अनबाउंड ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
m (10 revisions imported from alpha:अनबाउंड_ऑपरेटर)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Linear operator defined on a dense linear subspace}}
{{Short description|Linear operator defined on a dense linear subspace}}
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] और [[ऑपरेटर सिद्धांत|'''संचालिका सिद्धांत''']] में,[[ परिबद्ध संचालिका | परिबद्ध संचालिका]] की धारणा [[विभेदक ऑपरेटर|विभेदक संचालक]], [[क्वांटम यांत्रिकी]] में असीमित वेधशालाओं और अन्य स्तिथियों से निपटने के लिए अमूर्त रूपरेखा प्रदान करती है।
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] और [[ऑपरेटर सिद्धांत|'''ऑपरेटर सिद्धांत''']] में,[[ परिबद्ध संचालिका | अनबाउंड ऑपरेटर]] की धारणा [[विभेदक ऑपरेटर|अवकल संचालक]], [[क्वांटम यांत्रिकी]] में असीमित वेधशालाओं और अन्य स्तिथियों से निपटने के लिए अमूर्त रूपरेखा प्रदान करती है।


चूंकि असीमित संचालिका शब्द भ्रामक हो सकता है।
चूंकि असीमित ऑपरेटर शब्द भ्रामक हो सकता है।
*असीमित को कभी-कभी यह समझा जाना चाहिए कि आवश्यक रूप से बाध्य नहीं है;
*असीमित को कभी-कभी यह समझा जाना चाहिए कि आवश्यक रूप से बाध्य नहीं है;
* संचालिका को [[रैखिक ऑपरेटर|रैखिक संचालिका]] के रूप में समझा जाना चाहिए (जैसा कि परिबद्ध संचालिका के स्तिथि में होता है);
* ऑपरेटर को [[रैखिक ऑपरेटर]] के रूप में समझा जाना चाहिए (जैसा कि अनबाउंड ऑपरेटर के स्तिथि में होता है);
* संचालिका का कार्यक्षेत्र रैखिक उप-स्थान है, आवश्यक नहीं कि संपूर्ण स्थान हो;
* ऑपरेटर का कार्यक्षेत्र रैखिक उप-समष्टि है, आवश्यक नहीं कि संपूर्ण समष्टि हो;
* यह [[रैखिक उपस्थान]] आवश्यक रूप से [[बंद सेट|संवृत समुच्चय]] नहीं है; अधिकांशतः (किन्तु सदैव नहीं) इसे [[सघन (टोपोलॉजी)|सघन (सांस्थितिक)]] माना जाता है;
* यह [[रैखिक उपस्थान|रैखिक उपसमष्टि]] आवश्यक रूप से [[बंद सेट|संवृत समुच्चय]] नहीं है; अधिकांशतः (किन्तु सदैव नहीं) इसे [[सघन (टोपोलॉजी)|सघन (सांस्थितिक)]] माना जाता है;
* एक परिबद्ध संचालिका के विशेष स्तिथि में, फिर भी, कार्यक्षेत्र को सामान्यतः संपूर्ण स्थान माना जाता है।
* एक अनबाउंड ऑपरेटर के विशेष स्तिथि में, फिर भी, कार्यक्षेत्र को सामान्यतः संपूर्ण समष्टि माना जाता है।


परिबद्ध संचालक के विपरीत, किसी दिए गए स्थान पर असीमित संचालिका किसी क्षेत्र पर बीजगणित नहीं बनाते हैं, न ही रैखिक स्थान बनाते हैं, क्योंकि प्रत्येक को अपने स्वयं के कार्यक्षेत्र पर परिभाषित किया जाता है।
अनबाउंड संचालक के विपरीत, किसी दिए गए समष्टि पर असीमित ऑपरेटर किसी क्षेत्र पर बीजगणित नहीं बनाते हैं, न ही रैखिक समष्टि बनाते हैं, क्योंकि प्रत्येक को अपने स्वयं के कार्यक्षेत्र पर परिभाषित किया जाता है।


संचालिका शब्द का अर्थ अधिकांशतः परिबद्ध रेखीय संचालिका होता है, किन्तु इस लेख के संदर्भ में इसका अर्थ ऊपर दिए गए आरक्षणों के साथ, असीमित संचालिका है। और दिया गया स्थान [[हिल्बर्ट स्थान]] माना जाता है।{{clarify|reason=This restriction is not adhered to in the article.|date=May 2015}} [[बनच स्थान]] और अधिक सामान्य [[टोपोलॉजिकल वेक्टर स्पेस|संस्थानिक सदिश स्थान]] के लिए कुछ सामान्यीकरण संभव हैं।
ऑपरेटर शब्द का अर्थ अधिकांशतः अनबाउंड रेखीय ऑपरेटर होता है, किन्तु इस लेख के संदर्भ में इसका अर्थ ऊपर दिए गए आरक्षणों के साथ, असीमित ऑपरेटर है। और दिया गया समष्टि [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] माना जाता है। [[बनच स्थान|बनच समष्टि]] और अधिक सामान्य [[टोपोलॉजिकल वेक्टर स्पेस|संसमष्टििक सदिश समष्टि]] के लिए कुछ सामान्यीकरण संभव हैं।


==संक्षिप्त इतिहास==
==संक्षिप्त इतिहास==
हिल्बर्ट स्थान क्वांटम यांत्रिकी के लिए कठोर गणितीय रूप विकसित करने के भाग के रूप में असीमित संचालक का सिद्धांत 1920 के दशक के अंत और 1930 के दशक की आरंभ में विकसित हुआ।<ref>{{harvnb|Reed|Simon|1980|loc=Notes to Chapter VIII, page 305}}</ref> किन्तु सिद्धांत का विकास [[जॉन वॉन न्यूमैन]] और [[मार्शल स्टोन]] के कारण हुआ है।<ref>{{harvnb | von Neumann | 1930 | pp=49&ndash;131}}</ref> <ref name="Stone1932">{{ harvnb | Stone | 1932 }}</ref> वॉन न्यूमैन ने 1932 में असीमित संचालक का विश्लेषण करने के लिए फलन के ग्राफ़ का उपयोग प्रारंभ किया।<ref>{{ harvnb | von Neumann | 1932 | pp = 294&ndash;310 }}</ref>
हिल्बर्ट समष्टि क्वांटम यांत्रिकी के लिए कठोर गणितीय रूप विकसित करने के भाग के रूप में असीमित संचालक का सिद्धांत 1920 के दशक के अंत और 1930 के दशक की आरंभ में विकसित हुआ।<ref>{{harvnb|Reed|Simon|1980|loc=Notes to Chapter VIII, page 305}}</ref> किन्तु सिद्धांत का विकास [[जॉन वॉन न्यूमैन]] और [[मार्शल स्टोन]] के कारण हुआ है।<ref>{{harvnb | von Neumann | 1930 | pp=49&ndash;131}}</ref> <ref name="Stone1932">{{ harvnb | Stone | 1932 }}</ref> वॉन न्यूमैन ने 1932 में असीमित संचालक का विश्लेषण करने के लिए फलन के ग्राफ़ का उपयोग प्रारंभ किया।<ref>{{ harvnb | von Neumann | 1932 | pp = 294&ndash;310 }}</ref>
== परिभाषाएँ और बुनियादी गुण ==
== परिभाषाएँ और मूलभूत गुण ==
मान लीजिए कि {{math|''X'', ''Y''}} बनच स्थान हैं। असीमित संचालिका (या बस ''संचालिका'') {{math|''T'' : ''D''(''T'') → ''Y''}} [[रेखीय मानचित्र]] {{mvar|T}} है जो एक रैखिक उपस्थान से {{math|''D''(''T'') ⊆ ''X''}}—का कार्यक्षेत्र {{mvar|T}}—स्थान {{math|''Y''}} तक है।<ref name="Pedersen-5.1.1">{{harvnb|Pedersen|1989|loc=5.1.1}}</ref> सामान्य परिपाटी के विपरीत, {{mvar|T}} को संपूर्ण स्थान  {{mvar|X}} पर परिभाषित नहीं किया जा सकता है।
मान लीजिए कि {{math|''X'', ''Y''}} बनच समष्टि हैं। असीमित ऑपरेटर (या बस ''ऑपरेटर'') {{math|''T'' : ''D''(''T'') → ''Y''}} [[रेखीय मानचित्र]] {{mvar|T}} है जो एक रैखिक उपसमष्टि से {{math|''D''(''T'') ⊆ ''X''}}—का कार्यक्षेत्र {{mvar|T}}—समष्टि {{math|''Y''}} तक है।<ref name="Pedersen-5.1.1">{{harvnb|Pedersen|1989|loc=5.1.1}}</ref> सामान्य परिपाटी के विपरीत, {{mvar|T}} को संपूर्ण समष्टि {{mvar|X}} पर परिभाषित नहीं किया जा सकता है।


एक संचालिका {{mvar|T}} को [[बंद ऑपरेटर|संवृत संचालिका]] कहा जाता है यदि इसका [[फ़ंक्शन ग्राफ़|फलन ग्राफ़]] {{math|Γ(''T'')}} एक संवृत समुच्चय है.<ref name="Pedersen-5.1.4">{{ harvnb |Pedersen|1989| loc=5.1.4 }}</ref> (यहाँ, ग्राफ {{math|Γ(''T'')}} के प्रत्यक्ष योग {{math|''X'' ⊕ ''Y''}} हिल्बर्ट रिक्त स्थान के प्रत्यक्ष योग का रैखिक उपस्थान है जिसे, सभी जोड़ियों {{math|(''x'', ''Tx'')}} के समुच्चय के रूप में परिभाषित , जहाँ {{mvar|x}}, {{mvar|T}} के कार्यक्षेत्र पर चलता है.) स्पष्ट रूप से, इसका अर्थ यह है कि {{mvar|T}} प्रत्येक अनुक्रम {''x<sub>n</sub>''} के लिए कार्यक्षेत्र इस प्रकार है कि {{math|''x<sub>n</sub>'' → ''x''}} और {{math|''Tx<sub>n</sub>'' → ''y''}}, यह उसे धारण करता है की {{mvar|x}}, {{mvar|T}} और {{math|''Tx'' {{=}} ''y''}} के कार्यक्षेत्र के अंतर्गत आता है.<ref name="Pedersen-5.1.4"/> क्लोजनेस को ग्राफ मानदंड के संदर्भ में भी तैयार किया जा सकता है: संचालिका {{mvar|T}} संवृत है यदि और केवल यदि इसका कार्यक्षेत्र {{math|''D''(''T'')}} मानक के संबंध में पूर्ण स्थान है:<ref name="BSU-5">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=page 5 }}</ref>
एक ऑपरेटर {{mvar|T}} को [[बंद ऑपरेटर|संवृत ऑपरेटर]] कहा जाता है यदि इसका [[फ़ंक्शन ग्राफ़|फलन ग्राफ़]] {{math|Γ(''T'')}} एक संवृत समुच्चय है.<ref name="Pedersen-5.1.4">{{ harvnb |Pedersen|1989| loc=5.1.4 }}</ref> (यहाँ, ग्राफ {{math|Γ(''T'')}} के प्रत्यक्ष योग {{math|''X'' ⊕ ''Y''}} हिल्बर्ट रिक्त समष्टि के प्रत्यक्ष योग का रैखिक उपसमष्टि है जिसे, सभी जोड़ियों {{math|(''x'', ''Tx'')}} के समुच्चय के रूप में परिभाषित , जहाँ {{mvar|x}}, {{mvar|T}} के कार्यक्षेत्र पर चलता है.) स्पष्ट रूप से, इसका अर्थ यह है कि {{mvar|T}} प्रत्येक अनुक्रम {''x<sub>n</sub>''} के लिए कार्यक्षेत्र इस प्रकार है कि {{math|''x<sub>n</sub>'' → ''x''}} और {{math|''Tx<sub>n</sub>'' → ''y''}}, यह उसे धारण करता है की {{mvar|x}}, {{mvar|T}} और {{math|''Tx'' {{=}} ''y''}} के कार्यक्षेत्र के अंतर्गत आता है.<ref name="Pedersen-5.1.4"/> क्लोजनेस को ग्राफ मानदंड के संदर्भ में भी तैयार किया जा सकता है: ऑपरेटर {{mvar|T}} संवृत है यदि और केवल यदि इसका कार्यक्षेत्र {{math|''D''(''T'')}} मानक के संबंध में पूर्ण समष्टि है:<ref name="BSU-5">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=page 5 }}</ref>
: <math>\|x\|_T = \sqrt{ \|x\|^2 + \|Tx\|^2 }.</math>
: <math>\|x\|_T = \sqrt{ \|x\|^2 + \|Tx\|^2 }.</math>
एक संचालिका {{mvar|T}} को [[सघन रूप से परिभाषित ऑपरेटर|सघन रूप से परिभाषित संचालिका]] कहा जाता है यदि इसका कार्यक्षेत्र {{mvar|X}} सघन रूप से समुच्चय है .<ref name="Pedersen-5.1.1" />इसमें संपूर्ण स्थान {{mvar|X}} पर परिभाषित संचालिका भी सम्मिलित हैं , चूंकि संपूर्ण स्थान अपने आप में सघन है। कार्यक्षेत्र की सघनता सहायक के अस्तित्व के लिए आवश्यक और पर्याप्त है (यदि {{math|X}} और {{math|Y}} हिल्बर्ट रिक्त स्थान हैं) और स्थानान्तरण; नीचे अनुभाग देखें.
एक ऑपरेटर {{mvar|T}} को [[सघन रूप से परिभाषित ऑपरेटर]] कहा जाता है यदि इसका कार्यक्षेत्र {{mvar|X}} सघन रूप से समुच्चय है .<ref name="Pedersen-5.1.1" /> इसमें संपूर्ण समष्टि {{mvar|X}} पर परिभाषित ऑपरेटर भी सम्मिलित हैं , चूंकि संपूर्ण समष्टि अपने आप में सघन है। कार्यक्षेत्र की सघनता सहायक के अस्तित्व के लिए आवश्यक और पर्याप्त है (यदि {{math|X}} और {{math|Y}} हिल्बर्ट रिक्त समष्टि हैं) और समष्टिान्तरण; नीचे अनुभाग देखें.


यदि {{math|''T'' : ''X'' → ''Y''}} अपने कार्यक्षेत्र पर संवृत, सघन रूप से परिभाषित और [[निरंतर ऑपरेटर|निरंतर संचालिका]] है, तो इसका कार्यक्षेत्र संपूर्ण {{mvar|X}} है.<ref group="nb">Suppose ''f<sub>j</sub>'' is a sequence in the domain of {{mvar|T}} that converges to {{math|''g'' ∈ ''X''}}. Since {{mvar|T}} is uniformly continuous on its domain, ''Tf<sub>j</sub>'' is [[Cauchy sequence|Cauchy]] in {{mvar|Y}}. Thus, {{math|(&thinsp;''f<sub>j</sub>''&thinsp;, ''T&thinsp;f<sub>j</sub>''&thinsp;)}} is Cauchy and so converges to some {{math|(&thinsp;''f''&thinsp;, ''T&thinsp;f''&thinsp;)}} since the graph of {{mvar|T}} is closed. Hence, {{math|&thinsp;''f''&thinsp; {{=}} ''g''}}, and the domain of {{mvar|T}} is closed.</ref>
यदि {{math|''T'' : ''X'' → ''Y''}} अपने कार्यक्षेत्र पर संवृत, सघन रूप से परिभाषित और [[निरंतर ऑपरेटर]] है, तो इसका कार्यक्षेत्र संपूर्ण {{mvar|X}} है.<ref group="nb">Suppose ''f<sub>j</sub>'' is a sequence in the domain of {{mvar|T}} that converges to {{math|''g'' ∈ ''X''}}. Since {{mvar|T}} is uniformly continuous on its domain, ''Tf<sub>j</sub>'' is [[Cauchy sequence|Cauchy]] in {{mvar|Y}}. Thus, {{math|(&thinsp;''f<sub>j</sub>''&thinsp;, ''T&thinsp;f<sub>j</sub>''&thinsp;)}} is Cauchy and so converges to some {{math|(&thinsp;''f''&thinsp;, ''T&thinsp;f''&thinsp;)}} since the graph of {{mvar|T}} is closed. Hence, {{math|&thinsp;''f''&thinsp; {{=}} ''g''}}, and the domain of {{mvar|T}} is closed.</ref>


हिल्बर्ट स्थान {{mvar|H}} पर सघन रूप से परिभाषित संचालिका {{mvar|T}} को नीचे से परिबद्ध हुआ कहा जाता है यदि {{math|''T'' + ''a''}} किसी वास्तविक संख्या {{mvar|a}} के लिए धनात्मक संकारक है। अर्थात्, {{mvar|T}} के कार्यक्षेत्र में सभी {{mvar|x}} के लिए {{math|⟨''Tx''{{!}}''x''⟩ ≥ −''a'' {{!!}}''x''{{!!}}<sup>2</sup>}} के क्षेत्र में (या वैकल्पिक रूप से {{math|⟨''Tx''{{!}}''x''⟩ ≥ ''a'' {{!!}}''x''{{!!}}<sup>2</sup>}} चूँकि से {{math|''a''}} मनमाना है)।<ref name="Pedersen-5.1.12" /> यदि दोनों {{mvar|T}} और {{math|−''T''}} फिर नीचे से बाध्य हैं तो {{mvar|T}} परिबद्ध है।<ref name="Pedersen-5.1.12" />
हिल्बर्ट समष्टि {{mvar|H}} पर सघन रूप से परिभाषित ऑपरेटर {{mvar|T}} को नीचे से अनबाउंड हुआ कहा जाता है यदि {{math|''T'' + ''a''}} किसी वास्तविक संख्या {{mvar|a}} के लिए धनात्मक संकारक है। अर्थात्, {{mvar|T}} के कार्यक्षेत्र में सभी {{mvar|x}} के लिए {{math|⟨''Tx''{{!}}''x''⟩ ≥ −''a'' {{!!}}''x''{{!!}}<sup>2</sup>}} के क्षेत्र में (या वैकल्पिक रूप से {{math|⟨''Tx''{{!}}''x''⟩ ≥ ''a'' {{!!}}''x''{{!!}}<sup>2</sup>}} चूँकि से {{math|''a''}} मनमाना है)।<ref name="Pedersen-5.1.12" /> यदि दोनों {{mvar|T}} और {{math|−''T''}} फिर नीचे से बाध्य हैं तो {{mvar|T}} अनबाउंड है।<ref name="Pedersen-5.1.12" />
== उदाहरण ==
== उदाहरण ==
मान लीजिए कि {{math|''C''([0, 1])}} इकाई अंतराल पर निरंतर कार्यों के स्थान को निरूपित करें, और {{math|''C''<sup>1</sup>([0, 1])}} निरंतर भिन्न-भिन्न कार्यों के स्थान को निरूपित करें। हम <math>C([0,1])</math> सर्वोच्च मानदंड <math>\|\cdot\|_{\infty}</math> के साथ, सुसज्जित करते हैं, इसे बानाच स्थान बना रहा है। मौलिक विभेदीकरण संचालिका को {{math|{{sfrac|''d''|''dx''}} : ''C''<sup>1</sup>([0, 1]) → ''C''([0, 1])}} सामान्य सूत्र द्वारा परिभाषित करें :
मान लीजिए कि {{math|''C''([0, 1])}} इकाई अंतराल पर निरंतर कार्यों के समष्टि को निरूपित करें, और {{math|''C''<sup>1</sup>([0, 1])}} निरंतर भिन्न-भिन्न कार्यों के समष्टि को निरूपित करें। हम <math>C([0,1])</math> सर्वोच्च मानदंड <math>\|\cdot\|_{\infty}</math> के साथ, सुसज्जित करते हैं, इसे बानाच समष्टि बना रहा है। मौलिक विभेदीकरण ऑपरेटर को {{math|{{sfrac|''d''|''dx''}} : ''C''<sup>1</sup>([0, 1]) → ''C''([0, 1])}} सामान्य सूत्र द्वारा परिभाषित करें :


: <math> \left (\frac{d}{dx}f \right )(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \qquad \forall x \in [0, 1].</math>
: <math> \left (\frac{d}{dx}f \right )(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \qquad \forall x \in [0, 1].</math>
प्रत्येक अवकलनीय फलन सतत है, इसलिए {{math|''C''<sup>1</sup>([0, 1]) ⊆ ''C''([0, 1])}}. हम इसका प्रभुत्व करते हैं,कि {{math|{{sfrac|''d''|''dx''}} : ''C''([0, 1]) → ''C''([0, 1])}} कार्यक्षेत्र {{math|''C''<sup>1</sup>([0, 1])}} के साथ अच्छी तरह से परिभाषित असीमित संचालिका है . इसके लिए हमें वो दिखाना होगा कि <math>\frac{d}{dx}</math> रैखिक है और फिर, उदाहरण के लिए, कुछ <math>\{f_n\}_n \subset C^1([0,1])</math> को इस प्रकार प्रदर्शित करें कि <math>\|f_n\|_\infty=1</math> और <math>\sup_n \|\frac{d}{dx} f_n\|_\infty=+\infty</math>.
प्रत्येक अवकलनीय फलन सतत है, इसलिए {{math|''C''<sup>1</sup>([0, 1]) ⊆ ''C''([0, 1])}}. हम इसका प्रभुत्व करते हैं,कि {{math|{{sfrac|''d''|''dx''}} : ''C''([0, 1]) → ''C''([0, 1])}} कार्यक्षेत्र {{math|''C''<sup>1</sup>([0, 1])}} के साथ अच्छी तरह से परिभाषित असीमित ऑपरेटर है . इसके लिए हमें वो दिखाना होगा कि <math>\frac{d}{dx}</math> रैखिक है और फिर, उदाहरण के लिए, कुछ <math>\{f_n\}_n \subset C^1([0,1])</math> को इस प्रकार प्रदर्शित करें कि <math>\|f_n\|_\infty=1</math> और <math>\sup_n \|\frac{d}{dx} f_n\|_\infty=+\infty</math>.


यह एक रैखिक संचालिका है, क्योंकि दो निरंतर अवकलनीय फलनों {{math|&thinsp;''f''&thinsp;, ''g''}} का एक रैखिक संयोजन {{math|''a&thinsp;f&thinsp;'' + ''bg''}} भी निरंतर अवकलनीय है, और
यह एक रैखिक ऑपरेटर है, क्योंकि दो निरंतर अवकलनीय फलनों {{math|&thinsp;''f''&thinsp;, ''g''}} का एक रैखिक संयोजन {{math|''a&thinsp;f&thinsp;'' + ''bg''}} भी निरंतर अवकलनीय है, और


:<math>\left (\tfrac{d}{dx} \right )(af+bg)= a \left (\tfrac{d}{dx}  f \right ) + b \left (\tfrac{d}{dx} g \right ).</math>
:<math>\left (\tfrac{d}{dx} \right )(af+bg)= a \left (\tfrac{d}{dx}  f \right ) + b \left (\tfrac{d}{dx} g \right ).</math>
संचालिका बाध्य नहीं है. उदाहरण के लिए,
ऑपरेटर बाध्य नहीं है. उदाहरण के लिए,


:<math>\begin{cases} f_n : [0, 1] \to [-1, 1] \\ f_n(x) = \sin (2\pi n x) \end{cases}</math>
:<math>\begin{cases} f_n : [0, 1] \to [-1, 1] \\ f_n(x) = \sin (2\pi n x) \end{cases}</math>
Line 45: Line 45:
जैसा <math>n\to\infty</math>.
जैसा <math>n\to\infty</math>.


संचालिका सघन रूप से परिभाषित और संवृत है।
ऑपरेटर सघन रूप से परिभाषित और संवृत है।


एक ही संचालिका को बनच स्थान {{mvar|Z}} के कई विकल्पों के लिए संचालिका {{math|''Z'' → ''Z''}} के रूप में माना जा सकता है और उनमें से किसी के बीच सीमित नहीं किया जा सकता है। साथ ही, इसे बानाच स्थानों {{math|''X'' → ''Y''}} के अन्य जोड़े के लिए,संचालिका {{math|''X'', ''Y''}} के रूप में भी {{math|''Z'' → ''Z''}} कुछ संस्थानिक सदिश स्थान के लिए {{mvar|Z}} संचालिका के रूप में भी बाध्य किया जा सकता है। उदाहरण के रूप से आइए {{math|''I'' ⊂ '''R'''}} विवृत अंतराल बनें और विचार करें
एक ही ऑपरेटर को बनच समष्टि {{mvar|Z}} के कई विकल्पों के लिए ऑपरेटर {{math|''Z'' → ''Z''}} के रूप में माना जा सकता है और उनमें से किसी के बीच सीमित नहीं किया जा सकता है। साथ ही, इसे बानाच समष्टिों {{math|''X'' → ''Y''}} के अन्य जोड़े के लिए,ऑपरेटर {{math|''X'', ''Y''}} के रूप में भी {{math|''Z'' → ''Z''}} कुछ संसमष्टििक सदिश समष्टि के लिए {{mvar|Z}} ऑपरेटर के रूप में भी बाध्य किया जा सकता है। उदाहरण के रूप से आइए {{math|''I'' ⊂ '''R'''}} विवृत अंतराल बनें और विचार करें


:<math>\frac{d}{dx} : \left (C^1 (I), \|\cdot \|_{C^1} \right ) \to \left ( C (I), \| \cdot \|_{\infty} \right),</math>
:<math>\frac{d}{dx} : \left (C^1 (I), \|\cdot \|_{C^1} \right ) \to \left ( C (I), \| \cdot \|_{\infty} \right),</math>
Line 56: Line 56:


==संयुक्त ==
==संयुक्त ==
एक असीमित संचालिका के एडजॉइंट को दो समान विधियों से परिभाषित किया जा सकता है। मान लीजिए कि <math>T : D(T) \subseteq H_1 \to H_2</math> हिल्बर्ट स्थानों के बीच असीमित संचालिका बनें।
एक असीमित ऑपरेटर के एडजॉइंट को दो समान विधियों से परिभाषित किया जा सकता है। मान लीजिए कि <math>T : D(T) \subseteq H_1 \to H_2</math> हिल्बर्ट समष्टिों के बीच असीमित ऑपरेटर बनें।


सबसे पहले, इस प्रकार से परिभाषित किया जा सकता है जैसे कोई बंधे हुए संचालिका के जोड़ को कैसे परिभाषित करता है। अर्थात्, जोड़ <math>T^* : D\left(T^*\right) \subseteq H_2 \to H_1</math> का {{mvar|T}} को गुण वाले संचालिका के रूप में परिभाषित किया गया है:
सबसे पहले, इस प्रकार से परिभाषित किया जा सकता है जैसे कोई बंधे हुए ऑपरेटर के जोड़ को कैसे परिभाषित करता है। अर्थात्, जोड़ <math>T^* : D\left(T^*\right) \subseteq H_2 \to H_1</math> का {{mvar|T}} को गुण वाले ऑपरेटर के रूप में परिभाषित किया गया है:
<math display=block>\langle Tx \mid y \rangle_2 = \left \langle x \mid T^*y \right \rangle_1, \qquad x \in D(T).</math>
<math display=block>\langle Tx \mid y \rangle_2 = \left \langle x \mid T^*y \right \rangle_1, \qquad x \in D(T).</math>
अधिक स्पष्ट रूप से, <math>T^* y</math> निम्नलिखित प्रकार से परिभाषित किया गया है। यदि <math>y \in H_2</math> इस प्रकार कि <math>x \mapsto \langle Tx \mid y \rangle</math> ,{{mvar|T}} के क्षेत्र पर सतत रैखिक कार्यात्मक है , तब <math>y</math> को <math>D\left(T^*\right),</math> का अवयव घोषित किया गया है और हैन-बानाच प्रमेय के माध्यम से पूरे स्थान में रैखिक कार्यात्मकता का विस्तार करने के बाद, कुछ खोजना संभव है <math>z</math> में <math>H_1</math> ऐसा है कि<math display=block>\langle Tx \mid y \rangle_2 = \langle x \mid z \rangle_1, \qquad x \in D(T),</math>
अधिक स्पष्ट रूप से, <math>T^* y</math> निम्नलिखित प्रकार से परिभाषित किया गया है। यदि <math>y \in H_2</math> इस प्रकार कि <math>x \mapsto \langle Tx \mid y \rangle</math> ,{{mvar|T}} के क्षेत्र पर सतत रैखिक कार्यात्मक है , तब <math>y</math> को <math>D\left(T^*\right),</math> का अवयव घोषित किया गया है और हैन-बानाच प्रमेय के माध्यम से पूरे समष्टि में रैखिक कार्यात्मकता का विस्तार करने के बाद, कुछ खोजना संभव है <math>z</math> में <math>H_1</math> ऐसा है कि<math display=block>\langle Tx \mid y \rangle_2 = \langle x \mid z \rangle_1, \qquad x \in D(T),</math>


चूँकि [[रिज़्ज़ प्रतिनिधित्व प्रमेय]] हिल्बर्ट समष्टि <math>H_1</math> के निरंतर दोहरेपन की अनुमति देता है आंतरिक उत्पाद द्वारा दिए गए रैखिक कार्यात्मकताओं के समुच्चय से पहचानने की अनुमति देता है। यह सदिश <math>z</math> द्वारा विशिष्ट रूप से <math>y</math> निर्धारित किया जाता है यदि और केवल यदि रैखिक कार्यात्मक <math>x \mapsto \langle Tx \mid y \rangle</math> सघन रूप से परिभाषित है; या समकक्ष, यदि {{mvar|T}} सघन रूप से परिभाषित है। अंत में, <math>T^* y = z</math> को <math>T^*,</math> का निर्माण पूरा करता है जो आवश्यक रूप से रेखीय मानचित्र है। संयुक्त <math>T^* y</math> अस्तित्व में है यदि और केवल यदि {{mvar|T}} सघन रूप से परिभाषित किया गया है।


चूँकि [[रिज़्ज़ प्रतिनिधित्व प्रमेय]] हिल्बर्ट स्थान <math>H_1</math> के निरंतर दोहरेपन की अनुमति देता है  आंतरिक उत्पाद द्वारा दिए गए रैखिक कार्यात्मकताओं के समुच्चय से पहचानने की अनुमति देता है। यह सदिश <math>z</math> द्वारा विशिष्ट रूप से <math>y</math> निर्धारित किया जाता है यदि और केवल यदि रैखिक कार्यात्मक <math>x \mapsto \langle Tx \mid y \rangle</math> सघन रूप से परिभाषित है; या समकक्ष, यदि {{mvar|T}} सघन रूप से परिभाषित है। अंत में, <math>T^* y = z</math> को  <math>T^*,</math> का निर्माण पूरा करता है जो आवश्यक रूप से रेखीय मानचित्र है। संयुक्त <math>T^* y</math> अस्तित्व में है यदि और केवल यदि {{mvar|T}} सघन रूप से परिभाषित  किया गया है।
परिभाषा के अनुसार, <math>T^*</math>का कार्यक्षेत्र <math>H_2</math> में अवयवों <math>y</math> से मिलकर बनता है में ऐसा है कि <math>x \mapsto \langle Tx \mid y \rangle</math> , {{mvar|T}} के क्षेत्र में निरंतर है . नतीजतन,<math>T^*</math> का कार्यक्षेत्र कुछ भी हो सकता है; यह तुच्छ हो सकता है (अर्थात इसमें केवल शून्य होता है)।<ref name="BSU-3.2">{{harvnb |Berezansky|Sheftel|Us|1996| loc=Example 3.2 on page 16 }}</ref> ऐसा हो सकता है कि <math>T^*</math> का कार्यक्षेत्र संवृत [[हाइपरप्लेन]] है और <math>T^*</math> कार्यक्षेत्र पर सभी समष्टि गायब हो जाता है।<ref name="RS-252">{{harvnb |Reed|Simon|1980| loc=page 252 }}</ref><ref name="BSU-3.1">{{harvnb|Berezansky|Sheftel|Us|1996|loc=Example 3.1 on page 15 }}</ref> इस प्रकार, की सीमा इसके कार्यक्षेत्र <math>T^*</math> की सीमा {{mvar|T}} का तात्पर्य नहीं है. दूसरी ओर, यदि <math>T^*</math> तब संपूर्ण समष्टि पर परिभाषित किया गया है तो {{mvar|T}} अपने कार्यक्षेत्र पर घिरा हुआ है और इसलिए इसे संपूर्ण समष्टि पर बंधे हुए ऑपरेटर तक निरंतरता द्वारा बढ़ाया जा सकता है।<ref group="nb">Proof: being closed, the everywhere defined <math>T^*</math> is bounded, which implies boundedness of <math>T^{**},</math> the latter being the closure of {{mvar|T}}. See also {{harv |Pedersen|1989| loc=2.3.11 }} for the case of everywhere defined {{mvar|T}}.</ref> यदि का कार्यक्षेत्र <math>T^*</math> घना है, तो उसका निकटवर्ती <math>T^{**}.</math> है <ref name="Pedersen-5.1.5" /> एक संवृत सघन रूप से परिभाषित ऑपरेटर {{mvar|T}} अनबाउंड है यदि और केवल यदि <math>T^*</math>अनबाउंड है।<ref group="nb">Proof: <math>T^{**} = T.</math> So if <math>T^*</math> is bounded then its adjoint {{mvar|T}} is bounded.</ref>


परिभाषा के अनुसार, <math>T^*</math>का कार्यक्षेत्र  <math>H_2</math> में अवयवों <math>y</math> से मिलकर बनता है  में  ऐसा है कि <math>x \mapsto \langle Tx \mid y \rangle</math> , {{mvar|T}} के क्षेत्र में निरंतर है . नतीजतन,<math>T^*</math> का कार्यक्षेत्र  कुछ भी हो सकता है; यह तुच्छ हो सकता है (अर्थात इसमें केवल शून्य होता है)।<ref name="BSU-3.2">{{harvnb |Berezansky|Sheftel|Us|1996| loc=Example 3.2 on page 16 }}</ref> ऐसा हो सकता है कि <math>T^*</math> का कार्यक्षेत्र  संवृत [[हाइपरप्लेन]] है और <math>T^*</math> कार्यक्षेत्र पर हर जगह गायब हो जाता है।<ref name="RS-252">{{harvnb |Reed|Simon|1980| loc=page 252 }}</ref><ref name="BSU-3.1">{{harvnb|Berezansky|Sheftel|Us|1996|loc=Example 3.1 on page 15 }}</ref> इस प्रकार, की सीमा  इसके कार्यक्षेत्र <math>T^*</math> की सीमा {{mvar|T}} का तात्पर्य नहीं है. दूसरी ओर, यदि <math>T^*</math> तब संपूर्ण स्थान पर परिभाषित किया गया है तो  {{mvar|T}} अपने कार्यक्षेत्र पर घिरा हुआ है और इसलिए इसे संपूर्ण स्थान पर बंधे हुए संचालिका तक निरंतरता द्वारा बढ़ाया जा सकता है।<ref group="nb">Proof: being closed, the everywhere defined <math>T^*</math> is bounded, which implies boundedness of <math>T^{**},</math> the latter being the closure of {{mvar|T}}. See also {{harv |Pedersen|1989| loc=2.3.11 }} for the case of everywhere defined {{mvar|T}}.</ref> यदि का कार्यक्षेत्र <math>T^*</math> घना है, तो उसका निकटवर्ती <math>T^{**}.</math> है <ref name="Pedersen-5.1.5" /> एक संवृत सघन रूप से परिभाषित संचालिका {{mvar|T}} परिबद्ध है यदि और केवल यदि <math>T^*</math>परिबद्ध है।<ref group="nb">Proof: <math>T^{**} = T.</math> So if <math>T^*</math> is bounded then its adjoint {{mvar|T}} is bounded.</ref>
योजक की अन्य समकक्ष परिभाषा सामान्य तथ्य पर ध्यान देकर प्राप्त की जा सकती है। रैखिक ऑपरेटर <math>J</math> को निम्नलिखित नुसार परिभाषित करें :<ref name="Pedersen-5.1.5">{{harvnb |Pedersen|1989| loc=5.1.5 }}</ref><math display="block">\begin{cases} J: H_1 \oplus H_2 \to H_2 \oplus H_1 \\ J(x \oplus y) = -y \oplus x \end{cases}</math>


योजक की अन्य समकक्ष परिभाषा सामान्य तथ्य पर ध्यान देकर प्राप्त की जा सकती है। रैखिक संचालिका <math>J</math> को निम्नलिखित नुसार परिभाषित करें :<ref name="Pedersen-5.1.5">{{harvnb |Pedersen|1989| loc=5.1.5 }}</ref><math display="block">\begin{cases} J: H_1 \oplus H_2 \to H_2 \oplus H_1 \\ J(x \oplus y) = -y \oplus x \end{cases}</math>
तब से <math>J</math> '''सममितीय अनुमान है, यह एकात्मक है। इस तरह''': <math>J(\Gamma(T))^{\bot}</math> कुछ ऑपरेटर <math>S</math> का ग्राफ़ है यदि और केवल यदि {{mvar|T}} सघन रूप से परिभाषित है।<ref name="BSU-12">{{harvnb|Berezansky|Sheftel|Us|1996| loc=page 12}}</ref> साधारण गणना से पता चलता है कि यह कुछ<math>S</math> है संतुष्ट करता है:<math display="block">\langle Tx \mid y \rangle_2 = \langle x \mid Sy \rangle_1,</math>{{mvar|T}} के कार्यक्षेत्र में प्रत्येक {{mvar|x}} के लिए। इस प्रकार <math>S</math>, {{mvar|T}} का जोड़ है।




तब से <math>J</math> '''सममितीय अनुमान है, यह एकात्मक है। इस तरह''': <math>J(\Gamma(T))^{\bot}</math> कुछ संचालिका का ग्राफ़ है <math>S</math> यदि और केवल यदि {{mvar|T}} सघन रूप से परिभाषित है।<ref name="BSU-12">{{harvnb|Berezansky|Sheftel|Us|1996| loc=page 12}}</ref> साधारण गणना से पता चलता है कि यह कुछ है <math>S</math> संतुष्ट करता है:
उपरोक्त परिभाषा से यह तुरंत पता चलता है कि जोड़ <math>T^*</math> बन्द है।<ref name="Pedersen-5.1.5" /> विशेष रूप से, स्व-सहायक ऑपरेटर (अर्थ <math>T = T^*</math>) बन्द है। ऑपरेटर {{mvar|T}} संवृत है और सघन रूप से परिभाषितयदि और केवल यदि <math>T^{**} = T.</math><ref group="nb">Proof: If {{mvar|T}} is closed densely defined then <math>T^*</math> exists and is densely defined. Thus <math>T^{**}</math> exists. The graph of {{mvar|T}} is dense in the graph of <math>T^{**};</math> hence <math>T = T^{**}.</math> Conversely, since the existence of <math>T^{**}</math> implies that that of <math>T^*,</math> which in turn implies {{mvar|T}} is densely defined. Since <math>T^{**}</math> is closed, {{mvar|T}} is densely defined and closed.</ref> है:
<math display="block">\langle Tx \mid y \rangle_2 = \langle x \mid Sy \rangle_1,</math>
हरएक के लिए {{mvar|x}} के क्षेत्र में {{mvar|T}}. इस प्रकार <math>S</math> का जोड़ है {{mvar|T}}.


उपरोक्त परिभाषा से यह तुरंत पता चलता है कि जोड़ <math>T^*</math> बन्द है।<ref name="Pedersen-5.1.5" />विशेष रूप से, स्व-सहायक संचालिका (अर्थ <math>T = T^*</math>) बन्द है। संचालिका {{mvar|T}} संवृत है और सघन रूप से परिभाषित है यदि और केवल यदि <math>T^{**} = T.</math><ref group="nb">Proof: If {{mvar|T}} is closed densely defined then <math>T^*</math> exists and is densely defined. Thus <math>T^{**}</math> exists. The graph of {{mvar|T}} is dense in the graph of <math>T^{**};</math> hence <math>T = T^{**}.</math> Conversely, since the existence of <math>T^{**}</math> implies that that of <math>T^*,</math> which in turn implies {{mvar|T}} is densely defined. Since <math>T^{**}</math> is closed, {{mvar|T}} is densely defined and closed.</ref>
अनबाउंड संचालक के लिए कुछ प्रसिद्ध गुण संवृत सघन रूप से परिभाषित संचालक के लिए सामान्यीकरण करते हैं। संवृत ऑपरेटर का कर्नेल संवृत है। इसके अतिरिक्त, संवृत सघन रूप से परिभाषित ऑपरेटर <math>T : H_1 \to H_2</math> का कर्नेल जोड़ की सीमा के ऑर्थोगोनल पूरक के साथ मेल खाता है। वह है,<ref>{{harvnb | Brezis | 1983|p=28}}</ref><math display="block">\operatorname{ker}(T) = \operatorname{ran}(T^*)^\bot.</math>वॉन न्यूमैन का प्रमेय यह बताता है कि <math>T^* T</math> और <math>T T^*</math> स्व-सहायक हैं, और वह <math>I + T^* T</math> और <math>I + T T^*</math> दोनों में सीमित व्युत्क्रम हैं।<ref>{{harvnb | Yoshida | 1980| p=200 }}</ref> यदि <math>T^*</math> इसमें तुच्छ कर्नेल है, तो {{mvar|T}} की सघन सीमा है (उपरोक्त पहचान के अनुसार।) इसके अतिरिक्त:


परिबद्ध संचालक के लिए कुछ प्रसिद्ध गुण संवृत सघन रूप से परिभाषित संचालक के लिए सामान्यीकरण करते हैं। संवृत संचालिका का कर्नेल संवृत है। इसके अलावा, संवृत सघन रूप से परिभाषित संचालिका का कर्नेल <math>T : H_1 \to H_2</math> जोड़ की सीमा के ऑर्थोगोनल पूरक के साथ मेल खाता है। वह है,<ref>{{harvnb | Brezis | 1983|p=28}}</ref>
:{{mvar|T}} विशेषण है यदि और केवल यदि कोई <math>K > 0</math> ऐसा है कि सभी <math>f</math> के लिए <math>\|f\|_2 \leq K \left\|T^* f\right\|_1</math> में <math>D\left(T^*\right).</math><ref group="nb">If <math>T</math> is surjective then <math>T : (\ker T)^{\bot} \to H_2</math> has bounded inverse, denoted by <math>S.</math> The estimate then follows since
<math display="block">\operatorname{ker}(T) = \operatorname{ran}(T^*)^\bot.</math>
वॉन न्यूमैन का प्रमेय यह बताता है <math>T^* T</math> और <math>T T^*</math> स्व-सहायक हैं, और वह <math>I + T^* T</math> और <math>I + T T^*</math> दोनों में सीमित व्युत्क्रम हैं।<ref>{{harvnb | Yoshida | 1980| p=200 }}</ref> यदि <math>T^*</math> इसमें तुच्छ कर्नेल है, {{mvar|T}} की सघन सीमा है (उपरोक्त पहचान के अनुसार।) इसके अलावा:
 
:{{mvar|T}} विशेषण है यदि और केवल यदि कोई है <math>K > 0</math> ऐसा है कि <math>\|f\|_2 \leq K \left\|T^* f\right\|_1</math> सभी के लिए <math>f</math> में <math>D\left(T^*\right).</math><ref group="nb">If <math>T</math> is surjective then <math>T : (\ker T)^{\bot} \to H_2</math> has bounded inverse, denoted by <math>S.</math> The estimate then follows since
<math display="block">\|f\|_2^2 = \left |\langle TSf \mid f \rangle_2 \right | \leq \|S\| \|f\|_2 \left \|T^*f \right \|_1</math>
<math display="block">\|f\|_2^2 = \left |\langle TSf \mid f \rangle_2 \right | \leq \|S\| \|f\|_2 \left \|T^*f \right \|_1</math>
Conversely, suppose the estimate holds. Since <math>T^*</math> has closed range, it is the case that <math>\operatorname{ran}(T) = \operatorname{ran}\left(T T^*\right).</math> Since <math>\operatorname{ran}(T)</math> is dense, it suffices to show that <math>T T^*</math> has closed range. If <math>T T^* f_j</math> is convergent then <math> f_j</math> is convergent by the estimate since
Conversely, suppose the estimate holds. Since <math>T^*</math> has closed range, it is the case that <math>\operatorname{ran}(T) = \operatorname{ran}\left(T T^*\right).</math> Since <math>\operatorname{ran}(T)</math> is dense, it suffices to show that <math>T T^*</math> has closed range. If <math>T T^* f_j</math> is convergent then <math> f_j</math> is convergent by the estimate since
<math display="block">\|T^*f_j\|_1^2 = | \langle T^*f_j \mid T^*f_j \rangle_1| \leq \|TT^*f_j\|_2 \|f_j\|_2.</math>
<math display="block">\|T^*f_j\|_1^2 = | \langle T^*f_j \mid T^*f_j \rangle_1| \leq \|TT^*f_j\|_2 \|f_j\|_2.</math>


Say, <math>f_j \to g.</math> Since <math>T T^*</math> is self-adjoint; thus, closed, (von Neumann's theorem), <math>T T^* f_j \to T T^* g.</math> QED</ref> (यह अनिवार्य रूप से तथाकथित [[बंद सीमा प्रमेय|संवृत सीमा प्रमेय]] का प्रकार है।) विशेष रूप से, {{mvar|T}} ने यदि और केवल यदि की सीमा संवृत कर दी है <math>T^*</math> संवृत सीमा है.
Say, <math>f_j \to g.</math> Since <math>T T^*</math> is self-adjoint; thus, closed, (von Neumann's theorem), <math>T T^* f_j \to T T^* g.</math> QED</ref> है (यह अनिवार्य रूप से तथाकथित [[बंद सीमा प्रमेय|संवृत सीमा प्रमेय]] का प्रकार है।) विशेष रूप से, {{mvar|T}} ने यदि और केवल यदि <math>T^*</math> की सीमा संवृत कर दी है संवृत सीमा है.


परिबद्ध स्तिथि के विपरीत, यह आवश्यक नहीं है <math>(T S)^* = S^* T^*,</math> चूँकि, उदाहरण के लिए, यह भी संभव है <math>(T S)^*</math> मौजूद नहीं होना। हालाँकि, यह स्तिथि है, उदाहरण के लिए, {{mvar|T}} घिरा है।<ref>{{harvnb | Yoshida|1980| p= 195}}.</ref>
अनबाउंड स्तिथि के विपरीत, यह आवश्यक नहीं है चूँकि <math>(T S)^* = S^* T^*,</math> उदाहरण के लिए, यह भी संभव है कि <math>(T S)^*</math> अस्तित्व में न हो। चूँकि, यह स्तिथि है, उदाहरण के लिए, {{mvar|T}} घिरा है।<ref>{{harvnb | Yoshida|1980| p= 195}}.</ref>


एक सघन रूप से परिभाषित, संवृत संचालिका {{mvar|T}} को [[सामान्य ऑपरेटर|सामान्य संचालिका]] कहा जाता है यदि यह निम्नलिखित समकक्ष शर्तों को पूरा करता है:<ref name="Pedersen-5.1.11">{{harvnb |Pedersen|1989| loc=5.1.11 }}</ref>
एक सघन रूप से परिभाषित, संवृत ऑपरेटर {{mvar|T}} को [[सामान्य ऑपरेटर]] कहा जाता है यदि यह निम्नलिखित समकक्ष नियमो को पूरा करता है:<ref name="Pedersen-5.1.11">{{harvnb |Pedersen|1989| loc=5.1.11 }}</ref>
* <math>T^* T = T T^*</math>;
* <math>T^* T = T T^*</math>;
* का कार्यक्षेत्र {{mvar|T}} के कार्यक्षेत्र के बराबर है <math>T^*,</math> और <math>\|T x\| = \left\|T^* x\right\|</math> हरएक के लिए {{mvar|x}} इस कार्यक्षेत्र में;
* {{mvar|T}} का कार्यक्षेत्र इस कार्यक्षेत्र में प्रत्येक {{mvar|x}} के लिए <math>T^*,</math> और <math>\|T x\| = \left\|T^* x\right\|</math> के कार्यक्षेत्र के सामान्य है;
* स्व-सहायक संचालिका मौजूद हैं <math>A, B</math> ऐसा है कि <math>T = A + i B,</math><math>T^* = A - i B,</math> और <math>\|T x\|^2 = \|A x\|^2 + \|B x\|^2</math> हरएक के लिए {{mvar|x}} के क्षेत्र में {{mvar|T}}.
* स्व-सहायक ऑपरेटर <math>A, B</math> उपस्तिथ हैं कि {{mvar|T}} के क्षेत्र में प्रत्येक {{mvar|x}} के लिए <math>T = A + i B,</math><math>T^* = A - i B,</math> और <math>\|T x\|^2 = \|A x\|^2 + \|B x\|^2</math> हैं।


प्रत्येक स्व-सहायक संचालिका सामान्य है।
प्रत्येक स्व-सहायक ऑपरेटर सामान्य है।


== स्थानांतरण ==
== समष्टिांतरण ==
{{See also|Transpose of a linear map}}
{{See also|एक रेखीय मानचित्र का स्थानांतरण}}


मान लीजिए कि <math>T : B_1 \to B_2</math> बनच स्थानों के बीच संचालिका बनें। फिर स्थानान्तरण (या दोहरा) <math>{}^t T: {B_2}^* \to {B_1}^*</math> का <math>T</math> क्या रैखिक संचालिका संतोषजनक है:
मान लीजिए कि <math>T : B_1 \to B_2</math> बनच समष्टिों के बीच ऑपरेटर बनें। फिर समष्टिान्तरण (या दोहरा) <math>{}^t T: {B_2}^* \to {B_1}^*</math> का <math>T</math> क्या रैखिक ऑपरेटर संतोषजनक है:
<math display=block>\langle T x, y' \rangle = \langle x, \left({}^t T\right) y' \rangle</math>
<math display=block>\langle T x, y' \rangle = \langle x, \left({}^t T\right) y' \rangle</math>
सभी के लिए <math>x \in B_1</math> और <math>y \in B_2^*.</math> यहां, हमने संकेतन का उपयोग किया है: <math>\langle x, x' \rangle = x'(x).</math><ref>{{harvnb | Yoshida|1980 | p= 193}}</ref>
सभी के लिए <math>x \in B_1</math> और <math>y \in B_2^*.</math> यहां, हमने संकेतन <math>\langle x, x' \rangle = x'(x).</math> का उपयोग किया है: <ref>{{harvnb | Yoshida|1980 | p= 193}}</ref>


के स्थानान्तरण के लिए आवश्यक एवं पर्याप्त शर्त <math>T</math> अस्तित्व में रहना ही वह है <math>T</math> सघन रूप से परिभाषित किया गया है (अनिवार्य रूप से उसी कारण से जो जोड़ों के लिए है, जैसा कि ऊपर चर्चा की गई है।)
<math>T</math> के समष्टिान्तरण के अस्तित्व के लिए आवश्यक और पर्याप्त नियम यह है कि <math>T</math> सघन रूप से परिभाषित किया गया है (अनिवार्य रूप से उसी कारण से जो जोड़ों के लिए है, जैसा कि ऊपर चर्चा की गई है।)


किसी भी हिल्बर्ट स्थान के लिए <math>H,</math> वहाँ विरोधी रेखीय समरूपता है:
किसी भी हिल्बर्ट समष्टि <math>H,</math> के लिए वहाँ विरोधी रेखीय समरूपता है:
<math display="block">J: H^* \to H</math>
<math display="block">J: H^* \to H</math>
द्वारा दिए गए <math>J f = y</math> जहाँ <math>f(x) = \langle x \mid y \rangle_H, (x \in H).</math> इस समरूपता के माध्यम से, स्थानान्तरण <math>{}^t T</math> जोड़ से संबंधित है <math>T^*</math> इस अनुसार:<ref>{{harvnb | Yoshida | 1980 | p = 196}}</ref>
द्वारा दिए गए <math>J f = y</math> जहाँ <math>f(x) = \langle x \mid y \rangle_H, (x \in H).</math> इस समरूपता के माध्यम से, समष्टिान्तरण <math>{}^t T</math> जोड़ <math>T^*</math>से संबंधित है इस अनुसार:<ref>{{harvnb | Yoshida | 1980 | p = 196}}</ref>
<math display="block">T^* = J_1 \left({}^t T\right) J_2^{-1},</math>
<math display="block">T^* = J_1 \left({}^t T\right) J_2^{-1},</math>
जहाँ <math>J_j: H_j^* \to H_j</math>. (परिमित-आयामी स्तिथि के लिए, यह इस तथ्य से मेल खाता है कि मैट्रिक्स का जोड़ इसका संयुग्म स्थानान्तरण है।) ध्यान दें कि यह स्थानान्तरण के संदर्भ में जोड़ की परिभाषा देता है।
जहाँ <math>J_j: H_j^* \to H_j</math>. (परिमित-आयामी स्तिथि के लिए, यह इस तथ्य से मेल खाता है कि आव्यूह का जोड़ इसका संयुग्म समष्टिान्तरण है।) ध्यान दें कि यह समष्टिान्तरण के संदर्भ में जोड़ की परिभाषा देता है।


== संवृत रैखिक संचालिका ==
== संवृत रैखिक ऑपरेटर ==
{{Main|Closed linear operator}}
{{Main|संवृत रैखिक संचालिका}}


क्लोज्ड रेखीय संचालिका्स बानाच स्थान पर रेखीय संचालिका्स का वर्ग है। वे बंधे हुए संचालक की तुलना में अधिक सामान्य हैं, और इसलिए आवश्यक रूप से निरंतर कार्य नहीं करते हैं, किन्तु वे अभी भी पर्याप्त गुण बरकरार रखते हैं कि कोई ऐसे संचालक के लिए [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)]] और (कुछ मान्यताओं के साथ) कार्यात्मक कैलकुलस को परिभाषित कर सकता है। कई महत्वपूर्ण रैखिक संचालिका जो परिबद्ध होने में विफल रहते हैं, संवृत हो जाते हैं, जैसे व्युत्पन्न और अंतर संचालक का बड़ा वर्ग।
संवृत रेखीय ऑपरेटर्स बानाच समष्टि पर रेखीय ऑपरेटर्स का वर्ग है। वे बंधे हुए संचालक की तुलना में अधिक सामान्य हैं, और इसलिए आवश्यक रूप से निरंतर कार्य नहीं करते हैं, किन्तु वे अभी भी पर्याप्त गुण स्थिर रखते हैं कि कोई ऐसे संचालक के लिए [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)|वर्णक्रम (कार्यात्मक विश्लेषण)]] और (कुछ मान्यताओं के साथ) कार्यात्मक कैलकुलस को परिभाषित कर सकता है। कई महत्वपूर्ण रैखिक ऑपरेटर जो अनबाउंड होने में विफल रहते हैं, संवृत हो जाते हैं, जैसे व्युत्पन्न और अंतर संचालक का बड़ा वर्ग।


मान लीजिए कि {{math|''X'', ''Y''}} दो बनच स्थान हों। रेखीय परिवर्तन {{math|''A'' : ''D''(''A'') ⊆ ''X'' → ''Y''}} यदि प्रत्येक [[अनुक्रम]] के लिए संवृत है {{math|{''x''<sub>''n''</sub>} }} में {{math|''D''(''A'')}} किसी अनुक्रम की सीमा {{mvar|x}} में {{mvar|X}} ऐसा है कि {{math|''Ax<sub>n</sub>'' → ''y'' ∈ ''Y''}} जैसा {{math|''n'' → ∞}} किसी के पास {{math|''x'' ∈ ''D''(''A'')}} और {{math|1=''Ax'' = ''y''}}.
मान लीजिए कि {{math|''X'', ''Y''}} दो बनच समष्टि हों। एक रेखीय परिवर्तन {{math|''A'' : ''D''(''A'') ⊆ ''X'' → ''Y''}} {{math|{''x''<sub>''n''</sub>} }}संवृत है यदि प्रत्येक [[अनुक्रम]] के लिए {{mvar|x}} में {{math|''D''(''A'')}} किसी अनुक्रम की सीमा {{math|''Ax<sub>n</sub>'' → ''y'' ∈ ''Y''}} में {{mvar|X}} ऐसा है जैसा {{math|''n'' → ∞}} किसी के पास {{math|''x'' ∈ ''D''(''A'')}} और {{math|1=''Ax'' = ''y''}}.समान रूप से, {{mvar|A}} संवृत है यदि इसका फलन ग्राफ़ बनच रिक्त समष्टि के प्रत्यक्ष योग {{math|''X'' ⊕ ''Y''}} में संवृत समुच्चय है .


समान रूप से, {{mvar|A}} संवृत है यदि इसका फलन ग्राफ़ बनच रिक्त स्थान के प्रत्यक्ष योग में संवृत समुच्चय है {{math|''X'' ⊕ ''Y''}}.
एक रैखिक ऑपरेटर {{mvar|A}} दी गई है , आवश्यक नहीं कि संवृत हो, यदि {{math|''X'' ⊕ ''Y''}} इसके ग्राफ को संवृत किया जाए किसी ऑपरेटर का ग्राफ होता है, उस ऑपरेटर {{mvar|A}} को संवृत ऑफ कहा जाता है , और हम ऐसा कहते हैं कि {{mvar|A}} संवृत करने योग्य है. {{math|{{overline|''A''}}}} को {{math|{{overline|''A''}}}} द्वारा संवृत करने को निरूपित करें। इससे पता चलता है कि {{math|{{overline|''A''}}}},{{math|{{overline|''A''}}}} से {{math|''D''(''A'')}} तक का प्रतिबंध है।


एक रैखिक संचालिका दी गई है {{mvar|A}}, आवश्यक नहीं कि संवृत हो, यदि इसके ग्राफ को संवृत किया जाए {{math|''X'' ⊕ ''Y''}} किसी संचालिका का ग्राफ होता है, उस संचालिका को क्लोजर ऑफ कहा जाता है {{mvar|A}}, और हम ऐसा कहते हैं {{mvar|A}} संवृत करने योग्य है. के समापन को निरूपित करें {{mvar|A}} द्वारा {{math|{{overline|''A''}}}}. यह इस प्रकार है कि {{mvar|A}} का कार्य (गणित) है {{math|{{overline|''A''}}}} को {{math|''D''(''A'')}}.
एक संवृत करने योग्य ऑपरेटर का कोर (या आवश्यक कार्यक्षेत्र) {{math|''D''(''A'')}} का एक उपसमुच्चय {{mvar|C}} है, जैसे कि {{mvar|A}} को {{mvar|C}} प्रतिबंध का समापन है .
 
एक संवृत करने योग्य संचालिका का कोर (या आवश्यक कार्यक्षेत्र) उपसमुच्चय है {{mvar|C}} का {{math|''D''(''A'')}} जैसे कि प्रतिबंध का समापन {{mvar|A}} को {{mvar|C}} है {{math|{{overline|''A''}}}}.


=== उदाहरण ===
=== उदाहरण ===


व्युत्पन्न संचालिका पर विचार करें {{math|1=''A'' = {{sfrac|''d''|''dx''}}}} जहाँ {{math|1=''X'' = ''Y'' = ''C''([''a'', ''b''])}} अंतराल पर सभी निरंतर कार्यों का बानाच स्थान है (गणित) {{math|[''a'', ''b'']}}.
व्युत्पन्न ऑपरेटर {{math|1=''A'' = {{sfrac|''d''|''dx''}}}} पर विचार करें जहाँ {{math|1=''X'' = ''Y'' = ''C''([''a'', ''b''])}} अंतराल {{math|[''a'', ''b'']}} पर सभी निरंतर कार्यों का बानाच समष्टि है (गणित) .यदि कोई इसका कार्यक्षेत्र {{math|''D''(''A'')}} को {{math|''C''<sup>1</sup>([''a'', ''b''])}} मानता है , तब {{mvar|A}} संवृत ऑपरेटर है जो बाध्य नहीं है।<ref>{{harvnb | Kreyszig | 1978 | p = 294}}</ref> दूसरी ओर यदि ''D''(''A'') = ''C''<sup>∞</sup>([''a'', ''b'']), तब {{mvar|A}} अब संवृत नहीं होगा, किन्तु यह संवृत होने योग्य {{math|''C''<sup>1</sup>([''a'', ''b''])}} होगा, संवृत होने पर इसका विस्तार परिभाषित किया जाएगा. .
 
यदि कोई इसका कार्यक्षेत्र ले लेता है {{math|''D''(''A'')}} होना {{math|''C''<sup>1</sup>([''a'', ''b''])}}, तब {{mvar|A}} संवृत संचालिका है जो बाध्य नहीं है।<ref>{{harvnb | Kreyszig | 1978 | p = 294}}</ref><nowiki> दूसरी ओर यदि {{math|1=</nowiki>''D''(''A'') = [[smooth function{{!}}''C''<sup>∞</sup>([''a'', ''b''<nowiki>])]]}}, तब </nowiki>{{mvar|A}} अब संवृत नहीं होगा, किन्तु यह संवृत होने योग्य होगा, संवृत होने पर इसका विस्तार परिभाषित किया जाएगा {{math|''C''<sup>1</sup>([''a'', ''b''])}}.


== सममित संचालिका और स्व-सहायक संचालिका ==
== सममित ऑपरेटर और स्व-सहायक ऑपरेटर ==
{{main|Self-adjoint operator}}
{{main|स्व-सहायक संचालिका}}


हिल्बर्ट स्थान पर संचालिका टी सममित है यदि और केवल यदि के कार्यक्षेत्र में प्रत्येक x और y के लिए {{mvar|T}} हमारे पास है <math>\langle Tx \mid y \rangle = \lang x \mid Ty \rang</math>. सघन रूप से परिभाषित संचालिका {{mvar|T}} सममित है यदि और केवल यदि यह अपने संलग्न टी से सहमत है<sup>∗</sup>T के कार्यक्षेत्र तक ही सीमित है, दूसरे शब्दों में जब T<sup>∗</sup> का विस्तार है {{mvar|T}}.<ref name="Pedersen-5.1.3">{{ harvnb |Pedersen|1989| loc=5.1.3 }}</ref>
हिल्बर्ट समष्टि पर ऑपरेटर T सममित है यदि और केवल यदि {{mvar|T}} के कार्यक्षेत्र में प्रत्येक x और y के लिए हमारे पास <math>\langle Tx \mid y \rangle = \lang x \mid Ty \rang</math> है . सघन रूप से परिभाषित ऑपरेटर {{mvar|T}} सममित है यदि और केवल यदि यह अपने निकटवर्ती T∗ से सहमत है जो T के कार्यक्षेत्र तक ही सीमित है, दूसरे शब्दों में जब T<sup>∗</sup> {{mvar|T}} का विस्तार है।<ref name="Pedersen-5.1.3">{{ harvnb |Pedersen|1989| loc=5.1.3 }}</ref>


सामान्य तौर पर, यदि T सघन रूप से परिभाषित और सममित है, तो आसन्न T का कार्यक्षेत्र<sup>∗</sup> को T के कार्यक्षेत्र के बराबर होने की आवश्यकता नहीं है। यदि T सममित है और T का कार्यक्षेत्र और एडजॉइंट का कार्यक्षेत्र मेल खाता है, तो हम कहते हैं कि T स्व-सहायक है।<ref>{{harvnb |Kato|1995| loc=5.3.3 }}</ref> ध्यान दें कि, जब T स्वयं-सहायक है, तो सहायक के अस्तित्व का अर्थ है कि T सघन रूप से परिभाषित है और चूँकि T<sup>∗</sup> आवश्यक रूप से संवृत है, T संवृत है।
सामान्य रूप पर, यदि T सघन रूप से परिभाषित और सममित है, तो आसन्न T<sup>∗</sup> का कार्यक्षेत्र को T के कार्यक्षेत्र के सामान्य होने की आवश्यकता नहीं है। यदि T सममित है और T का कार्यक्षेत्र और एडजॉइंट का कार्यक्षेत्र मेल खाता है, तो हम कहते हैं कि T स्व-सहायक है।<ref>{{harvnb |Kato|1995| loc=5.3.3 }}</ref> ध्यान दें कि, जब T स्वयं-सहायक है, तो सहायक के अस्तित्व का अर्थ है कि T सघन रूप से परिभाषित है और चूँकि T<sup>∗</sup> आवश्यक रूप से संवृत है, T संवृत है।


एक सघन रूप से परिभाषित संचालिका टी सममित है, यदि उप-स्थान {{math|Γ(''T'')}} (पिछले अनुभाग में परिभाषित) इसकी छवि के लिए ऑर्थोगोनल है {{math|''J''(Γ(''T''))}} J के अंतर्गत (जहाँ J(x,y):=(y,-x))।<ref group="nb">Follows from {{harv |Pedersen|1989| loc=5.1.5 }} and the definition via adjoint operators.</ref>
एक सघन रूप से परिभाषित ऑपरेटर T सममित है, यदि उप-समष्टि {{math|Γ(''T'')}} (पिछले अनुभाग में परिभाषित) J के अंतर्गत इसकी छवि {{math|''J''(Γ(''T''))}} के लिए ऑर्थोगोनल है (जहाँ J(x,y):=(y,-x))।<ref group="nb">Follows from {{harv |Pedersen|1989| loc=5.1.5 }} and the definition via adjoint operators.</ref>


समान रूप से, संचालिका टी स्व-सहायक है यदि यह सघन रूप से परिभाषित, संवृत, सममित है, और चौथी शर्त को संतुष्ट करता है: दोनों संचालिका {{math|''T'' – ''i''}}, {{math|''T'' + ''i''}} विशेषण हैं, अर्थात, T के कार्यक्षेत्र को संपूर्ण स्थान H पर मैप करें। दूसरे शब्दों में: H में प्रत्येक x के लिए T के कार्यक्षेत्र में y और z मौजूद हैं जैसे कि {{math|''Ty'' – ''iy'' {{=}} ''x''}} और {{math|''Tz'' + ''iz'' {{=}} ''x''}}.<ref name="Pedersen-5.2.5">{{harvnb |Pedersen|1989| loc=5.2.5 }}</ref>
समान रूप से, ऑपरेटर T स्व-सहायक है यदि यह सघन रूप से परिभाषित, संवृत, सममित है, और चौथी नियम को संतुष्ट करता है: दोनों ऑपरेटर {{math|''T'' – ''i''}}, {{math|''T'' + ''i''}} विशेषण हैं, अर्थात, T के कार्यक्षेत्र को संपूर्ण समष्टि H पर मैप करें। दूसरे शब्दों में: H में प्रत्येक x के लिए T के कार्यक्षेत्र में y और z जैसे कि {{math|''Ty'' – ''iy'' {{=}} ''x''}} और {{math|''Tz'' + ''iz'' {{=}} ''x''}}. उपस्तिथ हैं:<ref name="Pedersen-5.2.5">{{harvnb |Pedersen|1989| loc=5.2.5 }}</ref>


यदि दो उपस्थान हों तो संचालिका T स्व-सहायक है {{math|Γ(''T'')}}, {{math|''J''(Γ(''T''))}} ऑर्थोगोनल हैं और उनका योग संपूर्ण स्थान है <math> H \oplus H .</math><ref name="Pedersen-5.1.5" />
यदि ऑपरेटर T स्व-सहायक है दो उपसमष्टि {{math|Γ(''T'')}}, {{math|''J''(Γ(''T''))}} ऑर्थोगोनल हैं और उनका योग संपूर्ण समष्टि <math> H \oplus H .</math> है।<ref name="Pedersen-5.1.5" />


यह दृष्टिकोण गैर-सघन रूप से परिभाषित संवृत संचालक को कवर नहीं करता है। गैर-घनत्व परिभाषित सममित संचालक को सीधे या ग्राफ़ के माध्यम से परिभाषित किया जा सकता है, किन्तु सहायक संचालक के माध्यम से नहीं।
यह दृष्टिकोण गैर-सघन रूप से परिभाषित संवृत संचालक को कवर नहीं करता है। गैर-घनत्व परिभाषित सममित संचालक को सीधे या ग्राफ़ के माध्यम से परिभाषित किया जा सकता है, किन्तु सहायक संचालक के माध्यम से नहीं।


एक सममित संचालिका का अध्ययन अधिकांशतः इसके [[ केली परिवर्तन |केली परिवर्तन]] के माध्यम से किया जाता है।
एक सममित ऑपरेटर का अध्ययन अधिकांशतः इसके [[ केली परिवर्तन |केली परिवर्तन]] के माध्यम से किया जाता है।


जटिल हिल्बर्ट स्थान पर संचालिका टी सममित है यदि और केवल यदि इसका द्विघात रूप वास्तविक है, अर्थात संख्या <math> \langle Tx \mid x \rangle </math> T के कार्यक्षेत्र में सभी x के लिए वास्तविक है।<ref name="Pedersen-5.1.3" />
सम्मिश्र हिल्बर्ट समष्टि पर ऑपरेटर T सममित है यदि और केवल यदि इसका द्विघात रूप वास्तविक है, अर्थात संख्या <math> \langle Tx \mid x \rangle </math> T के कार्यक्षेत्र में सभी x के लिए वास्तविक है।<ref name="Pedersen-5.1.3" />


एक सघन रूप से परिभाषित संवृत सममित संचालिका टी स्व-सहायक है यदि और केवल यदि टी<sup>∗</sup>सममित है।<ref name="RS-256">{{ harvnb |Reed|Simon|1980| loc=page 256 }}</ref> ऐसा हो सकता है कि ऐसा न हो.<ref name="Pedersen-5.1.16">{{ harvnb |Pedersen|1989| loc=5.1.16 }}</ref><ref name="RS-257-9">{{ harvnb |Reed|Simon|1980| loc=Example on pages 257-259 }}</ref>
एक सघन रूप से परिभाषित संवृत सममित ऑपरेटर T स्व-सहायक है यदि और केवल यदि T<sup>∗</sup>सममित है।<ref name="RS-256">{{ harvnb |Reed|Simon|1980| loc=page 256 }}</ref> ऐसा हो सकता है कि ऐसा न हो.<ref name="Pedersen-5.1.16">{{ harvnb |Pedersen|1989| loc=5.1.16 }}</ref><ref name="RS-257-9">{{ harvnb |Reed|Simon|1980| loc=Example on pages 257-259 }}</ref>


सघन रूप से परिभाषित संकारक T को धनात्मक कहा जाता है<ref name="Pedersen-5.1.12">{{harvnb |Pedersen|1989| loc=5.1.12 }}</ref> (या गैर-नकारात्मक<ref name="BSU-25">{{harvnb |Berezansky|Sheftel|Us|1996| loc=page 25 }}</ref>) यदि इसका द्विघात रूप अऋणात्मक है, अर्थात, <math>\langle Tx \mid x \rangle \ge 0 </math> T के कार्यक्षेत्र में सभी x के लिए। ऐसा संचालिका आवश्यक रूप से सममित है।
सघन रूप से परिभाषित संकारक T को धनात्मक कहा जाता है<ref name="Pedersen-5.1.12">{{harvnb |Pedersen|1989| loc=5.1.12 }}</ref> (या गैर-नकारात्मक<ref name="BSU-25">{{harvnb |Berezansky|Sheftel|Us|1996| loc=page 25 }}</ref>) यदि इसका द्विघात रूप अऋणात्मक है, अर्थात, <math>\langle Tx \mid x \rangle \ge 0 </math> T के कार्यक्षेत्र में सभी x के लिए ऐसा ऑपरेटर आवश्यक रूप से सममित है।


संचालक टी<sup>∗</sup>T स्व-सहायक है<ref name="Pedersen-5.1.9">{{harvnb |Pedersen|1989| loc=5.1.9 }}</ref> और सकारात्मक<ref name="Pedersen-5.1.12" /> प्रत्येक सघन रूप से परिभाषित, संवृत टी के लिए।
प्रत्येक सघन रूप से परिभाषित, संवृत टी के लिए संचालक T<sup>∗</sup>T स्व-सहायक है<ref name="Pedersen-5.1.9">{{harvnb |Pedersen|1989| loc=5.1.9 }}</ref> और सकारात्मक<ref name="Pedersen-5.1.12" /> है।


स्वयं-संयुक्त संचालिका#वर्णक्रमीय प्रमेय स्वयं-संयुक्त संचालिका्स पर प्रयुक्त होता है <ref name="Pedersen-5.3.8">{{harvnb|Pedersen|1989|loc=5.3.8}}</ref> और इसके अलावा, सामान्य संचालक के लिए,<ref name="BSU-89">{{harvnb |Berezansky|Sheftel|Us|1996|loc=page 89}}</ref><ref name="Pedersen-5.3.19">{{harvnb |Pedersen|1989| loc=5.3.19 }}</ref> किन्तु सामान्य तौर पर सघन रूप से परिभाषित, संवृत संचालक के लिए नहीं, क्योंकि इस स्तिथि में स्पेक्ट्रम खाली हो सकता है।<ref name="RS-254-E5">{{harvnb |Reed|Simon|1980| loc=Example 5 on page 254 }}</ref><ref name="Pedersen-5.2.12">{{harvnb |Pedersen|1989| loc=5.2.12 }}</ref>
स्वयं-संयुक्त ऑपरेटर वर्णक्रमीय प्रमेय स्वयं-संयुक्त ऑपरेटर्स पर प्रयुक्त होता है <ref name="Pedersen-5.3.8">{{harvnb|Pedersen|1989|loc=5.3.8}}</ref> और इसके अतिरिक्त, सामान्य संचालक के लिए,<ref name="BSU-89">{{harvnb |Berezansky|Sheftel|Us|1996|loc=page 89}}</ref><ref name="Pedersen-5.3.19">{{harvnb |Pedersen|1989| loc=5.3.19 }}</ref> किन्तु सामान्य रूप पर सघन रूप से परिभाषित, संवृत संचालक के लिए नहीं, क्योंकि इस स्तिथि में वर्णक्रम रिक्त हो सकता है।<ref name="RS-254-E5">{{harvnb |Reed|Simon|1980| loc=Example 5 on page 254 }}</ref><ref name="Pedersen-5.2.12">{{harvnb |Pedersen|1989| loc=5.2.12 }}</ref>


हर जगह परिभाषित सममित संचालिका संवृत है, इसलिए घिरा हुआ है,<ref name="Pedersen-5.1.4" />जो हेलिंगर-टोएप्लिट्ज़ प्रमेय है।<ref name="RS-84">{{harvnb |Reed|Simon|1980| loc=page 84 }}</ref>
सभी समष्टि परिभाषित सममित ऑपरेटर संवृत है, इसलिए घिरा हुआ है,<ref name="Pedersen-5.1.4" />जो हेलिंगर-टोएप्लिट्ज़ प्रमेय है।<ref name="RS-84">{{harvnb |Reed|Simon|1980| loc=page 84 }}</ref>
==विस्तार-संबंधी==
==विस्तार-संबंधी==
{{See also|सममित संचालकों का विस्तार}}
{{See also|सममित संचालकों का विस्तार}}


परिभाषा के अनुसार, संचालिका T, संचालिका S का विस्तार है यदि {{math|Γ(''S'') ⊆ Γ(''T'')}}.<ref name="RS-250">{{ harvnb |Reed|Simon|1980| loc=page 250 }}</ref> समतुल्य प्रत्यक्ष परिभाषा: S के कार्यक्षेत्र में प्रत्येक x के लिए, x, T के कार्यक्षेत्र से संबंधित है {{math|''Sx'' {{=}} ''Tx''}}.<ref name="Pedersen-5.1.1" /><ref name="RS-250" />
परिभाषा के अनुसार, ऑपरेटर T, ऑपरेटर S का विस्तार है यदि {{math|Γ(''S'') ⊆ Γ(''T'')}}.<ref name="RS-250">{{ harvnb |Reed|Simon|1980| loc=page 250 }}</ref> समतुल्य प्रत्यक्ष परिभाषा: S के कार्यक्षेत्र में प्रत्येक x के लिए, x, T के {{math|''Sx'' {{=}} ''Tx''}} कार्यक्षेत्र से संबंधित है .<ref name="Pedersen-5.1.1" /><ref name="RS-250" />


ध्यान दें कि प्रत्येक संचालिका के लिए हर जगह परिभाषित एक्सटेंशन मौजूद है, जो कि विशुद्ध रूप से बीजगणितीय तथ्य है {{slink|Discontinuous linear map#General existence theorem}} और पसंद के सिद्धांत पर आधारित है। यदि दिया गया संचालिका परिबद्ध नहीं है तो विस्तार असंतत रैखिक मानचित्र है। इसका बहुत कम उपयोग है क्योंकि यह दिए गए संचालिका के महत्वपूर्ण गुणों को संरक्षित नहीं कर सकता है (नीचे देखें), और सामान्यतः अत्यधिक गैर-अद्वितीय है।
ध्यान दें कि प्रत्येक ऑपरेटर के लिए सभी समष्टि परिभाषित विस्तार उपस्तिथ है, जो कि विशुद्ध रूप से बीजगणितीय तथ्य है {{slink|असंतत रेखीय मानचित्र#सामान्य अस्तित्व प्रमेय}} और पसंद के सिद्धांत पर आधारित है। यदि दिया गया ऑपरेटर अनबाउंड नहीं है तो विस्तार असंतत रैखिक मानचित्र है। इसका बहुत कम उपयोग है क्योंकि यह दिए गए ऑपरेटर के महत्वपूर्ण गुणों को संरक्षित नहीं कर सकता है (नीचे देखें), और सामान्यतः अत्यधिक गैर-अद्वितीय है।


एक संचालिका टी को संवृत करने योग्य कहा जाता है यदि यह निम्नलिखित समकक्ष शर्तों को पूरा करता है:<ref name="Pedersen-5.1.4" /><ref name="RS-250"/><ref name="BSU-6,7">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=pages 6,7 }}</ref>
एक ऑपरेटर T को संवृत करने योग्य कहा जाता है यदि यह निम्नलिखित समकक्ष नियमो को पूरा करता है:<ref name="Pedersen-5.1.4" /><ref name="RS-250"/><ref name="BSU-6,7">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=pages 6,7 }}</ref>
* टी का संवृत विस्तार है;
* T का संवृत विस्तार है;
* टी के ग्राफ का संवृत होना किसी संचालिका का ग्राफ है;
* T के ग्राफ का संवृत होना किसी ऑपरेटर का ग्राफ है;
* प्रत्येक अनुक्रम के लिए (x<sub>n</sub>) T के कार्यक्षेत्र से बिंदु इस प्रकार हैं कि x<sub>n</sub>→ 0 और Tx भी<sub>n</sub>→ यह इसे धारण करता है {{math|''y'' {{=}} 0}}.
* T के डोमेन से बिंदुओं के प्रत्येक अनुक्रम (''x<sub>n</sub>'') के लिए, जैसे कि ''x<sub>n</sub>'' → 0 और ''Tx<sub>n</sub>'' → ''y'' भी यह मानता है कि y = 0 है।


सभी संचालिका संवृत करने योग्य नहीं हैं.<ref name="BSU-7">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=page 7 }}</ref>
सभी ऑपरेटर संवृत करने योग्य नहीं हैं.<ref name="BSU-7">{{ harvnb |Berezansky|Sheftel|Us|1996| loc=page 7 }}</ref>


एक संवृत करने योग्य संचालिका T का संवृत एक्सटेंशन सबसे कम है <math> \overline T </math> इसे T का समापन कहा जाता है। T के ग्राफ़ का समापन, के ग्राफ़ के बराबर है <math> \overline T. </math><ref name="Pedersen-5.1.4" /><ref name="RS-250" /> अन्य, गैर-न्यूनतम संवृत एक्सटेंशन मौजूद हो सकते हैं।<ref name="Pedersen-5.1.16" /><ref name="RS-257-9" />
एक संवृत करने योग्य ऑपरेटर T का संवृत विस्तार <math> \overline T </math> सबसे कम है इसे T का समापन कहा जाता है। T के ग्राफ़ का समापन <math> \overline T. </math>, के ग्राफ़ के सामान्य है <ref name="Pedersen-5.1.4" /><ref name="RS-250" /> अन्य, गैर-न्यूनतम संवृत विस्तार उपस्तिथ हो सकते हैं।<ref name="Pedersen-5.1.16" /><ref name="RS-257-9" />


सघन रूप से परिभाषित संचालिका T संवृत हो सकता है यदि और केवल यदि T<sup>∗</sup> सघन रूप से परिभाषित है। इस स्तिथि में <math>\overline T = T^{**} </math> और <math> (\overline T)^* = T^*. </math><ref name="Pedersen-5.1.5" /><ref name="RS-253">{{harvnb |Reed|Simon|1980| loc=page 253 }}</ref>
सघन रूप से परिभाषित ऑपरेटर T संवृत हो सकता है यदि और केवल यदि T<sup>∗</sup> सघन रूप से परिभाषित है। इस स्तिथि में <math>\overline T = T^{**} </math> और <math> (\overline T)^* = T^*. </math><ref name="Pedersen-5.1.5" /><ref name="RS-253">{{harvnb |Reed|Simon|1980| loc=page 253 }}</ref>


यदि S सघन रूप से परिभाषित है और T, S का विस्तार है तो S<sup>∗</sup> T का विस्तार है<sup>∗</sup>.<ref name="Pedersen-5.1.2">{{harvnb |Pedersen|1989| loc=5.1.2 }}</ref>
यदि S सघन रूप से परिभाषित है और T, S का विस्तार है तो S<sup>∗</sup> T का विस्तार है<sup>∗</sup>.<ref name="Pedersen-5.1.2">{{harvnb |Pedersen|1989| loc=5.1.2 }}</ref>


प्रत्येक सममित संचालिका संवृत करने योग्य है।<ref name="Pedersen-5.1.6">{{harvnb |Pedersen|1989| loc=5.1.6 }}</ref>
प्रत्येक सममित ऑपरेटर संवृत करने योग्य है।<ref name="Pedersen-5.1.6">{{harvnb |Pedersen|1989| loc=5.1.6 }}</ref>


एक सममित संचालिका को अधिकतम सममित कहा जाता है यदि उसके पास स्वयं को छोड़कर कोई सममित विस्तार नहीं है।<ref name="Pedersen-5.1.3" /> प्रत्येक स्व-सहायक संचालिका अधिकतम सममित है।<ref name="Pedersen-5.1.3" />उलटा गलत है.<ref name="Pedersen-5.2.6">{{harvnb |Pedersen|1989| loc=5.2.6 }}</ref>
एक सममित ऑपरेटर को अधिकतम सममित कहा जाता है यदि उसके पास स्वयं को छोड़कर कोई सममित विस्तार नहीं है।<ref name="Pedersen-5.1.3" /> प्रत्येक स्व-सहायक ऑपरेटर अधिकतम सममित है।<ref name="Pedersen-5.1.3" />विपरीत असत्य है.<ref name="Pedersen-5.2.6">{{harvnb |Pedersen|1989| loc=5.2.6 }}</ref>


एक संचालिका को अनिवार्य रूप से स्व-सहायक कहा जाता है यदि उसका समापन स्व-सहायक है।<ref name="Pedersen-5.1.6" /> एक संचालिका अनिवार्य रूप से स्व-सहायक होता है यदि और केवल तभी जब उसके पास और केवल स्व-सहायक एक्सटेंशन हो।<ref name="RS-256" />
एक ऑपरेटर को अनिवार्य रूप से स्व-सहायक कहा जाता है यदि उसका समापन स्व-सहायक है।<ref name="Pedersen-5.1.6" /> एक ऑपरेटर अनिवार्य रूप से स्व-सहायक होता है यदि और केवल तभी जब उसके पास और केवल स्व-सहायक विस्तार हो।<ref name="RS-256" />


एक सममित संचालिका के पास से अधिक स्व-सहायक विस्तार और यहां तक ​​कि उनका सातत्य भी हो सकता है।<ref name="RS-257-9" />
एक सममित ऑपरेटर के पास से अधिक स्व-सहायक विस्तार और यहां तक ​​कि उनका सातत्य भी हो सकता है।<ref name="RS-257-9" />


एक सघन रूप से परिभाषित, सममित संचालिका टी अनिवार्य रूप से स्व-सहायक है यदि और केवल यदि दोनों संचालिका हों {{math|''T'' – ''i''}}, {{math|''T'' + ''i''}} सघन सीमा है।<ref name="RS-257">{{harvnb |Reed|Simon|1980| loc=page 257 }}</ref>
एक सघन रूप से परिभाषित, सममित ऑपरेटर T अनिवार्य रूप से स्व-सहायक है यदि और केवल यदि दोनों ऑपरेटर हों {{math|''T'' – ''i''}}, {{math|''T'' + ''i''}} सघन सीमा है।<ref name="RS-257">{{harvnb |Reed|Simon|1980| loc=page 257 }}</ref>


मान लीजिए T सघन रूप से परिभाषित संचालिका है। संबंध को दर्शाते हुए T, S द्वारा S ⊂ T का विस्तार है (Γ(S) ⊆ Γ(T) के लिए पारंपरिक संक्षिप्त नाम) निम्नलिखित है।<ref name="RS-255-6">{{harvnb |Reed|Simon|1980| loc=pages 255, 256 }}</ref>
मान लीजिए T सघन रूप से परिभाषित ऑपरेटर है। संबंध "T, S का विस्तार है" को S ⊂ T (Γ(S) ⊆ Γ(T) के लिए पारंपरिक संक्षिप्त नाम) निम्नलिखित है।<ref name="RS-255-6">{{harvnb |Reed|Simon|1980| loc=pages 255, 256 }}</ref>
* यदि T सममित है तो T ⊂ T∗∗ ⊂ T∗।
* यदि T सममित है तो T ⊂ T∗∗ ⊂ T∗।
*यदि T बंद और सममित है तो T = T∗∗ ⊂ T∗.
*यदि T बंद और सममित है तो T = T∗∗ ⊂ T∗.
Line 195: Line 186:


==स्वयं-सहायक संचालक का महत्व==
==स्वयं-सहायक संचालक का महत्व==
गणितीय भौतिकी में स्व-सहायक संचालकों का वर्ग विशेष रूप से महत्वपूर्ण है। प्रत्येक स्व-सहायक संचालिका सघन रूप से परिभाषित, संवृत और सममित है। यह वार्तालाप परिबद्ध हुए संचालक के लिए है किन्तु सामान्य रूप पर विफल रहती है। स्व-संयुक्तता इन तीन गुणों की तुलना में अधिक सीमा तक अधिक प्रतिबंधित है। प्रसिद्ध स्वयं-संयुक्त संचालिका वर्णक्रमीय प्रमेय स्वयं-संयुक्त संचालक के लिए प्रयुक्त है। एक-पैरामीटर एकात्मक समूहों पर स्टोन के प्रमेय के साथ संयोजन में यह पता चलता है कि स्व-सहायक संचालिका दृढ़ता से निरंतर एक-पैरामीटर एकात्मक समूहों के असीम रूप से छोटे जनरेटर हैं, देखें {{slink|स्व-सहायक संचालिका#क्वांटम यांत्रिकी में स्व-सहायक विस्तार}}. ऐसे एकात्मक समूह मौलिक और क्वांटम यांत्रिकी में [[समय विकास]] का वर्णन करने के लिए विशेष रूप से महत्वपूर्ण हैं।
गणितीय भौतिकी में स्व-सहायक संचालकों का वर्ग विशेष रूप से महत्वपूर्ण है। प्रत्येक स्व-सहायक ऑपरेटर सघन रूप से परिभाषित, संवृत और सममित है। यह वार्तालाप अनबाउंड हुए संचालक के लिए है किन्तु सामान्य रूप पर विफल रहती है। स्व-संयुक्तता इन तीन गुणों की तुलना में अधिक सीमा तक अधिक प्रतिबंधित है। प्रसिद्ध स्वयं-संयुक्त ऑपरेटर वर्णक्रमीय प्रमेय स्वयं-संयुक्त संचालक के लिए प्रयुक्त है। एक-पैरामीटर एकात्मक समूहों पर स्टोन के प्रमेय के साथ संयोजन में यह पता चलता है कि स्व-सहायक ऑपरेटर दृढ़ता से निरंतर एक-पैरामीटर एकात्मक समूहों के असीम रूप से छोटे जनरेटर हैं, {{slink|स्व-सहायक संचालिका#क्वांटम यांत्रिकी में स्व-सहायक विस्तार}} देखें। ऐसे एकात्मक समूह मौलिक और क्वांटम यांत्रिकी में [[समय विकास]] का वर्णन करने के लिए विशेष रूप से महत्वपूर्ण हैं।


== यह भी देखें ==
== यह भी देखें ==
* {{slink|हिल्बर्ट स्थान#असंबद्ध संचालक}}
* {{slink|हिल्बर्ट स्थान#असंबद्ध संचालक}}
* स्टोन-वॉन न्यूमैन प्रमेय
* स्टोन-वॉन न्यूमैन प्रमेय
* परिबद्ध संचालिका
* अनबाउंड ऑपरेटर


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 241: Line 232:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:36, 11 December 2023

गणित में, विशेष रूप से कार्यात्मक विश्लेषण और ऑपरेटर सिद्धांत में, अनबाउंड ऑपरेटर की धारणा अवकल संचालक, क्वांटम यांत्रिकी में असीमित वेधशालाओं और अन्य स्तिथियों से निपटने के लिए अमूर्त रूपरेखा प्रदान करती है।

चूंकि असीमित ऑपरेटर शब्द भ्रामक हो सकता है।

  • असीमित को कभी-कभी यह समझा जाना चाहिए कि आवश्यक रूप से बाध्य नहीं है;
  • ऑपरेटर को रैखिक ऑपरेटर के रूप में समझा जाना चाहिए (जैसा कि अनबाउंड ऑपरेटर के स्तिथि में होता है);
  • ऑपरेटर का कार्यक्षेत्र रैखिक उप-समष्टि है, आवश्यक नहीं कि संपूर्ण समष्टि हो;
  • यह रैखिक उपसमष्टि आवश्यक रूप से संवृत समुच्चय नहीं है; अधिकांशतः (किन्तु सदैव नहीं) इसे सघन (सांस्थितिक) माना जाता है;
  • एक अनबाउंड ऑपरेटर के विशेष स्तिथि में, फिर भी, कार्यक्षेत्र को सामान्यतः संपूर्ण समष्टि माना जाता है।

अनबाउंड संचालक के विपरीत, किसी दिए गए समष्टि पर असीमित ऑपरेटर किसी क्षेत्र पर बीजगणित नहीं बनाते हैं, न ही रैखिक समष्टि बनाते हैं, क्योंकि प्रत्येक को अपने स्वयं के कार्यक्षेत्र पर परिभाषित किया जाता है।

ऑपरेटर शब्द का अर्थ अधिकांशतः अनबाउंड रेखीय ऑपरेटर होता है, किन्तु इस लेख के संदर्भ में इसका अर्थ ऊपर दिए गए आरक्षणों के साथ, असीमित ऑपरेटर है। और दिया गया समष्टि हिल्बर्ट समष्टि माना जाता है। बनच समष्टि और अधिक सामान्य संसमष्टििक सदिश समष्टि के लिए कुछ सामान्यीकरण संभव हैं।

संक्षिप्त इतिहास

हिल्बर्ट समष्टि क्वांटम यांत्रिकी के लिए कठोर गणितीय रूप विकसित करने के भाग के रूप में असीमित संचालक का सिद्धांत 1920 के दशक के अंत और 1930 के दशक की आरंभ में विकसित हुआ।[1] किन्तु सिद्धांत का विकास जॉन वॉन न्यूमैन और मार्शल स्टोन के कारण हुआ है।[2] [3] वॉन न्यूमैन ने 1932 में असीमित संचालक का विश्लेषण करने के लिए फलन के ग्राफ़ का उपयोग प्रारंभ किया।[4]

परिभाषाएँ और मूलभूत गुण

मान लीजिए कि X, Y बनच समष्टि हैं। असीमित ऑपरेटर (या बस ऑपरेटर) T : D(T) → Y रेखीय मानचित्र T है जो एक रैखिक उपसमष्टि से D(T) ⊆ X—का कार्यक्षेत्र T—समष्टि Y तक है।[5] सामान्य परिपाटी के विपरीत, T को संपूर्ण समष्टि X पर परिभाषित नहीं किया जा सकता है।

एक ऑपरेटर T को संवृत ऑपरेटर कहा जाता है यदि इसका फलन ग्राफ़ Γ(T) एक संवृत समुच्चय है.[6] (यहाँ, ग्राफ Γ(T) के प्रत्यक्ष योग XY हिल्बर्ट रिक्त समष्टि के प्रत्यक्ष योग का रैखिक उपसमष्टि है जिसे, सभी जोड़ियों (x, Tx) के समुच्चय के रूप में परिभाषित , जहाँ x, T के कार्यक्षेत्र पर चलता है.) स्पष्ट रूप से, इसका अर्थ यह है कि T प्रत्येक अनुक्रम {xn} के लिए कार्यक्षेत्र इस प्रकार है कि xnx और Txny, यह उसे धारण करता है की x, T और Tx = y के कार्यक्षेत्र के अंतर्गत आता है.[6] क्लोजनेस को ग्राफ मानदंड के संदर्भ में भी तैयार किया जा सकता है: ऑपरेटर T संवृत है यदि और केवल यदि इसका कार्यक्षेत्र D(T) मानक के संबंध में पूर्ण समष्टि है:[7]

एक ऑपरेटर T को सघन रूप से परिभाषित ऑपरेटर कहा जाता है यदि इसका कार्यक्षेत्र X सघन रूप से समुच्चय है .[5] इसमें संपूर्ण समष्टि X पर परिभाषित ऑपरेटर भी सम्मिलित हैं , चूंकि संपूर्ण समष्टि अपने आप में सघन है। कार्यक्षेत्र की सघनता सहायक के अस्तित्व के लिए आवश्यक और पर्याप्त है (यदि X और Y हिल्बर्ट रिक्त समष्टि हैं) और समष्टिान्तरण; नीचे अनुभाग देखें.

यदि T : XY अपने कार्यक्षेत्र पर संवृत, सघन रूप से परिभाषित और निरंतर ऑपरेटर है, तो इसका कार्यक्षेत्र संपूर्ण X है.[nb 1]

हिल्बर्ट समष्टि H पर सघन रूप से परिभाषित ऑपरेटर T को नीचे से अनबाउंड हुआ कहा जाता है यदि T + a किसी वास्तविक संख्या a के लिए धनात्मक संकारक है। अर्थात्, T के कार्यक्षेत्र में सभी x के लिए Tx|x⟩ ≥ −a ||x||2 के क्षेत्र में (या वैकल्पिक रूप से Tx|x⟩ ≥ a ||x||2 चूँकि से a मनमाना है)।[8] यदि दोनों T और T फिर नीचे से बाध्य हैं तो T अनबाउंड है।[8]

उदाहरण

मान लीजिए कि C([0, 1]) इकाई अंतराल पर निरंतर कार्यों के समष्टि को निरूपित करें, और C1([0, 1]) निरंतर भिन्न-भिन्न कार्यों के समष्टि को निरूपित करें। हम सर्वोच्च मानदंड के साथ, सुसज्जित करते हैं, इसे बानाच समष्टि बना रहा है। मौलिक विभेदीकरण ऑपरेटर को d/dx : C1([0, 1]) → C([0, 1]) सामान्य सूत्र द्वारा परिभाषित करें :

प्रत्येक अवकलनीय फलन सतत है, इसलिए C1([0, 1]) ⊆ C([0, 1]). हम इसका प्रभुत्व करते हैं,कि d/dx : C([0, 1]) → C([0, 1]) कार्यक्षेत्र C1([0, 1]) के साथ अच्छी तरह से परिभाषित असीमित ऑपरेटर है . इसके लिए हमें वो दिखाना होगा कि रैखिक है और फिर, उदाहरण के लिए, कुछ को इस प्रकार प्रदर्शित करें कि और .

यह एक रैखिक ऑपरेटर है, क्योंकि दो निरंतर अवकलनीय फलनों f , g का एक रैखिक संयोजन a f  + bg भी निरंतर अवकलनीय है, और

ऑपरेटर बाध्य नहीं है. उदाहरण के लिए,

संतुष्ट

किन्तु

जैसा .

ऑपरेटर सघन रूप से परिभाषित और संवृत है।

एक ही ऑपरेटर को बनच समष्टि Z के कई विकल्पों के लिए ऑपरेटर ZZ के रूप में माना जा सकता है और उनमें से किसी के बीच सीमित नहीं किया जा सकता है। साथ ही, इसे बानाच समष्टिों XY के अन्य जोड़े के लिए,ऑपरेटर X, Y के रूप में भी ZZ कुछ संसमष्टििक सदिश समष्टि के लिए Z ऑपरेटर के रूप में भी बाध्य किया जा सकता है। उदाहरण के रूप से आइए IR विवृत अंतराल बनें और विचार करें

जहाँ:


संयुक्त

एक असीमित ऑपरेटर के एडजॉइंट को दो समान विधियों से परिभाषित किया जा सकता है। मान लीजिए कि हिल्बर्ट समष्टिों के बीच असीमित ऑपरेटर बनें।

सबसे पहले, इस प्रकार से परिभाषित किया जा सकता है जैसे कोई बंधे हुए ऑपरेटर के जोड़ को कैसे परिभाषित करता है। अर्थात्, जोड़ का T को गुण वाले ऑपरेटर के रूप में परिभाषित किया गया है:

अधिक स्पष्ट रूप से, निम्नलिखित प्रकार से परिभाषित किया गया है। यदि इस प्रकार कि ,T के क्षेत्र पर सतत रैखिक कार्यात्मक है , तब को का अवयव घोषित किया गया है और हैन-बानाच प्रमेय के माध्यम से पूरे समष्टि में रैखिक कार्यात्मकता का विस्तार करने के बाद, कुछ खोजना संभव है में ऐसा है कि

चूँकि रिज़्ज़ प्रतिनिधित्व प्रमेय हिल्बर्ट समष्टि के निरंतर दोहरेपन की अनुमति देता है आंतरिक उत्पाद द्वारा दिए गए रैखिक कार्यात्मकताओं के समुच्चय से पहचानने की अनुमति देता है। यह सदिश द्वारा विशिष्ट रूप से निर्धारित किया जाता है यदि और केवल यदि रैखिक कार्यात्मक सघन रूप से परिभाषित है; या समकक्ष, यदि T सघन रूप से परिभाषित है। अंत में, को का निर्माण पूरा करता है जो आवश्यक रूप से रेखीय मानचित्र है। संयुक्त अस्तित्व में है यदि और केवल यदि T सघन रूप से परिभाषित किया गया है।

परिभाषा के अनुसार, का कार्यक्षेत्र में अवयवों से मिलकर बनता है में ऐसा है कि , T के क्षेत्र में निरंतर है . नतीजतन, का कार्यक्षेत्र कुछ भी हो सकता है; यह तुच्छ हो सकता है (अर्थात इसमें केवल शून्य होता है)।[9] ऐसा हो सकता है कि का कार्यक्षेत्र संवृत हाइपरप्लेन है और कार्यक्षेत्र पर सभी समष्टि गायब हो जाता है।[10][11] इस प्रकार, की सीमा इसके कार्यक्षेत्र की सीमा T का तात्पर्य नहीं है. दूसरी ओर, यदि तब संपूर्ण समष्टि पर परिभाषित किया गया है तो T अपने कार्यक्षेत्र पर घिरा हुआ है और इसलिए इसे संपूर्ण समष्टि पर बंधे हुए ऑपरेटर तक निरंतरता द्वारा बढ़ाया जा सकता है।[nb 2] यदि का कार्यक्षेत्र घना है, तो उसका निकटवर्ती है [12] एक संवृत सघन रूप से परिभाषित ऑपरेटर T अनबाउंड है यदि और केवल यदि अनबाउंड है।[nb 3]

योजक की अन्य समकक्ष परिभाषा सामान्य तथ्य पर ध्यान देकर प्राप्त की जा सकती है। रैखिक ऑपरेटर को निम्नलिखित नुसार परिभाषित करें :[12]

तब से सममितीय अनुमान है, यह एकात्मक है। इस तरह: कुछ ऑपरेटर का ग्राफ़ है यदि और केवल यदि T सघन रूप से परिभाषित है।[13] साधारण गणना से पता चलता है कि यह कुछ है संतुष्ट करता है:

T के कार्यक्षेत्र में प्रत्येक x के लिए। इस प्रकार , T का जोड़ है।


उपरोक्त परिभाषा से यह तुरंत पता चलता है कि जोड़ बन्द है।[12] विशेष रूप से, स्व-सहायक ऑपरेटर (अर्थ ) बन्द है। ऑपरेटर T संवृत है और सघन रूप से परिभाषितयदि और केवल यदि [nb 4] है:

अनबाउंड संचालक के लिए कुछ प्रसिद्ध गुण संवृत सघन रूप से परिभाषित संचालक के लिए सामान्यीकरण करते हैं। संवृत ऑपरेटर का कर्नेल संवृत है। इसके अतिरिक्त, संवृत सघन रूप से परिभाषित ऑपरेटर का कर्नेल जोड़ की सीमा के ऑर्थोगोनल पूरक के साथ मेल खाता है। वह है,[14]

वॉन न्यूमैन का प्रमेय यह बताता है कि और स्व-सहायक हैं, और वह और दोनों में सीमित व्युत्क्रम हैं।[15] यदि इसमें तुच्छ कर्नेल है, तो T की सघन सीमा है (उपरोक्त पहचान के अनुसार।) इसके अतिरिक्त:

T विशेषण है यदि और केवल यदि कोई ऐसा है कि सभी के लिए में [nb 5] है (यह अनिवार्य रूप से तथाकथित संवृत सीमा प्रमेय का प्रकार है।) विशेष रूप से, T ने यदि और केवल यदि की सीमा संवृत कर दी है संवृत सीमा है.

अनबाउंड स्तिथि के विपरीत, यह आवश्यक नहीं है चूँकि उदाहरण के लिए, यह भी संभव है कि अस्तित्व में न हो। चूँकि, यह स्तिथि है, उदाहरण के लिए, T घिरा है।[16]

एक सघन रूप से परिभाषित, संवृत ऑपरेटर T को सामान्य ऑपरेटर कहा जाता है यदि यह निम्नलिखित समकक्ष नियमो को पूरा करता है:[17]

  • ;
  • T का कार्यक्षेत्र इस कार्यक्षेत्र में प्रत्येक x के लिए और के कार्यक्षेत्र के सामान्य है;
  • स्व-सहायक ऑपरेटर उपस्तिथ हैं कि T के क्षेत्र में प्रत्येक x के लिए और हैं।

प्रत्येक स्व-सहायक ऑपरेटर सामान्य है।

समष्टिांतरण

मान लीजिए कि बनच समष्टिों के बीच ऑपरेटर बनें। फिर समष्टिान्तरण (या दोहरा) का क्या रैखिक ऑपरेटर संतोषजनक है:

सभी के लिए और यहां, हमने संकेतन का उपयोग किया है: [18]

के समष्टिान्तरण के अस्तित्व के लिए आवश्यक और पर्याप्त नियम यह है कि सघन रूप से परिभाषित किया गया है (अनिवार्य रूप से उसी कारण से जो जोड़ों के लिए है, जैसा कि ऊपर चर्चा की गई है।)

किसी भी हिल्बर्ट समष्टि के लिए वहाँ विरोधी रेखीय समरूपता है:

द्वारा दिए गए जहाँ इस समरूपता के माध्यम से, समष्टिान्तरण जोड़ से संबंधित है इस अनुसार:[19]
जहाँ . (परिमित-आयामी स्तिथि के लिए, यह इस तथ्य से मेल खाता है कि आव्यूह का जोड़ इसका संयुग्म समष्टिान्तरण है।) ध्यान दें कि यह समष्टिान्तरण के संदर्भ में जोड़ की परिभाषा देता है।

संवृत रैखिक ऑपरेटर

संवृत रेखीय ऑपरेटर्स बानाच समष्टि पर रेखीय ऑपरेटर्स का वर्ग है। वे बंधे हुए संचालक की तुलना में अधिक सामान्य हैं, और इसलिए आवश्यक रूप से निरंतर कार्य नहीं करते हैं, किन्तु वे अभी भी पर्याप्त गुण स्थिर रखते हैं कि कोई ऐसे संचालक के लिए वर्णक्रम (कार्यात्मक विश्लेषण) और (कुछ मान्यताओं के साथ) कार्यात्मक कैलकुलस को परिभाषित कर सकता है। कई महत्वपूर्ण रैखिक ऑपरेटर जो अनबाउंड होने में विफल रहते हैं, संवृत हो जाते हैं, जैसे व्युत्पन्न और अंतर संचालक का बड़ा वर्ग।

मान लीजिए कि X, Y दो बनच समष्टि हों। एक रेखीय परिवर्तन A : D(A) ⊆ XY {xn} संवृत है यदि प्रत्येक अनुक्रम के लिए x में D(A) किसी अनुक्रम की सीमा AxnyY में X ऐसा है जैसा n → ∞ किसी के पास xD(A) और Ax = y.समान रूप से, A संवृत है यदि इसका फलन ग्राफ़ बनच रिक्त समष्टि के प्रत्यक्ष योग XY में संवृत समुच्चय है .

एक रैखिक ऑपरेटर A दी गई है , आवश्यक नहीं कि संवृत हो, यदि XY इसके ग्राफ को संवृत किया जाए किसी ऑपरेटर का ग्राफ होता है, उस ऑपरेटर A को संवृत ऑफ कहा जाता है , और हम ऐसा कहते हैं कि A संवृत करने योग्य है. A को A द्वारा संवृत करने को निरूपित करें। इससे पता चलता है कि A,A से D(A) तक का प्रतिबंध है।

एक संवृत करने योग्य ऑपरेटर का कोर (या आवश्यक कार्यक्षेत्र) D(A) का एक उपसमुच्चय C है, जैसे कि A को C प्रतिबंध का समापन है .

उदाहरण

व्युत्पन्न ऑपरेटर A = d/dx पर विचार करें जहाँ X = Y = C([a, b]) अंतराल [a, b] पर सभी निरंतर कार्यों का बानाच समष्टि है (गणित) .यदि कोई इसका कार्यक्षेत्र D(A) को C1([a, b]) मानता है , तब A संवृत ऑपरेटर है जो बाध्य नहीं है।[20] दूसरी ओर यदि D(A) = C([a, b]), तब A अब संवृत नहीं होगा, किन्तु यह संवृत होने योग्य C1([a, b]) होगा, संवृत होने पर इसका विस्तार परिभाषित किया जाएगा. .

सममित ऑपरेटर और स्व-सहायक ऑपरेटर

हिल्बर्ट समष्टि पर ऑपरेटर T सममित है यदि और केवल यदि T के कार्यक्षेत्र में प्रत्येक x और y के लिए हमारे पास है . सघन रूप से परिभाषित ऑपरेटर T सममित है यदि और केवल यदि यह अपने निकटवर्ती T∗ से सहमत है जो T के कार्यक्षेत्र तक ही सीमित है, दूसरे शब्दों में जब T T का विस्तार है।[21]

सामान्य रूप पर, यदि T सघन रूप से परिभाषित और सममित है, तो आसन्न T का कार्यक्षेत्र को T के कार्यक्षेत्र के सामान्य होने की आवश्यकता नहीं है। यदि T सममित है और T का कार्यक्षेत्र और एडजॉइंट का कार्यक्षेत्र मेल खाता है, तो हम कहते हैं कि T स्व-सहायक है।[22] ध्यान दें कि, जब T स्वयं-सहायक है, तो सहायक के अस्तित्व का अर्थ है कि T सघन रूप से परिभाषित है और चूँकि T आवश्यक रूप से संवृत है, T संवृत है।

एक सघन रूप से परिभाषित ऑपरेटर T सममित है, यदि उप-समष्टि Γ(T) (पिछले अनुभाग में परिभाषित) J के अंतर्गत इसकी छवि J(Γ(T)) के लिए ऑर्थोगोनल है (जहाँ J(x,y):=(y,-x))।[nb 6]

समान रूप से, ऑपरेटर T स्व-सहायक है यदि यह सघन रूप से परिभाषित, संवृत, सममित है, और चौथी नियम को संतुष्ट करता है: दोनों ऑपरेटर Ti, T + i विशेषण हैं, अर्थात, T के कार्यक्षेत्र को संपूर्ण समष्टि H पर मैप करें। दूसरे शब्दों में: H में प्रत्येक x के लिए T के कार्यक्षेत्र में y और z जैसे कि Tyiy = x और Tz + iz = x. उपस्तिथ हैं:[23]

यदि ऑपरेटर T स्व-सहायक है दो उपसमष्टि Γ(T), J(Γ(T)) ऑर्थोगोनल हैं और उनका योग संपूर्ण समष्टि है।[12]

यह दृष्टिकोण गैर-सघन रूप से परिभाषित संवृत संचालक को कवर नहीं करता है। गैर-घनत्व परिभाषित सममित संचालक को सीधे या ग्राफ़ के माध्यम से परिभाषित किया जा सकता है, किन्तु सहायक संचालक के माध्यम से नहीं।

एक सममित ऑपरेटर का अध्ययन अधिकांशतः इसके केली परिवर्तन के माध्यम से किया जाता है।

सम्मिश्र हिल्बर्ट समष्टि पर ऑपरेटर T सममित है यदि और केवल यदि इसका द्विघात रूप वास्तविक है, अर्थात संख्या T के कार्यक्षेत्र में सभी x के लिए वास्तविक है।[21]

एक सघन रूप से परिभाषित संवृत सममित ऑपरेटर T स्व-सहायक है यदि और केवल यदि Tसममित है।[24] ऐसा हो सकता है कि ऐसा न हो.[25][26]

सघन रूप से परिभाषित संकारक T को धनात्मक कहा जाता है[8] (या गैर-नकारात्मक[27]) यदि इसका द्विघात रूप अऋणात्मक है, अर्थात, T के कार्यक्षेत्र में सभी x के लिए ऐसा ऑपरेटर आवश्यक रूप से सममित है।

प्रत्येक सघन रूप से परिभाषित, संवृत टी के लिए संचालक TT स्व-सहायक है[28] और सकारात्मक[8] है।

स्वयं-संयुक्त ऑपरेटर वर्णक्रमीय प्रमेय स्वयं-संयुक्त ऑपरेटर्स पर प्रयुक्त होता है [29] और इसके अतिरिक्त, सामान्य संचालक के लिए,[30][31] किन्तु सामान्य रूप पर सघन रूप से परिभाषित, संवृत संचालक के लिए नहीं, क्योंकि इस स्तिथि में वर्णक्रम रिक्त हो सकता है।[32][33]

सभी समष्टि परिभाषित सममित ऑपरेटर संवृत है, इसलिए घिरा हुआ है,[6]जो हेलिंगर-टोएप्लिट्ज़ प्रमेय है।[34]

विस्तार-संबंधी

परिभाषा के अनुसार, ऑपरेटर T, ऑपरेटर S का विस्तार है यदि Γ(S) ⊆ Γ(T).[35] समतुल्य प्रत्यक्ष परिभाषा: S के कार्यक्षेत्र में प्रत्येक x के लिए, x, T के Sx = Tx कार्यक्षेत्र से संबंधित है .[5][35]

ध्यान दें कि प्रत्येक ऑपरेटर के लिए सभी समष्टि परिभाषित विस्तार उपस्तिथ है, जो कि विशुद्ध रूप से बीजगणितीय तथ्य है असंतत रेखीय मानचित्र § सामान्य अस्तित्व प्रमेय और पसंद के सिद्धांत पर आधारित है। यदि दिया गया ऑपरेटर अनबाउंड नहीं है तो विस्तार असंतत रैखिक मानचित्र है। इसका बहुत कम उपयोग है क्योंकि यह दिए गए ऑपरेटर के महत्वपूर्ण गुणों को संरक्षित नहीं कर सकता है (नीचे देखें), और सामान्यतः अत्यधिक गैर-अद्वितीय है।

एक ऑपरेटर T को संवृत करने योग्य कहा जाता है यदि यह निम्नलिखित समकक्ष नियमो को पूरा करता है:[6][35][36]

  • T का संवृत विस्तार है;
  • T के ग्राफ का संवृत होना किसी ऑपरेटर का ग्राफ है;
  • T के डोमेन से बिंदुओं के प्रत्येक अनुक्रम (xn) के लिए, जैसे कि xn → 0 और Txny भी यह मानता है कि y = 0 है।

सभी ऑपरेटर संवृत करने योग्य नहीं हैं.[37]

एक संवृत करने योग्य ऑपरेटर T का संवृत विस्तार सबसे कम है इसे T का समापन कहा जाता है। T के ग्राफ़ का समापन , के ग्राफ़ के सामान्य है [6][35] अन्य, गैर-न्यूनतम संवृत विस्तार उपस्तिथ हो सकते हैं।[25][26]

सघन रूप से परिभाषित ऑपरेटर T संवृत हो सकता है यदि और केवल यदि T सघन रूप से परिभाषित है। इस स्तिथि में और [12][38]

यदि S सघन रूप से परिभाषित है और T, S का विस्तार है तो S T का विस्तार है.[39]

प्रत्येक सममित ऑपरेटर संवृत करने योग्य है।[40]

एक सममित ऑपरेटर को अधिकतम सममित कहा जाता है यदि उसके पास स्वयं को छोड़कर कोई सममित विस्तार नहीं है।[21] प्रत्येक स्व-सहायक ऑपरेटर अधिकतम सममित है।[21]विपरीत असत्य है.[41]

एक ऑपरेटर को अनिवार्य रूप से स्व-सहायक कहा जाता है यदि उसका समापन स्व-सहायक है।[40] एक ऑपरेटर अनिवार्य रूप से स्व-सहायक होता है यदि और केवल तभी जब उसके पास और केवल स्व-सहायक विस्तार हो।[24]

एक सममित ऑपरेटर के पास से अधिक स्व-सहायक विस्तार और यहां तक ​​कि उनका सातत्य भी हो सकता है।[26]

एक सघन रूप से परिभाषित, सममित ऑपरेटर T अनिवार्य रूप से स्व-सहायक है यदि और केवल यदि दोनों ऑपरेटर हों Ti, T + i सघन सीमा है।[42]

मान लीजिए T सघन रूप से परिभाषित ऑपरेटर है। संबंध "T, S का विस्तार है" को S ⊂ T (Γ(S) ⊆ Γ(T) के लिए पारंपरिक संक्षिप्त नाम) निम्नलिखित है।[43]

  • यदि T सममित है तो T ⊂ T∗∗ ⊂ T∗।
  • यदि T बंद और सममित है तो T = T∗∗ ⊂ T∗.
  • यदि T स्व-संयुक्त है तो T = T∗∗ = T∗.
  • यदि T अनिवार्य रूप से स्व-संयुक्त है तो T ⊂ T∗∗ = T∗।

स्वयं-सहायक संचालक का महत्व

गणितीय भौतिकी में स्व-सहायक संचालकों का वर्ग विशेष रूप से महत्वपूर्ण है। प्रत्येक स्व-सहायक ऑपरेटर सघन रूप से परिभाषित, संवृत और सममित है। यह वार्तालाप अनबाउंड हुए संचालक के लिए है किन्तु सामान्य रूप पर विफल रहती है। स्व-संयुक्तता इन तीन गुणों की तुलना में अधिक सीमा तक अधिक प्रतिबंधित है। प्रसिद्ध स्वयं-संयुक्त ऑपरेटर वर्णक्रमीय प्रमेय स्वयं-संयुक्त संचालक के लिए प्रयुक्त है। एक-पैरामीटर एकात्मक समूहों पर स्टोन के प्रमेय के साथ संयोजन में यह पता चलता है कि स्व-सहायक ऑपरेटर दृढ़ता से निरंतर एक-पैरामीटर एकात्मक समूहों के असीम रूप से छोटे जनरेटर हैं, स्व-सहायक संचालिका § क्वांटम यांत्रिकी में स्व-सहायक विस्तार देखें। ऐसे एकात्मक समूह मौलिक और क्वांटम यांत्रिकी में समय विकास का वर्णन करने के लिए विशेष रूप से महत्वपूर्ण हैं।

यह भी देखें

टिप्पणियाँ

  1. Suppose fj is a sequence in the domain of T that converges to gX. Since T is uniformly continuous on its domain, Tfj is Cauchy in Y. Thus, ( fj , T fj ) is Cauchy and so converges to some ( f , T f ) since the graph of T is closed. Hence, f  = g, and the domain of T is closed.
  2. Proof: being closed, the everywhere defined is bounded, which implies boundedness of the latter being the closure of T. See also (Pedersen 1989, 2.3.11) for the case of everywhere defined T.
  3. Proof: So if is bounded then its adjoint T is bounded.
  4. Proof: If T is closed densely defined then exists and is densely defined. Thus exists. The graph of T is dense in the graph of hence Conversely, since the existence of implies that that of which in turn implies T is densely defined. Since is closed, T is densely defined and closed.
  5. If is surjective then has bounded inverse, denoted by The estimate then follows since
    Conversely, suppose the estimate holds. Since has closed range, it is the case that Since is dense, it suffices to show that has closed range. If is convergent then is convergent by the estimate since
    Say, Since is self-adjoint; thus, closed, (von Neumann's theorem), QED
  6. Follows from (Pedersen 1989, 5.1.5) and the definition via adjoint operators.


संदर्भ

उद्धरण

  1. Reed & Simon 1980, Notes to Chapter VIII, page 305
  2. von Neumann 1930, pp. 49–131
  3. Stone 1932
  4. von Neumann 1932, pp. 294–310
  5. 5.0 5.1 5.2 Pedersen 1989, 5.1.1
  6. 6.0 6.1 6.2 6.3 6.4 Pedersen 1989, 5.1.4
  7. Berezansky, Sheftel & Us 1996, page 5
  8. 8.0 8.1 8.2 8.3 Pedersen 1989, 5.1.12
  9. Berezansky, Sheftel & Us 1996, Example 3.2 on page 16
  10. Reed & Simon 1980, page 252
  11. Berezansky, Sheftel & Us 1996, Example 3.1 on page 15
  12. 12.0 12.1 12.2 12.3 12.4 Pedersen 1989, 5.1.5
  13. Berezansky, Sheftel & Us 1996, page 12
  14. Brezis 1983, p. 28
  15. Yoshida 1980, p. 200
  16. Yoshida 1980, p. 195.
  17. Pedersen 1989, 5.1.11
  18. Yoshida 1980, p. 193
  19. Yoshida 1980, p. 196
  20. Kreyszig 1978, p. 294
  21. 21.0 21.1 21.2 21.3 Pedersen 1989, 5.1.3
  22. Kato 1995, 5.3.3
  23. Pedersen 1989, 5.2.5
  24. 24.0 24.1 Reed & Simon 1980, page 256
  25. 25.0 25.1 Pedersen 1989, 5.1.16
  26. 26.0 26.1 26.2 Reed & Simon 1980, Example on pages 257-259
  27. Berezansky, Sheftel & Us 1996, page 25
  28. Pedersen 1989, 5.1.9
  29. Pedersen 1989, 5.3.8
  30. Berezansky, Sheftel & Us 1996, page 89
  31. Pedersen 1989, 5.3.19
  32. Reed & Simon 1980, Example 5 on page 254
  33. Pedersen 1989, 5.2.12
  34. Reed & Simon 1980, page 84
  35. 35.0 35.1 35.2 35.3 Reed & Simon 1980, page 250
  36. Berezansky, Sheftel & Us 1996, pages 6,7
  37. Berezansky, Sheftel & Us 1996, page 7
  38. Reed & Simon 1980, page 253
  39. Pedersen 1989, 5.1.2
  40. 40.0 40.1 Pedersen 1989, 5.1.6
  41. Pedersen 1989, 5.2.6
  42. Reed & Simon 1980, page 257
  43. Reed & Simon 1980, pages 255, 256


ग्रन्थसूची

  • Berezansky, Y.M.; Sheftel, Z.G.; Us, G.F. (1996), Functional analysis, vol. II, Birkhäuser (see Chapter 12 "General theory of unbounded operators in Hilbert spaces").
  • Brezis, Haïm (1983), Analyse fonctionnelle — Théorie et applications (in français), Paris: Mason
  • "Unbounded operator", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Hall, B.C. (2013), "Chapter 9. Unbounded Self-adjoint Operators", Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
  • Kato, Tosio (1995), "Chapter 5. Operators in Hilbert Space", Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, ISBN 3-540-58661-X
  • Kreyszig, Erwin (1978). Introductory Functional Analysis With Applications. USA: John Wiley & Sons. Inc. ISBN 0-471-50731-8.
  • Pedersen, Gert K. (1989), Analysis now, Springer (see Chapter 5 "Unbounded operators").
  • Reed, Michael; Simon, Barry (1980), Methods of Modern Mathematical Physics, vol. 1: Functional Analysis (revised and enlarged ed.), Academic Press (see Chapter 8 "Unbounded operators").
  • Stone, Marshall Harvey (1932). Linear Transformations in Hilbert Space and Their Applications to Analysis. Reprint of the 1932 Ed. American Mathematical Society. ISBN 978-0-8218-7452-3.
  • Teschl, Gerald (2009). Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators. Providence: American Mathematical Society. ISBN 978-0-8218-4660-5.
  • von Neumann, J. (1930), "Allgemeine Eigenwerttheorie Hermitescher Functionaloperatoren (General Eigenvalue Theory of Hermitian Functional Operators)", Mathematische Annalen, 102 (1), doi:10.1007/BF01782338, S2CID 121249803
  • von Neumann, J. (1932), "Über Adjungierte Funktionaloperatore (On Adjoint Functional Operators)", Annals of Mathematics, Second Series, 33 (2), doi:10.2307/1968331, JSTOR 1968331
  • Yoshida, Kôsaku (1980), Functional Analysis (sixth ed.), Springer

This article incorporates material from Closed operator on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.