हैं, चूंकि इन कणों को ऐलिस और बॉब नामक दो प्रयोगवादियों के कब्जे में संदर्भित करना अधिक सुविधाजनक और सामान्य होता है। इसलिए क्वांटम सिद्धांत के नियम प्रयोगवादियों द्वारा किए गए माप के परिणामों के लिए पूर्वानुमान देते हैं। उदाहरण के लिए, ऐलिस अपने कण को ​​औसतन पचास प्रतिशत माप में स्पिन-अप करने के लिए मापेगी। चूँकि, कोपेनहेगन व्याख्या के अनुसार, ऐलिस का माप दो कणों की स्थिति को तरंग फलन पतन ढहने का कारण बनता है,,तब यह आधार के संबंध में है ,तब बॉब का प्रणाली को किसी स्तर में छोड़ दिया जाएगा . इसी तरह, यदि ऐलिस एक्स-दिशा में, अर्थात आधार के संबंध में, स्पिन का माप करता है ,तब बॉब का प्रणाली किसी स्तर में छोड़ दिया जाएगा . श्रोडिंगर ने इस घटना को क्वांटम स्टीयरिंग कहा।[11] यह स्टीयरिंग इस तरह से होती है कि इस तरह का स्टेट अपडेट करके कोई सिग्नल नहीं भेजा जा सकता है; क्वांटम नॉनलोकैलिटी का उपयोग तुरंत संदेश भेजने के लिए नहीं किया जा सकता है और इसलिए यह विशेष सापेक्षता में कार्य-कारण संबंधी चिंताओं के साथ सीधे टकराव में नहीं है।[10]

इस प्रयोग के कोपेनहेगन दृष्टिकोण में, ऐलिस की माप-और विशेष रूप से उसकी माप पसंद-का बॉब की स्थिति पर सीधा प्रभाव पड़ता है। चूँकि, स्थानीयता की धारणा के अनुसार ,ऐलिस के प्रणाली पर कार्रवाई बॉब के प्रणाली की वास्तविक, या ऑन्टिक स्थिति को प्रभावित नहीं करती है। हम देखते हैं कि बॉब की प्रणाली की ओन्टिक अवस्था क्वांटम अवस्थाओं या में से किसी के साथ संगत होनी चाहिए , चूंकि ऐलिस माप कर सकता है जो उन स्तर में से के साथ समाप्त होता है जो उसके प्रणाली का क्वांटम विवरण है। साथ ही, इसे क्वांटम अवस्थाओं में से किसी के साथ संगत भी होना चाहिए| इसी कारण से। इसलिए, बॉब की प्रणाली की ओन्टिक अवस्था कम से कम दो क्वांटम अवस्थाओं या के साथ संगत होनी चाहिए; इसलिए क्वांटम अवस्था उसके प्रणाली का पूर्ण विवरणकर्ता नहीं है। आइंस्टीन, पोडॉल्स्की और रोसेन ने इसे क्वांटम सिद्धांत की कोपेनहेगन व्याख्या की अपूर्णता के प्रमाण के रूप में देखा, क्योंकि स्थानीयता की इस धारणा के अनुसार तरंग फलन स्पष्ट रूप से क्वांटम प्रणाली का पूर्ण विवरण नहीं है। उनका पेपर समाप्त होता है:[7]

जबकि हमने इस प्रकार दिखाया है कि तरंग फलन भौतिक वास्तविकता का पूर्ण विवरण प्रदान नहीं करता है, हमने इस प्रश्न को संवृत छोड़ दिया है कि ऐसा विवरण उपस्तिथ है या नहीं। चूँकि , हमारा मानना ​​है कि ऐसा सिद्धांत संभव है.

चूँकि विभिन्न लेखकों (विशेष रूप से नील्स बोह्र) ने ईपीआर पेपर की अस्पष्ट शब्दावली की आलोचना की थी ,[12][13] फिर भी विचार प्रयोग ने अधिक रुचि उत्पन्न की। संपूर्ण विवरण की उनकी धारणा को पश्चात् में हिडन-वेरिएबल सिद्धांत के सुझाव द्वारा औपचारिक रूप दिया गया जो माप परिणामों के आँकड़े निर्धारित करता है, किन्तु जिस तक पर्यवेक्षक की पहुँच नहीं होती है।[14] डी ब्रोगली-बोहम सिद्धांत छिपे हुए वेरियबल की प्रारंभ के साथ, क्वांटम यांत्रिकी की ऐसी पूर्णता प्रदान करता है; चूँकि सिद्धांत स्पष्ट रूप से गैर-स्थानीय है।[15] इसलिए यह व्याख्या आइंस्टीन के प्रश्न का उत्तर नहीं देती है, जो यह था कि स्थानीय कार्य के सिद्धांत को ध्यान में रखते हुए स्थानीय छिपे हुए वेरियबल के संदर्भ में क्वांटम यांत्रिकी का पूरा विवरण दिया जा सकता है या नहीं।[16]






बेल असमानता

1964 में जॉन स्टीवर्ट बेल ने आइंस्टीन के प्रश्न का उत्तर यह दिखाकर दिया कि ऐसे स्थानीय छिपे हुए वेरियबल कभी भी क्वांटम सिद्धांत द्वारा अनुमानित सांख्यिकीय परिणामों की पूरी श्रृंखला को पुन: उत्पन्न नहीं कर सकते हैं।[17] बेल ने दिखाया कि स्थानीय छिपी हुई वेरियबल परिकल्पना माप परिणामों के सहसंबंधों की बल पर प्रतिबंध लगाती है। यदि क्वांटम यांत्रिकी द्वारा पूर्वानुमान के अनुसार बेल असमानताओं का प्रयोगात्मक रूप से उल्लंघन किया जाता है,तब वास्तविकता को स्थानीय छिपे हुए वेरियबल द्वारा वर्णित नहीं किया जा सकता है और क्वांटम गैर-स्थानीय कारण का रहस्य बना रहता है। बेल के अनुसार:[17]

यह [पूरी तरह से गैर-स्थानीय संरचना] ऐसे किसी भी सिद्धांत की विशेषता है... जो बिल्कुल क्वांटम यांत्रिक पूर्वानुमानो को पुन: प्रस्तुत करता है।

जॉन क्लॉसर, हॉर्न, अब्नेर शिमोनी और होल्ट (सीएचएसएच) ने इन असमानताओं को इस तरह से सुधारा जो प्रयोगात्मक परीक्षण के लिए अधिक अनुकूल था (सीएचएसएच असमानता देखें)।[18]

बेल द्वारा प्रस्तावित परिदृश्य (एक बेल परिदृश्य) में, दो प्रयोगकर्ता, ऐलिस और बॉब, भिन्न-भिन्न प्रयोगशालाओं में प्रयोग करते हैं। प्रत्येक समय में, ऐलिस (बॉब) प्रयोग करता है उसकी (उसकी) प्रयोगशाला में, परिणाम प्राप्त करना . यदि ऐलिस और बॉब अपने प्रयोगों को अनेक बार दोहराते हैं,तब वे संभावनाओं का अनुमान लगा सकते हैं , अर्थात्, संभावना है कि ऐलिस और बॉब क्रमशः परिणामों का निरीक्षण करते हैं जब वे क्रमशः x,y प्रयोग करते हैं। निम्नलिखित में, संभावनाओं का प्रत्येक ऐसा समुच्चय बस द्वारा निरूपित किया जाएगा . क्वांटम नॉनलोकैलिटी स्लैंग में, को बॉक्स कहा जाता है.[19]

बेल ने मापदंड प्रस्तुत करके छिपे हुए वेरियबल के विचार को औपचारिक रूप दिया प्रत्येक प्रणाली पर माप परिणामों को स्थानीय रूप से चिह्नित करने के लिए:[17]यह उदासीनता का विषय है... क्या λ एकल वेरियबल या समुच्चय को दर्शाता है... और क्या वेरियबल असतत या सतत हैं। चूँकि, इसके बारे में सोचना समतुल्य (और अधिक सहज) है स्थानीय रणनीति या संदेश के रूप में जो कुछ संभावना के साथ घटित होता है जब ऐलिस और बॉब अपने प्रायोगिक सेटअप को रीबूट करते हैं। ईपीआर के स्थानीय पृथक्करण के मानदंड तब निर्धारित करते हैं कि प्रत्येक स्थानीय रणनीति स्वतंत्र परिणामों के वितरण को परिभाषित करती है यदि ऐलिस प्रयोग x का संचालन करता है और बॉब प्रयोग का संचालन करता है :

जहाँ () इस संभावना को दर्शाता है कि ऐलिस (बॉब) परिणाम प्राप्त करता है जब वह (वह) प्रयोग करती है और उसके (उसके) प्रयोग का वर्णन करने वाले स्थानीय वेरियबल का मूल्य है ().

लगता है कि कुछ समुच्चय से मान ले सकते हैं यदि मानों की प्रत्येक जोड़ी संबद्ध संभावना है तथा इसके चयनित होने की (साझा यादृच्छिकता की अनुमति है, अर्थात, सहसंबंधित किया जा सकता है),तब प्रत्येक माप परिणाम की संयुक्त संभावना के लिए सूत्र प्राप्त करने के लिए इस वितरण का औसत निकाला जा सकता है:

इस तरह के अपघटन को स्वीकार करने वाले बॉक्स को बेल लोकल या क्लासिकल बॉक्स कहा जाता है। प्रत्येक द्वारा लिए जा सकने वाले संभावित मानों की संख्या निश्चित करना प्रत्येक बॉक्स को प्रविष्टियों के साथ सीमित सदिश के रूप में प्रस्तुत किया जा सकता है | उस प्रतिनिधित्व में, सभी मौलिक बक्सों का समुच्चय उत्तल पॉलीटोप बनाता है। सीएचएसएच द्वारा अध्ययन किए गए बेल परिदृश्य में, जहां मूल्यों को अपने अंदर ले जा सकते हैं , कोई भी बेल लोकल बॉक्स सीएचएसएच असमानता को संतुष्ट करना होगा:

जहाँ
उपरोक्त विचार क्वांटम प्रयोग के मॉडल पर इस प्रकार क्रियान्वित होते हैं। जैसे कि द्विदलीय फोटोनिक अवस्था पर स्थानीय ध्रुवीकरण माप करने वाले दो पक्षों पर विचार किये जाते है । फोटॉन के ध्रुवीकरण के लिए माप परिणाम दो मानों में से ले सकता है (अनौपचारिक रूप से, चाहे फोटॉन उस दिशा में ध्रुवीकृत हो, या ऑर्थोगोनल दिशा में)। यदि प्रत्येक पार्टी को केवल दो भिन्न-भिन्न ध्रुवीकरण दिशाओं के मध्य चयन करने की अनुमति दी जाती है, तब प्रयोग सीएचएसएच परिदृश्य में फिट बैठता है। जैसा कि सीएचएसएच ने नोट किया है, क्वांटम स्थिति और ध्रुवीकरण दिशाएं उपस्तिथ हैं जो के समान्तर के साथ बॉक्स उत्पन्न करती हैं यह स्पष्ट विधि को प्रदर्शित करता है जिसमें ऑन्टोलॉजिकल स्थितियों वाला सिद्धांत जो स्थानीय है, स्थानीय माप और केवल स्थानीय क्रियाओं के साथ क्वांटम सिद्धांत की संभाव्य पूर्वानुमानो से मेल नहीं खा सकता है, जो आइंस्टीन की परिकल्पना को खारिज करता है। एलेन पहलू जैसे प्रयोगवादियों ने सीएचएसएच असमानता के क्वांटम उल्लंघन को सत्यापित किया है [1] साथ ही बेल की असमानता के अन्य सूत्रीकरण, स्थानीय छिपे हुए वेरियबल परिकल्पना को अमान्य करने और पुष्टि करने के लिए कि वास्तविकता वास्तव में ईपीआर अर्थ में गैर-स्थानीय है।

संभावनावादी गैर-स्थानीयता

बेल के कारण गैर-स्थानीयता का प्रदर्शन इस अर्थ में संभाव्य है कि यह दर्शाता है कि कुछ उलझे हुए परिदृश्यों के लिए क्वांटम यांत्रिकी द्वारा पूर्वानुमान की गई स्पष्ट संभावनाओं को स्थानीय सिद्धांत द्वारा पूरा नहीं किया जा सकता है। (संक्षेप में, यहां और अभी से स्थानीय सिद्धांत का अर्थ स्थानीय छिपे हुए वेरियबल सिद्धांत है।) चूंकि, क्वांटम यांत्रिकी स्थानीय सिद्धांतों के और भी सशक्त उल्लंघन की अनुमति देता है: संभावनावादी, जिसमें स्थानीय सिद्धांत क्वांटम यांत्रिकी से सहमत भी नहीं हो सकते हैं, जिस पर घटनाएं संभव या असंभव हैं सम्मिश्र हुई स्थिति में. इस तरह का पहला प्रमाण 1993 में डेनियल ग्रीनबर्गर, माइकल हॉर्न (भौतिक विज्ञानी) और एंटोन ज़िलिंगर के कारण था।[20] इसमें सम्मिलित स्तर को अक्सर ग्रीनबर्गर-हॉर्न-ज़ीलिंगर स्तर कहा जाता है।

1993 में, लुसिएन हार्डी ने क्वांटम गैर-स्थानीयता का तार्किक प्रमाण प्रदर्शित किया था जो कि जीएचजेड प्रमाण की तरह संभावित प्रमाण है।[21][22][23] इसकी प्रारंभ इस अवलोकन से होती है कि स्तर नीचे परिभाषित कुछ विचारोत्तेजक विधियों से लिखा जा सकता है:

जहां, जैसा कि ऊपर बताया गया है, .

प्रयोग में यह सम्मिश्र हुई स्थिति दो प्रयोगकर्ताओं के मध्य साझा की जाती है, जिनमें से प्रत्येक के पास आधार या के संबंध में मापने की क्षमता होती है या . हम देखते हैं कि क्या वे प्रत्येक के संबंध में मापते हैं ,तबवे कभी परिणाम नहीं देखते . यदि कोई और दूसरा , इसके संबंध में मापता है वे कभी भी परिणाम नहीं देखते हैं चूँकि, कभी-कभी उन्हें के संबंध में मापते समय परिणाम , देखते है तब से होता है |

यह विरोधाभास की ओर ले जाता है: परिणाम प्राप्त करने पर हम यह निष्कर्ष निकालते हैं कि यदि प्रयोगकर्ताओं में से किसी ने इसके अतिरिक्त आधार के संबंध में माप लिया था इसके अतिरिक्त आधार,पर या परिणाम होना चाहिए, तब से और असंभव हैं. किन्तु फिर, यदि उन दोनों को स्थानीयता के आधार पर, आधार पर मापा गया होता तो परिणाम अवश्य होना चाहिए , जो कि असंभव भी है |

एक सीमित प्रसार गति के साथ गैर-स्थानीय छिपे हुए वेरियबल मॉडल

बैंकल एट अल का काम।[24] यह सिद्ध करना है जिसे सिद्ध करके बेल के परिणाम को सामान्यीकृत करता है कि क्वांटम सिद्धांत में प्राप्त सहसंबंध सुपरल्यूमिनल छिपे हुए वेरियबल मॉडल के बड़े वर्ग के साथ भी असंगत हैं। इस ढांचे में, प्रकाश से भी तेज़ सिग्नलिंग को बाहर रखा गया है। चूँकि, पक्ष की सेटिंग्स का चुनाव दूसरे पक्ष के दूर के स्थान पर छिपे हुए वेरियबल को प्रभावित कर सकता है, यदि बिंदु से दूसरे तक सुपरल्यूमिनल प्रभाव (परिमित, किन्तु अन्यथा अज्ञात गति) के प्रसार के लिए पर्याप्त समय है। इस परिदृश्य में, बेल गैर-स्थानीयता को प्रकट करने वाला कोई भी द्विपक्षीय प्रयोग छिपे हुए प्रभाव की प्रसार गति पर निचली सीमा प्रदान कर सकता है। फिर भी, तीन या अधिक पार्टियों के साथ क्वांटम प्रयोग ऐसे सभी गैर-स्थानीय छिपे हुए वेरियबल मॉडल को अस्वीकार कर सकते हैं।[24]

अधिक सम्मिश्र कारण संरचनाओं में बेल के प्रमेय के अनुरूप

एक साधारण बायेसियन नेटवर्क। बारिश प्रभावित करती है कि स्प्रिंकलर सक्रिय है या नहीं, और बारिश और स्प्रिंकलर दोनों प्रभावित करते हैं कि घास गीली है या नहीं।

एक सामान्य प्रयोग में मापे गए यादृच्छिक वेरियबल सम्मिश्र विधियों से दूसरे पर निर्भर हो सकते हैं। कारण अनुमान के क्षेत्र में, ऐसी निर्भरताओं को बायेसियन नेटवर्क के माध्यम से दर्शाया जाता है: निर्देशित एसाइक्लिक ग्राफ़ जहां प्रत्येक नोड वेरियबल का प्रतिनिधित्व करता है और वेरियबल से दूसरे तक का किनारा दर्शाता है कि पूर्व पश्चात् वाले को प्रभावित करता है और अन्यथा नहीं, चित्र देखें। एक मानक द्विदलीय बेल प्रयोग में, ऐलिस (बॉब) की सेटिंग (), उसके (उसके) स्थानीय वेरियबल के साथ () के साथ मिलकर उसके स्थानीय परिणाम () को प्रभावित करती है इस प्रकार बेल के प्रमेय की व्याख्या केवल छिपे हुए नोड के साथ प्रकार की कारण संरचनाओं में क्वांटम और मौलिक पूर्वानुमानो के मध्य भिन्नाव के रूप में की जा सकती है। . अन्य प्रकार की कारण संरचनाओं में भी इसी तरह के भिन्नाव स्थापित किए गए हैं।[25] ऐसे विस्तारित बेल परिदृश्यों में मौलिक सहसंबंधों के लिए सीमाओं का लक्षण वर्णन चुनौतीपूर्ण है, किन्तु इसे प्राप्त करने के लिए पूर्ण व्यावहारिक कम्प्यूटेशनल विधि उपस्तिथ हैं।[26][27]


सम्मिश्रता और गैर स्थानीयता

क्वांटम गैर-स्थानीयता को कभी-कभी सम्मिश्रता के सामान्तर समझा जाता है। बहरहाल, स्थितियां यह नहीं है| क्वांटम सम्मिश्रता को केवल क्वांटम यांत्रिकी की औपचारिकता के अंदर ही परिभाषित किया जा सकता है, अर्थात, यह मॉडल-निर्भर संपत्ति है। इसके विपरीत, गैर-स्थानीयता स्थानीय छिपे हुए वेरियबल मॉडल के संदर्भ में देखे गए आँकड़ों के विवरण की असंभवता को संदर्भित करती है, इसलिए यह प्रयोग का वर्णन करने के लिए उपयोग किए जाने वाले भौतिक मॉडल से स्वतंत्र है।

यह सच है कि किसी भी शुद्ध सम्मिश्र हुई अवस्था के लिए माप का विकल्प उपस्तिथ होता है जो बेल गैर-स्थानीय सहसंबंध उत्पन्न करता है, किन्तु मिश्रित अवस्था के लिए स्थिति अधिक सम्मिश्र होती है। जबकि किसी भी बेल गैर-स्थानीय स्तर को उलझाया जाना चाहिए, वहाँ उपस्तिथ (मिश्रित) उलझे हुए स्तर हैं जो बेल गैर-स्थानीय सहसंबंध उत्पन्न नहीं करते हैं [28] (चूंकि, ऐसे कुछ स्तर की अनेक प्रतियों पर काम करते हुए,[29] या स्थानीय पद-चयन करना,[30] गैर-स्थानीय प्रभावों को देखना संभव है)। इसके अतिरिक्त, जबकि सम्मिश्रता के लिए क्वांटम उत्प्रेरक हैं,[31] गैर-स्थानीयता के लिए कोई नहीं है।[32] अंत में, बेल असमानताओं के यथोचित सरल उदाहरण पाए गए हैं, जिसके लिए सबसे बड़ा उल्लंघन देने वाली क्वांटम स्थिति कभी भी अधिकतम सम्मिश्र हुई स्थिति नहीं होती है, जिससे पता चलता है कि सम्मिश्रता, कुछ अर्थों में, गैर-स्थानीयता के समानुपाती भी नहीं है।[33][34][35]


क्वांटम सहसंबंध

जैसा कि दिखाया गया है, कि मौलिक प्रणाली में प्रयोग करने वाले दो या दो से अधिक पक्षों द्वारा प्राप्त किए जाने वाले आंकड़े गैर-तुच्छ विधि से सीमित हैं। और इसी प्रकार, क्वांटम सिद्धांत में भिन्न-भिन्न पर्यवेक्षकों द्वारा प्राप्त किए जाने वाले आँकड़े भी प्रतिबंधित होते हैं। बोरिस त्सिरेलसन | बी के कारण, क्वांटम सहसंबंधों के समुच्चय पर गैर-तुच्छ सांख्यिकीय सीमा की पहली व्युत्पत्ति।[36] इसे त्सिरेल्सन बाउंड के नाम से जाना जाता है। पहले विस्तृत सीएचएसएच बेल परिदृश्य पर विचार करें, किन्तु इस बार मान लें कि, अपने प्रयोगों में, ऐलिस और बॉब क्वांटम प्रणाली तैयार कर रहे हैं और माप भी रहे हैं। उस स्थिति में, सीएचएसएच मापदंड को सीमाबद्ध दिखाया जा सकता है

क्वांटम सहसंबंध और त्सिरेलसन की समस्या के समुच्चय

गणितीय रूप से, बॉक्स क्वांटम प्राप्ति को स्वीकार करता है यदि और केवल तभी जब हिल्बर्ट रिक्त स्थान ,सामान्यीकृत सदिश और प्रक्षेपण ऑपरेटर की जोड़ी उपस्तिथ हो , जैसे कि :

  1. सभी के लिए , समुच्चय पूर्ण माप का प्रतिनिधित्व करते हैं। अर्थात्, .
  2. , सभी के लिए .

आगे ऐसे बक्सों के समुच्चय को बुलाया जाएगा . सहसंबंधों के मौलिक समुच्चय के विपरीत, जब संभाव्यता स्थान में देखा जाता है, बहुविषयक नहीं है. इसके विपरीत, इसमें सीधी और घुमावदार दोनों सीमाएँ सम्मिलित हैं।[37] इसके साथ ही, बंद नहीं है:[38] इसका मतलब है कि वहाँ बक्से उपस्तिथ हैं जिन्हें क्वांटम प्रणालियों द्वारा अनेैतिक रूप से अच्छी तरह से अनुमानित किया जा सकता है किन्तु वे स्वयं क्वांटम नहीं हैं।

उपरोक्त परिभाषा में, बेल प्रयोग का संचालन करने वाले दो पक्षों के अंतरिक्ष-जैसे पृथक्करण को यह क्रियान्वित करके तैयार किया गया था कि उनके संबंधित ऑपरेटर बीजगणित प्रयोग का वर्णन करने वाले समग्र हिल्बर्ट स्पेस के विभिन्न कारकों पर कार्य करते हैं वैकल्पिक रूप से, कोई इन दो बीजगणितों को क्रियान्वित करके अंतरिक्ष-जैसे पृथक्करण का मॉडल तैयार कर सकता है। इससे भिन्न परिभाषा सामने आती है:

फ़ील्ड क्वांटम प्राप्ति को स्वीकार करता है यदि और केवल तभी जब हिल्बर्ट स्थान , सामान्यीकृत सदिश और प्रक्षेपण ऑपरेटर उपस्तिथ हो जाते है जैसे कि

  1. सभी के लिए , समुच्चय पूर्ण माप का प्रतिनिधित्व करते हैं। अर्थात्, .
  2. , सभी के लिए .
  3. , सभी के लिए .

ऐसे सभी सहसंबंधों का समुच्चय को के द्वारा दर्शाया गया है |

यह नया समुच्चय ऊपर परिभाषितअधिक पारंपरिक से कैसे संबंधित है?  ? ऐसा सिद्ध किया जा सकता है बन्द है। इसके अतिरिक्त, , जहाँ , के बंद होने को दर्शाता है . त्सिरेलसन की समस्याएँ[39] यह तय करने में सम्मिलित है कि क्या समावेशन संबंध सख्त है, अर्थात कि है या नहीं . यह समस्या केवल अनंत आयामों में प्रकट होती है: जब हिल्बर्ट स्थान की परिभाषा में परिमित-आयामी होने के लिए बाध्य है, संबंधित समुच्चय का समापन सामान्तर होता है .[39]

जनवरी 2020 में, जी, नटराजन, विडिक, राइट और यूएन ने क्वांटम सम्मिश्रता सिद्धांत में परिणाम का प्रामाणित किया[40] इसका मतलब यही होगा , इस प्रकार त्सिरेलसन की समस्या का समाधान हो गया।[41][42][43][44][45][46][47]

त्सिरेलसन की समस्या को कोन्स एम्बेडिंग समस्या के समतुल्य दिखाया जा सकता है,[48][49][50] संचालक बीजगणित के सिद्धांत में प्रसिद्ध अनुमान।

क्वांटम सहसंबंधों का लक्षण वर्णन

इसके आयामों के पश्चात् से और सिद्धांत रूप में, असीमित हैं, यह निर्धारित करते हुए कि कोई दिया गया बॉक्स क्वांटम प्राप्ति को स्वीकार करता हैं यह सम्मिश्र समस्या है। वास्तव में, यह स्थापित करने की दोहरी समस्या कि क्या क्वांटम बॉक्स का गैर-स्थानीय गेम में सही स्कोर हो सकता है, अनिर्णीत माना जाता है।[38] इसके अतिरिक्त, यह तय करने की समस्या भी है कि क्या क्वांटम प्रणाली द्वारा सटीक के साथ अनुमान लगाया जा सकता है एनपी-हार्ड है.[51] क्वांटम बक्सों को चिह्नित करना रैखिक बाधाओं के समुच्चय के अनुसार पूरी तरह से धनात्मक अर्धनिश्चित आव्युह के शंकु को चिह्नित करने के सामान्तर है।[52]

छोटे निश्चित आयामों के लिए , कोई परिवर्तनशील विधियों का उपयोग करके पता लगा सकता है, माना इसे द्विदलीय क्वांटम प्रणाली में अनुभव किया जा सकता है तथा है चूँकि, उस पद्धति का उपयोग केवल इसकी व्यवहार्यता को सिद्ध करना करने के लिए किया जा सकता है , और क्वांटम प्रणाली के साथ इसकी अवास्तविकता नहीं होती है ।

अवास्तविकता को सिद्ध करने के लिए, सबसे ज्ञात विधि नवास्क्यूज़-पिरोनियो-एसिन (एनपीए) पदानुक्रम है।[53] यह गुणों के साथ सहसंबंधों के समुच्चय का अनंत घटता क्रम है  :

  1. यदि , तब सभी के लिए .
  2. यदि ,तब वहाँ उपस्तिथ है ऐसा है कि .
  3. किसी भी के लिए , यह निर्णय लेना कि क्या अर्धनिश्चित प्रोग्रामिंग के रूप में डाला जा सकता है।

इस प्रकार एनपीए पदानुक्रम का नहीं, किन्तु की . का एक कम्प्यूटेशनल लक्षण वर्णन प्रदान करता है, यदि त्सिरेलसन की समस्या का समाधान धनात्मक रूप है अर्थात्, में हल किया जाता है,तब उपरोक्त दो विधियाँ इसका व्यावहारिक लक्षण वर्णन प्रदान करेंगी .यदि, इसके विपरीत, , तो फिर सहसंबंधों की गैर-वास्तविकता का पता लगाने के लिए नई विधि ज़रूरी है।

सुप्रा-क्वांटम सहसंबंधों की भौतिकी

ऊपर सूचीबद्ध कार्य वर्णन करते हैं कि सहसंबंधों का क्वांटम समुच्चय कैसा दिखता है, किन्तु वे यह नहीं बताते कि क्यों। क्या क्वांटम सहसंबंध अपरिहार्य हैं, यहां तक ​​कि पोस्ट-क्वांटम भौतिक सिद्धांतों में भी है या इसके विपरीत, क्या बाहर भी सहसंबंध उपस्तिथ हो सकते हैं? जो फिर भी किसी अभौतिक परिचालन व्यवहार की ओर नहीं ले जाता है ?

1994 के अपने मौलिक पेपर में, संदू पोपेस्कु और रोरलिच ने पता लगाया है कि क्या क्वांटम सहसंबंधों को केवल सापेक्षतावादी कार्य-कारण के आधार पर समझाया जा सकता है।[54] अर्थात्, चाहे कोई काल्पनिक बक्सा इससे प्रकाश की गति से भी तेज गति से सूचना प्रसारित करने में सक्षम होता है तथा उपकरण का निर्माण संभव हो सकेगा। दो पक्षों के मध्य सहसंबंधों के स्तर पर, आइंस्टीन की कार्य-कारणता इस आवश्यकता में तब्दील हो जाती है कि ऐलिस की माप पसंद बॉब के आंकड़ों को प्रभावित नहीं करनी चाहिए, और इसके विपरीत। अन्यथा, ऐलिस (बॉब) अपनी माप सेटिंग उचित रूप से चुनकर तुरंत बॉब (ऐलिस) को संकेत दे सकती है . गणितीय रूप से, पोपेस्कु और रोरलिच नो-सिग्नलिंग स्थितियाँ हैं:



मौलिक बक्सों के समुच्चय की तरह, जब संभाव्यता स्थान में दर्शाया जाता है,तब बिना सिग्नल वाले बक्सों का समुच्चय बहुवचन बनाता है। जिससे पोपेस्कु और रोरलिच ने बॉक्स की पहचान करने में उपयोग किया जाता है यह, नो-सिग्नलिंग शर्तों का अनुपालन करते हुए, त्सिरेलसन की सीमा का उल्लंघन करता है, और इस प्रकार क्वांटम भौतिकी में अवास्तविक है। इसे पीआर-बॉक्स कहा जाता है, इसे इस प्रकार लिखा जा सकता है:


जहाँ , मूल्यों को अंदर लें ,और मॉड्यूलो दो के योग को दर्शाता है। यह सत्यापित किया जा सकता है कि इस बॉक्स का सीएचएसएच मान 4 है (त्सिरेलसन बाउंड के विपरीत)। ). इस बॉक्स की पहचान पहले रैस्टल और फिर हाफिन और बोरिस त्सिरेल्सन ने की थी[55][56]

इस बेमेल को देखते हुए, पोपेस्कु और रोरलिच ने भौतिक सिद्धांत की पहचान करने की समस्या खड़ी की, जो बिना-सिग्नलिंग की स्थिति से अधिक सशक्त है, जो क्वांटम सहसंबंधों के समुच्चय को प्राप्त करने की अनुमति देता है। अनेक प्रस्तावों का पालन किया गया:

  1. गैर-तुच्छ संचार सम्मिश्रता (एनटीसीसी)।[57] यह सिद्धांत निर्धारित करता है कि गैर-स्थानीय सहसंबंध इतने सशक्त नहीं होने चाहिए कि दो पक्षों को केवल बिट संचार का उपयोग करके कुछ संभावनाओं के साथ सभी एक-तरफ़ा संचार समस्याओं को हल करने की अनुमति मिल सके। यह सिद्ध करना किया जा सकता है कि कोई भी बॉक्स त्सिरेलसन की सीमा का उल्लंघन करने वाला कोई भी बॉक्स NTCC के साथ असंगत है।
  2. नॉनलोकल कंप्यूटेशन (एनएएनएलसी) के लिए कोई लाभ नहीं।[58] निम्नलिखित परिदृश्य पर विचार किया गया है: यह फलन दिया गया है, दो दलों के तार वितरित किए जाते हैं जहाँ बिट्स और बिट्स को आउटपुट करने के लिए कहा जाता है जिससे कि , के लिए अच्छा अनुमान है . एनएएनएलसी का सिद्धांत कहता है कि गैर-स्थानीय बक्सों से दोनों पक्षों को इस खेल को खेलने का कोई लाभ नहीं मिलना चाहिए। जिससे यह सिद्ध है कि त्सिरेलसन की सीमा का उल्लंघन करने वाला कोई भी बॉक्स ऐसा लाभ प्रदान करेगा।
  3. सूचना कारणता (आईसी)।[59] प्रारंभिक बिंदु द्विपक्षीय संचार परिदृश्य है जहां भागों में से (ऐलिस) को बिट्स यादृच्छिक स्ट्रिंग सौंपी जाती है दूसरा भाग, बॉब, एक यादृच्छिक संख्या (एन) बिट्स प्राप्त करता है। उनका लक्ष्य बॉब को बिट प्रसारित करना है , किस उद्देश्य के लिए ऐलिस को बॉब को प्रसारित करने की अनुमति है बिट्स आईसी का सिद्धांत बताता है कि योग खत्म हो गया ऐलिस के बिट और बॉब के अनुमान के मध्य पारस्परिक जानकारी की ऐलिस द्वारा प्रेषित बिट्स की संख्या से अधिक नहीं हो सकती । यह दिखाया गया है कि त्सिरेलसन की सीमा का उल्लंघन करने वाला कोई भी बॉक्स दो पक्षों को आईसी का उल्लंघन करने की अनुमति देगा।
  4. मैक्रोस्कोपिक लोकैलिटी (एमएल)।[60] विचारित सेटअप में, दो भिन्न-भिन्न पार्टियाँ बड़ी संख्या में सहसंबद्ध कणों के स्वतंत्र रूप से तैयार जोड़े पर व्यापक कम-रिज़ॉल्यूशन माप आयोजित करती हैं। एमएल का कहना है कि ऐसे किसी भी "मैक्रोस्कोपिक" प्रयोग में स्थानीय छिपे हुए वेरियबल मॉडल को स्वीकार करना होगा। यह सिद्ध है कि त्सिरेलसन की सीमा का उल्लंघन करने में सक्षम कोई भी सूक्ष्म प्रयोग मैक्रोस्कोपिक मापदंड पर लाए जाने पर मानक बेल गैर-स्थानीयता का भी उल्लंघन करेगा। त्सिरेलसन की सीमा के अतिरिक्त, एमएल का सिद्धांत सभी दो-बिंदु क्वांटम सहसंबंधकों के समुच्चय को पूरी तरह से पुनर्प्राप्त करता है।
  5. स्थानीय रूढ़िवादिता (एलओ)।[61] यह सिद्धांत बहुपक्षीय बेल परिदृश्यों पर क्रियान्वित होता है, जहां पार्टियाँ क्रमशः उनकी स्थानीय प्रयोगशालाओं में प्रयोग करती हैं । वे क्रमशः परिणाम प्राप्त करते हैं . सदिशों की जोड़ी घटना कहा जाता है. दो घटनाएँ , यदि उपस्तिथ है तब स्थानीय रूप से ऑर्थोगोनल कहा जाता है यदि वंहा उपस्तिथ है तो ऐसा है कि और . एलओ के सिद्धांत में कहा गया है कि, किसी भी बहुपक्षीय बॉक्स के लिए, जोड़ी-वार स्थानीय रूप से ऑर्थोगोनल घटनाओं के किसी भी समुच्चयकी संभावनाओं का योग 1 से अधिक नहीं हो सकता है। यह सिद्ध करना होता है कि कोई भी द्विदलीय बॉक्स त्सिरेलसन की सीमा का उल्लंघन करता है एलओ का उल्लंघन करता है.

इन सभी सिद्धांतों को प्रयोगात्मक रूप से इस धारणा के अनुसार गलत सिद्ध करना किया जा सकता है कि हम यह तय कर सकते हैं कि दो या दो से अधिक घटनाएं अंतरिक्ष की तरह भिन्न हो गई हैं या नहीं। यह इस शोध कार्यक्रम को सामान्यीकृत संभाव्य सिद्धांत के माध्यम से क्वांटम यांत्रिकी के स्वयं सिद्ध पुनर्निर्माण से भिन्न करता है।

उपरोक्त कार्य इस अंतर्निहित धारणा पर निर्भर करते हैं कि सहसंबंधों के किसी भी भौतिक समुच्चय को वायरिंग के अनुसार बंद किया जाना चाहिए।[62] इसका मतलब यह है कि विचारित समुच्चय के अंदर अनेक बक्सों के इनपुट और आउटपुट को मिलाकर बनाया गया कोई भी प्रभावी बॉक्स भी समुच्चय से संबंधित होना चाहिए। तारों के नीचे बंद होने से सीएचएसएच के अधिकतम मूल्य पर कोई सीमा क्रियान्वित नहीं होती है। चूँकि, यह शून्य सिद्धांत नहीं है: अर्थात इसके विपरीत, में [62]यह दिखाया गया है कि संभाव्यता स्थान में सहसंबंधों के समुच्चय के अनेक सरल, सहज परिवार इसका उल्लंघन करते हैं।

मूल रूप से, यह अज्ञात था कि इनमें से कोई भी सिद्धांत (या उसका उपसमूह) को परिभाषित करने वाली सभी बाधाओं को प्राप्त करने के लिए पर्याप्त सशक्त था या नहीं . यह स्थिति लगभग क्वांटम समुच्चय के निर्माण तक कुछ वर्षों तक जारी रही .[63] सहसंबंधों का समुच्चय है जो वायरिंग के अनुसार बंद है और इसे अर्धनिश्चित प्रोग्रामिंग के माध्यम से चित्रित किया जा सकता है। इसमें सभी सहसंबंध सम्मिलित हैं , किन्तु कुछ गैर-क्वांटम बॉक्स . है उल्लेखनीय रूप से, लगभग क्वांटम समुच्चय के सभी बॉक्स एनटीसीसी, एनएएनएलसी, एमएल और एलओ के सिद्धांतों के अनुकूल दिखाए गए हैं। इस बात के भी संख्यात्मक प्रमाण हैं कि लगभग-क्वांटम बॉक्स भी आईसी का अनुपालन करते हैं। इसलिए, ऐसा लगता है कि, जब उपरोक्त सिद्धांतों को साथ लिया जाता है, तब भी वे दो पार्टियों, दो इनपुट और दो आउटपुट के सबसे सरल बेल परिदृश्य में निर्धारित क्वांटम को भिन्न करने के लिए पर्याप्त नहीं होते हैं।[63]


डिवाइस स्वतंत्र प्रोटोकॉल

क्वांटम सूचना कार्यों को संचालित करने के लिए गैर-स्थानीयता का उपयोग किया जा सकता है जो प्रयोग में सम्मिलित तैयारी और माप उपकरणों के आंतरिक कामकाज के ज्ञान पर निर्भर नहीं करता है। ऐसे किसी भी प्रोटोकॉल की सुरक्षा या विश्वसनीयता केवल प्रयोगात्मक रूप से मापे गए सहसंबंधों की ताकत पर निर्भर करती है . इन प्रोटोकॉल को डिवाइस-स्वतंत्र कहा जाता है।

डिवाइस-स्वतंत्र क्वांटम कुंजी वितरण

प्रस्तावित पहला डिवाइस-स्वतंत्र प्रोटोकॉल डिवाइस-स्वतंत्र क्वांटम कुंजी वितरण (क्यूकेडी) था।[64] इस आदिम में, दो दूर की पार्टियों, ऐलिस और बॉब को सम्मिश्र हुई क्वांटम स्थिति वितरित की जाती है, जिसकी वे जांच करते हैं, और इस प्रकार आंकड़े प्राप्त करते हैं . बॉक्स कितना गैर-स्थानीय है इसके आधार पर ऐसा होता है, ऐलिस और बॉब अनुमान लगाते हैं कि बाहरी क्वांटम प्रतिद्वंद्वी ईव (सुननेवाला) ऐलिस और बॉब के आउटपुट के मूल्य पर कितना ज्ञान रख सकता है। यह अनुमान उन्हें सुलह प्रोटोकॉल तैयार करने की अनुमति देता है तथा जिसके अंत में ऐलिस और बॉब ​​पूरी तरह से सहसंबद्ध वन-टाइम पैड साझा करते हैं जिसके बारे में ईव को कोई जानकारी नहीं है। वन-टाइम पैड का उपयोग सार्वजनिक चैनल के माध्यम से गुप्त संदेश प्रसारित करने के लिए किया जा सकता है। चूँकि डिवाइस-स्वतंत्र QKD पर पहला सुरक्षा विश्लेषण ईव पर विशिष्ट परिवार के हमलों को अंजाम देने पर निर्भर करता था,[65] ऐसे सभी प्रोटोकॉल वर्तमान में बिना शर्त सुरक्षित सिद्ध करते हुए हैं।[66]


डिवाइस-स्वतंत्र यादृच्छिकता प्रमाणीकरण, विस्तार और प्रवर्धन

गैर-स्थानीयता का उपयोग यह प्रमाणित करने के लिए किया जा सकता है कि बेल प्रयोग में किसी पक्ष के परिणाम किसी बाहरी प्रतिद्वंद्वी के लिए आंशिक रूप से अज्ञात हैं। और आंशिक रूप से यादृच्छिक बीज को अनेक गैर-स्थानीय बक्सों में खिलाकर, और, आउटपुट को संसाधित करने के पश्चात्, व्यक्ति तुलनीय यादृच्छिकता की लंबी (संभावित रूप से असीमित) स्ट्रिंग के साथ समाप्त हो सकता है[67] या छोटी किन्तु अधिक यादृच्छिक स्ट्रिंग के साथ ख़तम हो सकता है ।[68] यह अंतिम आदिम मौलिक सेटिंग में असंभव सिद्ध करना हो सकता है।[69]

डिवाइस-स्वतंत्र (डीआई) यादृच्छिकता प्रमाणन, विस्तार और प्रवर्धन उच्च गुणवत्ता वाले यादृच्छिक संख्या है तथा डिवाइस-स्वतंत्र (डीआई) यादृच्छिकता प्रमाणन, विस्तार और प्रवर्धन को उत्पन्न करने के लिए उपयोग की जाने वाली तकनीकें भी हैं जो यादृच्छिक संख्या उत्पन्न करने के लिए उपयोग किए जाने वाले अंतर्निहित उपकरणों पर किसी भी संभावित हमले के विरुद्ध सुरक्षित होते हैं। इन तकनीकों का क्रिप्टोग्राफी में महत्वपूर्ण अनुप्रयोग किये जाते है, जहां क्रिप्टोग्राफ़िक प्रोटोकॉल की सुरक्षा सुनिश्चित करने के लिए उच्च गुणवत्ता वाली यादृच्छिक संख्याएँ आवश्यक होती हैं। रैंडमनेस सर्टिफिकेशन यह सत्यापित करने की प्रक्रिया है कि यादृच्छिक संख्या जनरेटर का आउटपुट वास्तव में यादृच्छिक है और किसी प्रतिद्वंद्वी द्वारा इसके साथ छेड़छाड़ नहीं की गई है। डीआई रैंडमनेस सर्टिफिकेशन यादृच्छिक संख्या उत्पन्न करने वाले अंतर्निहित उपकरणों के बारे में धारणा बनाए बिना यह सत्यापन करता है। इसके अतिरिक्त, ही भौतिक प्रक्रिया का उपयोग करके उत्पन्न विभिन्न उपकरणों के आउटपुट के मध्य सहसंबंधों को देखकर यादृच्छिकता प्रमाणित की जाती है। हाल के शोध ने फोटॉन या इलेक्ट्रॉनों जैसे उलझे हुए क्वांटम प्रणाली का उपयोग करके डीआई यादृच्छिकता प्रमाणीकरण की व्यवहार्यता का प्रदर्शन किया है। यादृच्छिकता विस्तार प्रारंभिक यादृच्छिक बीज की छोटी मात्रा लेना और इसे यादृच्छिक संख्याओं के बहुत बड़े अनुक्रम में विस्तारित करना है। डीआई यादृच्छिकता विस्तार में, विस्तार क्वांटम प्रणालियों के माप का उपयोग करके किया जाता है जो अत्यधिक सम्मिश्र हुई स्थिति में तैयार किए जाते हैं। विस्तार की सुरक्षा की गारंटी क्वांटम यांत्रिकी के नियमों द्वारा दी जाती है, जो किसी प्रतिद्वंद्वी के लिए विस्तार आउटपुट की पूर्वानुमान करना असंभव बना देता है। हाल के शोध से पता चला है कि डीआई यादृच्छिकता विस्तार उलझे हुए फोटॉन जोड़े और माप उपकरणों का उपयोग करके प्राप्त किया जा सकता है जो बेल असमानता का उल्लंघन करते हैं।[70] यादृच्छिकता प्रवर्धन प्रारंभिक यादृच्छिक बीज की छोटी मात्रा लेने और क्रिप्टोग्राफ़िक एल्गोरिदम का उपयोग करके इसकी यादृच्छिकता को बढ़ाने की प्रक्रिया है। डीआई यादृच्छिकता प्रवर्धन में, यह प्रक्रिया सम्मिश्रता गुणों और क्वांटम यांत्रिकी का उपयोग करके की जाती है। प्रवर्धन की सुरक्षा की गारंटी इस तथ्य से होती है कि किसी प्रतिद्वंद्वी द्वारा एल्गोरिदम के आउटपुट में हेरफेर करने का कोई भी प्रयास अनिवार्य रूप से त्रुटियां प्रस्तुत करेगा जिन्हें पता लगाया जा सकता है और ठीक किया जा सकता है। हाल के शोध ने क्वांटम सम्मिश्रता और बेल असमानता के उल्लंघन का उपयोग करके डीआई यादृच्छिकता प्रवर्धन की व्यवहार्यता का प्रदर्शन किया है।[71]

डीआई यादृच्छिकता प्रमाणन, विस्तार और प्रवर्धन उच्च गुणवत्ता वाले यादृच्छिक संख्या उत्पन्न करने के लिए शक्तिशाली तकनीकें हैं जो कि यादृच्छिक संख्या उत्पन्न करने के लिए उपयोग किए जाने वाले अंतर्निहित उपकरणों पर किसी भी संभावित हमले के विरुद्ध सुरक्षित हैं। इन तकनीकों का क्रिप्टोग्राफी में महत्वपूर्ण अनुप्रयोग है और क्वांटम कंप्यूटिंग प्रौद्योगिकी के विकास के साथ इनके और अधिक महत्वपूर्ण होने की संभावना है। इसके अतिरिक्त, सेमी-डीआई नामक हल्का दृष्टिकोण उपस्तिथ है जहां उपकरणों, पर्यावरण, आयाम, ऊर्जा इत्यादि के कामकाजी सिद्धांत पर कुछ मान्यताओं के साथ यादृच्छिक संख्याएं उत्पन्न की जा सकती हैं, जिसमें कार्यान्वयन में आसानी और उच्च पीढ़ी से लाभ दर होती है ।[72]


स्वयं परीक्षण

कभी-कभी, ऐलिस और बॉब द्वारा साझा किया गया बक्सा ऐसा होता है कि यह केवल अद्वितीय क्वांटम अहसास को स्वीकार करता है। इसका मतलब यह है कि माप ऑपरेटर होता है और क्वांटम अवस्था उपस्तिथ हैं उसको उत्पन्न करता है जैसे कि कोई अन्य भौतिक अनुभूति का से जुड़ा है स्थानीय एकात्मक परिवर्तनों के माध्यम से है । यह घटना, जिसे डिवाइस-स्वतंत्र क्वांटम टोमोग्राफी के उदाहरण के रूप में समझा जा सकता है, पहली बार बोरिस त्सिरेलसन द्वारा बताया गया था[37] और मेयर्स और याओ द्वारा स्व-परीक्षण नाम दिया गया है ।[64] स्व-परीक्षण को व्यवस्थित शोर के विरुद्ध सशक्त माना जाता है, अर्थात, यदि प्रयोगात्मक रूप से मापे गए आँकड़े अधिक करीब हैं , कोई अभी भी त्रुटि पट्टियों तक अंतर्निहित स्थिति और माप ऑपरेटरों को निर्धारित कर सकता है।[64]

आयाम गवाह

क्वांटम बॉक्स की गैर-स्थानीयता की डिग्री ऐलिस और बॉब के लिए सुलभ स्थानीय प्रणालियों के हिल्बर्ट अंतरिक्ष आयाम पर निचली सीमाएं भी प्रदान कर सकता है।[73] यह समस्या कम पूर्णतः धनात्मक अर्धनिश्चित रैंक वाले आव्युह के अस्तित्व को तय करने के सामान्तर है।[74] आंकड़ों के आधार पर हिल्बर्ट अंतरिक्ष आयाम पर निचली सीमाएं ढूंढना कठिन काम होता है, और वर्तमान सामान्य विधियां केवल बहुत कम अनुमान प्रदान करती हैं।[75] चूँकि, पाँच इनपुट और तीन आउटपुट वाला बेल परिदृश्य अंतर्निहित हिल्बर्ट अंतरिक्ष आयाम पर अनेैतिक रूप से उच्च निचली सीमाएँ प्रदान करने के लिए पर्याप्त है।[76] क्वांटम संचार प्रोटोकॉल जो ऐलिस और बॉब के प्रणाली के स्थानीय आयाम का ज्ञान मानते हैं, किन्तु इसमें सम्मिलित तैयारी और मापने वाले उपकरणों के गणितीय विवरण पर प्रामाणित नहीं करते हैं, तथा उन्हें अर्ध-डिवाइस स्वतंत्र प्रोटोकॉल भी कहा जाता है। वर्तमान में, क्वांटम कुंजी वितरण के लिए अर्ध-डिवाइस स्वतंत्र प्रोटोकॉल उपस्तिथ हैं [77] और यादृच्छिकता का विस्तार भी किया जाता है ।[78]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982-12-20). "समय-परिवर्तनशील विश्लेषकों का उपयोग करके बेल की असमानताओं का प्रायोगिक परीक्षण". Physical Review Letters. 49 (25): 1804–1807. Bibcode:1982PhRvL..49.1804A. doi:10.1103/PhysRevLett.49.1804.
  2. Rowe MA, et al. (February 2001). "कुशल पहचान के साथ बेल की असमानता का प्रायोगिक उल्लंघन". Nature. 409 (6822): 791–794. Bibcode:2001Natur.409..791R. doi:10.1038/35057215. hdl:2027.42/62731. PMID 11236986. S2CID 205014115.
  3. Hensen, B, et al. (October 2015). "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres". Nature. 526 (7575): 682–686. arXiv:1508.05949. Bibcode:2015Natur.526..682H. doi:10.1038/nature15759. PMID 26503041. S2CID 205246446.
  4. Giustina, M, et al. (December 2015). "उलझे हुए फोटोन के साथ बेल्स प्रमेय का महत्वपूर्ण-खामियों से मुक्त परीक्षण". Physical Review Letters. 115 (25): 250401. arXiv:1511.03190. Bibcode:2015PhRvL.115y0401G. doi:10.1103/PhysRevLett.115.250401. PMID 26722905. S2CID 13789503.
  5. Shalm, LK, et al. (December 2015). "स्थानीय यथार्थवाद का सशक्त बचाव-मुक्त परीक्षण". Physical Review Letters. 115 (25): 250402. arXiv:1511.03189. Bibcode:2015PhRvL.115y0402S. doi:10.1103/PhysRevLett.115.250402. PMC 5815856. PMID 26722906.
  6. Ghirardi, G.C.; Rimini, A.; Weber, T. (March 1980). "क्वांटम मैकेनिकल माप प्रक्रिया के माध्यम से सुपरल्यूमिनल ट्रांसमिशन के खिलाफ एक सामान्य तर्क". Lettere al Nuovo Cimento. 27 (10): 293–298. doi:10.1007/BF02817189. S2CID 121145494.
  7. 7.0 7.1 Einstein, Albert; Podolsky, Boris; Rosen, Nathan (May 1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Physical Review. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.
  8. Einstein, Albert. "Letter to E. Schrödinger" [Letter]. Einstein Archives, ID: Call Number 22-47. Hebrew University of Jerusalem.
  9. Jevtic, S.; Rudolph, T (2015). "How Einstein and/or Schrödinger should have discovered Bell's theorem in 1936". Journal of the Optical Society of America B. 32 (4): 50–55. arXiv:1411.4387. Bibcode:2015JOSAB..32A..50J. doi:10.1364/JOSAB.32.000A50. S2CID 55579565.
  10. 10.0 10.1 Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. pp. 112–113. ISBN 978-0-521-63503-5.
  11. Wiseman, H.M.; Jones, S.J.; Doherty, A.C. (April 2007). "संचालन, उलझाव, गैर-स्थानीयता, और आइंस्टीन-पोडॉल्स्की-रोसेन विरोधाभास". Physical Review Letters. 98 (14): 140402. arXiv:quant-ph/0612147. Bibcode:2007PhRvL..98n0402W. doi:10.1103/physrevlett.98.140402. PMID 17501251. S2CID 30078867.
  12. Bohr, N (July 1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Physical Review. 48 (8): 696–702. Bibcode:1935PhRv...48..696B. doi:10.1103/PhysRev.48.696.
  13. Furry, W.H. (March 1936). "क्वांटम सिद्धांत में मापन पर टिप्पणियाँ". Physical Review. 49 (6): 476. Bibcode:1936PhRv...49..476F. doi:10.1103/PhysRev.49.476.
  14. von Neumann, J. (1932/1955). In Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, translated into English by Beyer, R.T., Princeton University Press, Princeton, cited by Baggott, J. (2004) Beyond Measure: Modern physics, philosophy, and the meaning of quantum theory, Oxford University Press, Oxford, ISBN 0-19-852927-9, pages 144–145.
  15. Maudlin, Tim (2011). Quantum Non-Locality and Relativity : Metaphysical Intimations of Modern Physics (3rd ed.). John Wiley & Sons. p. 111. ISBN 9781444331264.
  16. Fine, Arthur (Winter 2017). "क्वांटम सिद्धांत में आइंस्टीन-पोडॉल्स्की-रोसेन तर्क". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 6 December 2018.
  17. 17.0 17.1 17.2 Bell, John (1964). "आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर". Physics Physique Физика. 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  18. Clauser, John F.; Horne, Michael A.; Shimony, Abner; Holt, Richard A. (October 1969). "स्थानीय छुपे-परिवर्तनीय सिद्धांतों का परीक्षण करने के लिए प्रस्तावित प्रयोग". Physical Review Letters. 23 (15): 880–884. Bibcode:1969PhRvL..23..880C. doi:10.1103/PhysRevLett.23.880. S2CID 18467053.
  19. Barrett, J.; Linden, N.; Massar, S.; Pironio, S.; Popescu, S.; Roberts, D. (2005). "सूचना सैद्धांतिक संसाधन के रूप में गैर-स्थानीय सहसंबंध". Physical Review A. 71 (2): 022101. arXiv:quant-ph/0404097. Bibcode:2005PhRvA..71b2101B. doi:10.1103/PhysRevA.71.022101. S2CID 13373771.
  20. Daniel M. Greenberger; Michael A. Horne; Anton Zeilinger (2007), Going beyond Bell's Theorem, arXiv:0712.0921, Bibcode:2007arXiv0712.0921G
  21. Hardy, Lucien (1993). "लगभग सभी उलझी हुई अवस्थाओं के लिए असमानताओं के बिना दो कणों के लिए गैर-स्थानीयता". Physical Review Letters. 71 (11): 1665–1668. Bibcode:1993PhRvL..71.1665H. doi:10.1103/PhysRevLett.71.1665. PMID 10054467. S2CID 11839894.
  22. Braun, D.; Choi, M.-S. (2008). "Hardy's test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects". Physical Review A. 78 (3): 032114. arXiv:0808.0052. Bibcode:2008PhRvA..78c2114B. doi:10.1103/physreva.78.032114. S2CID 119267461.
  23. Nikolić, Hrvoje (2007). "Quantum Mechanics: Myths and Facts". Foundations of Physics. 37 (11): 1563–1611. arXiv:quant-ph/0609163. Bibcode:2007FoPh...37.1563N. doi:10.1007/s10701-007-9176-y. S2CID 9613836.
  24. 24.0 24.1 Bancal, Jean-Daniel; Pironio, Stefano; Acin, Antonio; Liang, Yeong-Cherng; Scarani, Valerio; Gisin, Nicolas (2012). "परिमित-गति कारण प्रभावों के आधार पर क्वांटम गैर-स्थानीयता सुपरल्यूमिनल सिग्नलिंग की ओर ले जाती है". Nature Physics. 8 (867): 867–870. arXiv:1110.3795. Bibcode:2012NatPh...8..867B. doi:10.1038/nphys2460. S2CID 13922531.
  25. Fritz, Tobias (2012). "Beyond Bell's Theorem: Correlation Scenarios". New J. Phys. 14 (10): 103001. arXiv:1206.5115. Bibcode:2012NJPh...14j3001F. doi:10.1088/1367-2630/14/10/103001. S2CID 4847110.
  26. Wolfe, Elie; Spekkens, R. W.; Fritz, T (2019). "अव्यक्त चर के साथ कारण अनुमान के लिए मुद्रास्फीति तकनीक". Causal Inference. 7 (2). arXiv:1609.00672. doi:10.1515/jci-2017-0020. S2CID 52476882.
  27. Navascués, Miguel; Wolfe, Elie (2020). "मुद्रास्फीति तकनीक कारण संगतता समस्या को पूरी तरह से हल करती है". Journal of Causal Inference. 8: 70–91. arXiv:1707.06476. doi:10.1515/jci-2018-0008. S2CID 155100141.
  28. Werner, R.F. (1989). "आइंस्टीन-पोडॉल्स्की-रोसेन सहसंबंध के साथ क्वांटम राज्य एक छिपे हुए-चर मॉडल को स्वीकार करते हैं". Physical Review A. 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID 9902666.
  29. Palazuelos, Carlos (2012). "क्वांटम गैर-स्थानीयता का सुपर-सक्रियण". Physical Review Letters. 109 (19): 190401. arXiv:1205.3118. Bibcode:2012PhRvL.109s0401P. doi:10.1103/PhysRevLett.109.190401. PMID 23215363. S2CID 4613963.
  30. Popescu, Sandu (1995). "Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality". Physical Review Letters. 74 (14): 2619–2622. arXiv:quant-ph/9502005. Bibcode:1995PhRvL..74.2619P. doi:10.1103/PhysRevLett.74.2619. PMID 10057976. S2CID 35478562.
  31. Jonathan, Daniel; Plenio, Martin B. (1999-10-25). "शुद्ध क्वांटम अवस्थाओं का उलझाव-सहायता प्राप्त स्थानीय हेरफेर". Physical Review Letters (in English). 83 (17): 3566–3569. arXiv:quant-ph/9905071. Bibcode:1999PhRvL..83.3566J. doi:10.1103/PhysRevLett.83.3566. hdl:10044/1/245. ISSN 0031-9007. S2CID 392419.
  32. Karvonen, Martti (2021-10-13). "न तो प्रासंगिकता और न ही गैर-स्थानीयता उत्प्रेरक को स्वीकार करती है". Physical Review Letters (in English). 127 (16): 160402. arXiv:2102.07637. Bibcode:2021PhRvL.127p0402K. doi:10.1103/PhysRevLett.127.160402. ISSN 0031-9007. PMID 34723585. S2CID 231924967.
  33. Junge, Marius; Palazuelos, C (2011). "कम उलझाव के साथ बेल असमानताओं का बड़ा उल्लंघन". Communications in Mathematical Physics. 306 (3): 695–746. arXiv:1007.3043. Bibcode:2011CMaPh.306..695J. doi:10.1007/s00220-011-1296-8. S2CID 673737.
  34. Thomas Vidick; Stephanie Wehner (2011). "कम उलझाव के साथ अधिक गैर-स्थानीयता". Physical Review A. 83 (5): 052310. arXiv:1011.5206. Bibcode:2011PhRvA..83e2310V. doi:10.1103/PhysRevA.83.052310. S2CID 6589783.
  35. Yeong-Cherng Liang; Tamás Vértesi; Nicolas Brunner (2010). "उलझाव पर अर्ध-डिवाइस-स्वतंत्र सीमा". Physical Review A. 83 (2): 022108. arXiv:1012.1513. Bibcode:2011PhRvA..83b2108L. doi:10.1103/PhysRevA.83.022108. S2CID 73571969.
  36. Cirel'son, BS (1980). "बेल की असमानता का क्वांटम सामान्यीकरण". Letters in Mathematical Physics. 4 (2): 93–100. Bibcode:1980LMaPh...4...93C. doi:10.1007/bf00417500. S2CID 120680226.
  37. 37.0 37.1 Tsirel'son, B.S. (1987). "बेल असमानताओं के क्वांटम एनालॉग्स। दो स्थानिक रूप से अलग किए गए डोमेन का मामला". Journal of Soviet Mathematics. 36 (4): 557–570. doi:10.1007/BF01663472. S2CID 119363229.
  38. 38.0 38.1 Slofstra, William (2017). "क्वांटम सहसंबंधों का सेट बंद नहीं है". arXiv:1703.08618 [quant-ph].
  39. 39.0 39.1 "बेल असमानताएँ और ऑपरेटर बीजगणित". Open quantum problems.
  40. Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (2020). "MIP*=RE". arXiv:2001.04383. Bibcode:2020arXiv200104383J. {{cite journal}}: Cite journal requires |journal= (help)
  41. Castelvecchi, Davide (2020). "How 'spooky' is quantum physics? The answer could be incalculable". Nature. 577 (7791): 461–462. Bibcode:2020Natur.577..461C. doi:10.1038/d41586-020-00120-6. PMID 31965099.
  42. Kalai, Gil (2020-01-17). "Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson's problem". Combinatorics and more (in English). Retrieved 2020-03-06.
  43. Barak, Boaz (2020-01-14). "MIP*=RE, disproving Connes embedding conjecture". Windows On Theory (in English). Retrieved 2020-03-06.
  44. Aaronson, Scott (16 January 2020). "MIP*=RE". Shtetl-Optimized (in English). Retrieved 2020-03-06.
  45. Regan, Kenneth W. (2020-01-15). "रुकना पॉली-टाइम क्वांटम सिद्ध है". Gödel's Lost Letter and P=NP (in English). Retrieved 2020-03-06.
  46. Vidick, Thomas (2020-01-14). "एक मास्टर्स प्रोजेक्ट". MyCQstate (in English). Retrieved 2020-03-06.
  47. Hartnett, Kevin (4 March 2020). "भौतिकी और गणित के माध्यम से ऐतिहासिक कंप्यूटर विज्ञान प्रमाण कैस्केड". Quanta Magazine (in English). Retrieved 2020-03-09.
  48. Junge, M; Navascués, M; Palazuelos, C; Pérez-García, D; Scholz, VB; Werner, RF (2011). "कोन्स की एम्बेडिंग समस्या और त्सिरेलसन की समस्या". J. Math. Phys. 52 (1): 012102. arXiv:1008.1142. Bibcode:2011JMP....52a2102J. doi:10.1063/1.3514538. S2CID 12321570.
  49. Fritz, Tobias (2012). "त्सिरेलसन की समस्या और किर्चबर्ग का अनुमान". Rev. Math. Phys. 24 (5): 1250012. arXiv:1008.1168. Bibcode:2012RvMaP..2450012F. doi:10.1142/S0129055X12500122. S2CID 17162262.
  50. Ozawa, Narutaka (2013). "कोन्स एंबेडिंग अनुमान के बारे में---बीजगणितीय दृष्टिकोण---". Jpn. J. Math. 8: 147–183. doi:10.1007/s11537-013-1280-5. hdl:2433/173118. S2CID 121154563.
  51. Ito, T.; Kobayashi, H.; Matsumoto, K. (2008). "गैर-स्थानीय रणनीतियों के विरुद्ध मौखिककरण और दो-सिद्धांत एक-राउंड इंटरैक्टिव प्रमाण". arXiv:0810.0693 [quant-ph].
  52. Sikora, Jamie; Varvitsiotis, Antonios (2017). "दो-पक्षीय सहसंबंधों और गैर-स्थानीय खेलों के मूल्यों के लिए रैखिक शंकु सूत्रीकरण". Mathematical Programming. 162 (1–2): 431–463. arXiv:1506.07297. doi:10.1007/s10107-016-1049-8. S2CID 8234910.
  53. Navascués, Miguel; Pironio, S; Acín, A (2007). "क्वांटम सहसंबंधों के सेट को बांधना". Physical Review Letters. 98 (1): 010401. arXiv:quant-ph/0607119. Bibcode:2007PhRvL..98a0401N. doi:10.1103/physrevlett.98.010401. PMID 17358458. S2CID 41742170.
  54. Popescu, Sandu; Rohrlich, Daniel (1994). "एक स्वयंसिद्ध के रूप में गैर-स्थानीयता". Foundations of Physics. 24 (3): 379–385. Bibcode:1994FoPh...24..379P. CiteSeerX 10.1.1.508.4193. doi:10.1007/BF02058098. S2CID 120333148.
  55. Rastall, Peter (1985). "स्थानीयता, बेल का प्रमेय और क्वांटम यांत्रिकी". Foundations of Physics. 15 (9): 963–972. Bibcode:1985FoPh...15..963R. doi:10.1007/bf00739036. S2CID 122298281.
  56. Khalfin, L.A.; Tsirelson, B.S. (1985). Lahti; et al. (eds.). बेल असमानताओं के क्वांटम और अर्ध-शास्त्रीय एनालॉग. Symposium on the Foundations of Modern Physics. World Sci. Publ. pp. 441–460.
  57. Brassard, G; Buhrman, H; Linden, N; Methot, AA; Tapp, A; Unger, F (2006). "किसी भी दुनिया में गैर-स्थानीयता की सीमा जिसमें संचार जटिलता मामूली नहीं है". Physical Review Letters. 96 (25): 250401. arXiv:quant-ph/0508042. Bibcode:2006PhRvL..96y0401B. doi:10.1103/PhysRevLett.96.250401. PMID 16907289. S2CID 6135971.
  58. Linden, N.; Popescu, S.; Short, A. J.; Winter, A. (2007). "Quantum Nonlocality and Beyond: Limits from Nonlocal Computation". Physical Review Letters. 99 (18): 180502. arXiv:quant-ph/0610097. Bibcode:2007PhRvL..99r0502L. doi:10.1103/PhysRevLett.99.180502. PMID 17995388.
  59. Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. (October 2009). "एक भौतिक सिद्धांत के रूप में सूचना कारणता". Nature. 461 (7267): 1101–1104. arXiv:0905.2292. Bibcode:2009Natur.461.1101P. doi:10.1038/nature08400. PMID 19847260. S2CID 4428663.
  60. Navascués, M.; H. Wunderlich (2009). "क्वांटम मॉडल से परे एक नज़र". Proc. R. Soc. A. 466 (2115): 881–890. doi:10.1098/rspa.2009.0453.
  61. Fritz, T.; A. B. Sainz; R. Augusiak; J. B. Brask; R. Chaves; A. Leverrier; A. Acín (2013). "क्वांटम सहसंबंधों के लिए बहुपक्षीय सिद्धांत के रूप में स्थानीय रूढ़िवादिता". Nature Communications. 4: 2263. arXiv:1210.3018. Bibcode:2013NatCo...4.2263F. doi:10.1038/ncomms3263. PMID 23948952. S2CID 14759956.
  62. 62.0 62.1 Allcock, Jonathan; Nicolas Brunner; Noah Linden; Sandu Popescu; Paul Skrzypczyk; Tamás Vértesi (2009). "गैर-स्थानीय सहसंबंधों के बंद सेट". Physical Review A. 80 (6): 062107. arXiv:0908.1496. Bibcode:2009PhRvA..80f2107A. doi:10.1103/PhysRevA.80.062107. S2CID 118677048.
  63. 63.0 63.1 Navascués, M.; Y. Guryanova; M. J. Hoban; A. Acín (2015). "लगभग क्वांटम सहसंबंध". Nature Communications. 6: 6288. arXiv:1403.4621. Bibcode:2015NatCo...6.6288N. doi:10.1038/ncomms7288. PMID 25697645. S2CID 12810715.
  64. 64.0 64.1 64.2 Mayers, Dominic; Yao, Andrew C.-C. (1998). अपूर्ण उपकरण के साथ क्वांटम क्रिप्टोग्राफी. IEEE Symposium on Foundations of Computer Science (FOCS).
  65. Acín, Antonio; Nicolas Gisin; Lluis Masanes (2006). "बेल्स प्रमेय से लेकर सुरक्षित क्वांटम कुंजी वितरण तक". Physical Review Letters. 97 (12): 120405. arXiv:quant-ph/0510094. Bibcode:2006PhRvL..97l0405A. doi:10.1103/PhysRevLett.97.120405. PMID 17025944. S2CID 3315286.
  66. Vazirani, Umesh; Vidick, Thomas (2014). "पूरी तरह से डिवाइस-स्वतंत्र क्वांटम कुंजी वितरण". Physical Review Letters. 113 (14): 140501. arXiv:1210.1810. Bibcode:2014PhRvL.113n0501V. doi:10.1103/physrevlett.113.140501. PMID 25325625. S2CID 119299119.
  67. Colbeck, Roger (December 2006). Chapter 5. Quantum And Relativistic Protocols For Secure Multi-Party Computation (Thesis), University of Cambridge. arXiv:0911.3814.
  68. Colbeck, Roger; Renner, Renato (2012). "मुक्त यादृच्छिकता को बढ़ाया जा सकता है". Nature Physics. 8 (6): 450–453. arXiv:1105.3195. Bibcode:2012NatPh...8..450C. doi:10.1038/nphys2300. S2CID 118309394.
  69. Santha, Miklos; Vazirani, Umesh V. (1984-10-24). थोड़े-यादृच्छिक स्रोतों से अर्ध-यादृच्छिक अनुक्रम उत्पन्न करना. Proceedings of the 25th IEEE Symposium on Foundations of Computer Science. University of California. pp. 434–440.
  70. Colbeck, R. & Kent, A. (2011). Private randomness expansion with untrusted devices. Journal of Physics A: Mathematical and Theoretical, 44(9), 095305. doi: 10.1088/1751-8113/44/9/095305
  71. Pironio, S, et al. (2010). "बेल के प्रमेय द्वारा प्रमाणित यादृच्छिक संख्याएँ". Nature. 464 (7291): 1021–1024. arXiv:0911.3427. Bibcode:2010Natur.464.1021P. doi:10.1038/nature09008. PMID 20393558. S2CID 4300790.
  72. Tebyanian, H., Zahidy, M., Avesani, M., Stanco, A., Villoresi, P., & Vallone, G. (2021). Semi-device independent randomness generation based on quantum state's indistinguishability. Quantum Science and Technology, 6(4), 045026. doi: 10.1088/2058-9565/ac2047. URL: https://iopscience.iop.org/article/10.1088/2058-9565/ac2047 }
  73. Brunner, Nicolas; Pironio, Stefano; Acín, Antonio; Gisin, Nicolas; Methot, Andre Allan; Scarani, Valerio (2008). "हिल्बर्ट अंतरिक्ष आयाम का परीक्षण". Physical Review Letters. 100 (21): 210503. arXiv:0802.0760. Bibcode:2008arXiv0802.0760B. doi:10.1103/PhysRevLett.100.210503. PMID 18518591. S2CID 119256543.
  74. Prakash, Anupam; Sikora, Jamie; Varvitsiotis, Antonios; Wei Zhaohui (2018). "पूरी तरह से सकारात्मक अर्धनिश्चित रैंक". Mathematical Programming. 171 (1–2): 397–431. arXiv:1604.07199. doi:10.1007/s10107-017-1198-4. S2CID 17885968.
  75. Navascués, Miguel; Vértesi, Tamás (2015). "परिमित आयामी क्वांटम सहसंबंधों के सेट को सीमित करना". Physical Review Letters. 115 (2): 020501. arXiv:1412.0924. Bibcode:2015PhRvL.115b0501N. doi:10.1103/PhysRevLett.115.020501. PMID 26207454. S2CID 12226163.
  76. Coladangelo, Andrea; Stark, Jalex (2018). "परिमित और अनंत-आयामी क्वांटम सहसंबंधों का बिना शर्त पृथक्करण". arXiv:1804.05116 [quant-ph].
  77. Pawlowski, Marcin; Brunner, Nicolas (2011). "एक तरफ़ा क्वांटम कुंजी वितरण की अर्ध-डिवाइस-स्वतंत्र सुरक्षा". Physical Review A. 84 (1): 010302(R). arXiv:1103.4105. Bibcode:2011PhRvA..84a0302P. doi:10.1103/PhysRevA.84.010302. S2CID 119300029.
  78. Li, Hong-Wei; Yin, Zhen-Qiang; Wu, Yu-Chun; Zou, Xu-Bo; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu (2011). "उलझाव के बिना अर्ध-डिवाइस-स्वतंत्र यादृच्छिक-संख्या विस्तार". Physical Review A. 84 (3): 034301. arXiv:1108.1480. Bibcode:2011PhRvA..84c4301L. doi:10.1103/PhysRevA.84.034301. S2CID 118407749.


अग्रिम पठन