अनबाउंड ऑपरेटर: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Linear operator defined on a dense linear subspace}} गणित में, विशेष रूप से कार्यात्मक विश्...")
 
No edit summary
Line 218: Line 218:
{{refend}}
{{refend}}
{{PlanetMath attribution|id=4526|title=Closed operator}}
{{PlanetMath attribution|id=4526|title=Closed operator}}
{{Spectral theory}}
{{Hilbert space}}
{{Functional analysis}}
{{Boundedness and bornology}}


{{DEFAULTSORT:Unbounded Operator}}[[Category: रैखिक संचालक]] [[Category: संचालिका सिद्धांत]]  
{{DEFAULTSORT:Unbounded Operator}}[[Category: रैखिक संचालक]] [[Category: संचालिका सिद्धांत]]  

Revision as of 11:42, 30 November 2023

गणित में, विशेष रूप से कार्यात्मक विश्लेषण और ऑपरेटर सिद्धांत में, अनपरिबद्ध संचालिका की धारणा विभेदक ऑपरेटरों, क्वांटम यांत्रिकी में अनबाउंड वेधशालाओं और अन्य मामलों से निपटने के लिए एक अमूर्त रूपरेखा प्रदान करती है।

चूंकि अनबाउंड ऑपरेटर शब्द भ्रामक हो सकता है

  • अनबाउंड को कभी-कभी यह समझा जाना चाहिए कि आवश्यक रूप से बाउंड नहीं है;
  • ऑपरेटर को रैखिक ऑपरेटर के रूप में समझा जाना चाहिए (जैसा कि बाउंडेड ऑपरेटर के मामले में होता है);
  • ऑपरेटर का डोमेन एक रैखिक उप-स्थान है, जरूरी नहीं कि संपूर्ण स्थान;
  • यह रैखिक उपस्थान आवश्यक रूप से बंद सेट नहीं है; अक्सर (लेकिन हमेशा नहीं) इसे सघन (टोपोलॉजी) माना जाता है;
  • एक बाउंडेड ऑपरेटर के विशेष मामले में, फिर भी, डोमेन को आमतौर पर संपूर्ण स्थान माना जाता है।

बाउंडेड ऑपरेटरों के विपरीत, किसी दिए गए स्थान पर अनबाउंड ऑपरेटर किसी फ़ील्ड पर बीजगणित नहीं बनाते हैं, न ही एक रैखिक स्थान बनाते हैं, क्योंकि प्रत्येक को अपने स्वयं के डोमेन पर परिभाषित किया जाता है।

ऑपरेटर शब्द का अर्थ अक्सर बाउंडेड लीनियर ऑपरेटर होता है, लेकिन इस लेख के संदर्भ में इसका मतलब ऊपर दिए गए आरक्षणों के साथ, अनबाउंड ऑपरेटर है। दिया गया स्थान हिल्बर्ट स्थान माना जाता है।[clarification needed] बनच स्थान और अधिक सामान्य टोपोलॉजिकल वेक्टर स्पेस के लिए कुछ सामान्यीकरण संभव हैं।

संक्षिप्त इतिहास

हिल्बर्ट स्पेस#क्वांटम यांत्रिकी के लिए एक कठोर गणितीय ढांचा विकसित करने के हिस्से के रूप में अनबाउंड ऑपरेटरों का सिद्धांत 1920 के दशक के अंत और 1930 के दशक की शुरुआत में विकसित हुआ।[1] सिद्धांत का विकास जॉन वॉन न्यूमैन के कारण हुआ है[2] और मार्शल स्टोन.[3] वॉन न्यूमैन ने 1932 में अनबाउंड ऑपरेटरों का विश्लेषण करने के लिए एक फ़ंक्शन के ग्राफ़ का उपयोग शुरू किया।[4]


परिभाषाएँ और बुनियादी गुण

होने देना X, Y बनच स्थान बनें। एक अनबाउंड ऑपरेटर (या बस ऑपरेटर) T : D(T) → Y एक रेखीय मानचित्र है T एक रैखिक उपस्थान से D(T) ⊆ X—का डोमेन T—अंतरिक्ष तक Y.[5] सामान्य परिपाटी के विपरीत, T को संपूर्ण स्थान पर परिभाषित नहीं किया जा सकता है X.

एक ऑपरेटर T को बंद ऑपरेटर कहा जाता है यदि इसका फ़ंक्शन ग्राफ़ है Γ(T) एक बंद सेट है.[6] (यहाँ, ग्राफ Γ(T) मॉड्यूल के प्रत्यक्ष योग#हिल्बर्ट रिक्त स्थान के प्रत्यक्ष योग का एक रैखिक उपस्थान है XY, सभी जोड़ियों के समुच्चय के रूप में परिभाषित (x, Tx), कहाँ x के डोमेन पर चलता है T .) स्पष्ट रूप से, इसका अर्थ यह है कि प्रत्येक अनुक्रम के लिए {{math|{xn} }के डोमेन से अंक की } T ऐसा है कि xnx और Txny, यह उसे धारण करता है x के डोमेन के अंतर्गत आता है T और Tx = y.[6]क्लोजनेस को ग्राफ मानदंड के संदर्भ में भी तैयार किया जा सकता है: एक ऑपरेटर T बंद है यदि और केवल यदि इसका डोमेन D(T) मानक के संबंध में एक पूर्ण स्थान है:[7]

एक ऑपरेटर T को सघन रूप से परिभाषित ऑपरेटर कहा जाता है यदि इसका डोमेन सघन रूप से सेट है X.[5]इसमें संपूर्ण स्थान पर परिभाषित ऑपरेटर भी शामिल हैं X, चूंकि संपूर्ण अंतरिक्ष अपने आप में सघन है। डोमेन की सघनता सहायक के अस्तित्व के लिए आवश्यक और पर्याप्त है (यदि X और Y हिल्बर्ट रिक्त स्थान हैं) और स्थानान्तरण; नीचे अनुभाग देखें.

अगर T : XY अपने डोमेन पर बंद, सघन रूप से परिभाषित और निरंतर ऑपरेटर है, तो इसका डोमेन सभी है X.[nb 1] सघन रूप से परिभाषित ऑपरेटर T हिल्बर्ट स्थान पर H को नीचे से घिरा हुआ कहा जाता है यदि T + a किसी वास्तविक संख्या के लिए एक धनात्मक संकारक है a. वह है, Tx|x⟩ ≥ −a ||x||2 सभी के लिए x के क्षेत्र में T (या वैकल्पिक रूप से Tx|x⟩ ≥ a ||x||2 तब से a मनमाना है)।[8]अगर दोनों T और T फिर नीचे से बंधे हैं T घिरा है।[8]


उदाहरण

होने देना C([0, 1]) इकाई अंतराल पर निरंतर कार्यों के स्थान को निरूपित करें, और दें C1([0, 1]) लगातार भिन्न-भिन्न कार्यों के स्थान को निरूपित करें। हम सुसज्जित करते हैं सर्वोच्च मानदंड के साथ, , इसे एक बानाच स्थान बना रहा है। शास्त्रीय विभेदीकरण ऑपरेटर को परिभाषित करें d/dx : C1([0, 1]) → C([0, 1]) सामान्य सूत्र द्वारा:

प्रत्येक अवकलनीय फलन सतत है, इसलिए C1([0, 1]) ⊆ C([0, 1]). हम इसका दावा करते हैं d/dx : C([0, 1]) → C([0, 1]) डोमेन के साथ एक अच्छी तरह से परिभाषित अनबाउंड ऑपरेटर है C1([0, 1]). इसके लिए हमें वो दिखाना होगा रैखिक है और फिर, उदाहरण के लिए, कुछ प्रदर्शित करें ऐसा है कि और .

यह एक रैखिक संयोजन के बाद से एक रैखिक संचालिका है a f  + bg दो निरंतर भिन्न कार्यों का f , g भी लगातार भिन्न है, और

ऑपरेटर बाध्य नहीं है. उदाहरण के लिए,

संतुष्ट

लेकिन

जैसा .

ऑपरेटर सघन रूप से परिभाषित और बंद है।

उसी ऑपरेटर को ऑपरेटर माना जा सकता है ZZ बनच स्थान के कई विकल्पों के लिए Z और उनमें से किसी के बीच सीमित न रहें। साथ ही, इसे एक ऑपरेटर के रूप में भी बाध्य किया जा सकता है XY बानाच स्थानों के अन्य जोड़े के लिए X, Y, और ऑपरेटर के रूप में भी ZZ कुछ टोपोलॉजिकल वेक्टर स्पेस के लिए Z.[clarification needed] उदाहरण के तौर पर चलो IR एक खुला अंतराल बनें और विचार करें

कहाँ:


संयुक्त

एक अनबाउंड ऑपरेटर के एडजॉइंट को दो समान तरीकों से परिभाषित किया जा सकता है। होने देना हिल्बर्ट स्थानों के बीच एक असीमित ऑपरेटर बनें।

सबसे पहले, इसे एक तरह से परिभाषित किया जा सकता है जैसे कोई एक बंधे हुए ऑपरेटर के जोड़ को कैसे परिभाषित करता है। अर्थात्, जोड़ का T को संपत्ति वाले एक ऑपरेटर के रूप में परिभाषित किया गया है:

ज्यादा ठीक, निम्नलिखित प्रकार से परिभाषित किया गया है। अगर इस प्रकार कि के क्षेत्र पर एक सतत रैखिक कार्यात्मक है T, तब का एक तत्व घोषित किया गया है और हैन-बानाच प्रमेय के माध्यम से पूरे अंतरिक्ष में रैखिक कार्यात्मकता का विस्तार करने के बाद, कुछ खोजना संभव है में ऐसा है कि
चूँकि रिज़्ज़ प्रतिनिधित्व प्रमेय हिल्बर्ट स्थान के निरंतर दोहरेपन की अनुमति देता है आंतरिक उत्पाद द्वारा दिए गए रैखिक कार्यात्मकताओं के सेट से पहचाना जाना। यह वेक्टर द्वारा विशिष्ट रूप से निर्धारित किया जाता है यदि और केवल यदि रैखिक कार्यात्मक सघन रूप से परिभाषित है; या समकक्ष, यदि T सघन रूप से परिभाषित है। अंत में, दे रहा हूँ का निर्माण पूरा करता है जो आवश्यक रूप से एक रेखीय मानचित्र है। जोड़ अस्तित्व में है यदि और केवल यदि T सघन रूप से परिभाषित है।

परिभाषा के अनुसार, का डोमेन तत्वों से मिलकर बनता है में ऐसा है कि के क्षेत्र में निरंतर है T. नतीजतन, का डोमेन कुछ भी हो सकता है; यह तुच्छ हो सकता है (अर्थात इसमें केवल शून्य होता है)।[9] ऐसा हो सकता है कि का डोमेन एक बंद हाइपरप्लेन है और डोमेन पर हर जगह गायब हो जाता है।[10][11] इस प्रकार, की सीमा इसके डोमेन की सीमा का तात्पर्य नहीं है T. दूसरी ओर, यदि तब संपूर्ण स्थान पर परिभाषित किया गया है T अपने डोमेन पर घिरा हुआ है और इसलिए इसे संपूर्ण स्थान पर एक बंधे हुए ऑपरेटर तक निरंतरता द्वारा बढ़ाया जा सकता है।[nb 2] यदि का डोमेन घना है, तो उसका जोड़ है [12]एक बंद सघन रूप से परिभाषित ऑपरेटर T यदि और केवल यदि परिबद्ध है घिरा है।[nb 3] योजक की अन्य समकक्ष परिभाषा एक सामान्य तथ्य पर ध्यान देकर प्राप्त की जा सकती है। एक रैखिक ऑपरेटर को परिभाषित करें निम्नलिखित नुसार:[12]

तब से एक सममितीय अनुमान है, यह एकात्मक है। इस तरह: कुछ ऑपरेटर का ग्राफ़ है अगर और केवल अगर T सघन रूप से परिभाषित है।[13] एक साधारण गणना से पता चलता है कि यह कुछ है संतुष्ट करता है:
हरएक के लिए x के क्षेत्र में T. इस प्रकार का जोड़ है T.

उपरोक्त परिभाषा से यह तुरंत पता चलता है कि जोड़ बन्द है।[12]विशेष रूप से, एक स्व-सहायक ऑपरेटर (अर्थ ) बन्द है। एक ऑपरेटर T बंद है और सघन रूप से परिभाषित है यदि और केवल यदि [nb 4] बाउंडेड ऑपरेटरों के लिए कुछ प्रसिद्ध गुण बंद सघन रूप से परिभाषित ऑपरेटरों के लिए सामान्यीकरण करते हैं। एक बंद ऑपरेटर का कर्नेल बंद है। इसके अलावा, एक बंद सघन रूप से परिभाषित ऑपरेटर का कर्नेल जोड़ की सीमा के ऑर्थोगोनल पूरक के साथ मेल खाता है। वह है,[14]

वॉन न्यूमैन का प्रमेय यह बताता है और स्व-सहायक हैं, और वह और दोनों में सीमित व्युत्क्रम हैं।[15] अगर इसमें तुच्छ कर्नेल है, T की सघन सीमा है (उपरोक्त पहचान के अनुसार।) इसके अलावा:

T विशेषण है यदि और केवल यदि कोई है ऐसा है कि सभी के लिए में [nb 5] (यह अनिवार्य रूप से तथाकथित बंद सीमा प्रमेय का एक प्रकार है।) विशेष रूप से, T ने यदि और केवल यदि की सीमा बंद कर दी है बंद सीमा है.

परिबद्ध मामले के विपरीत, यह आवश्यक नहीं है चूँकि, उदाहरण के लिए, यह भी संभव है मौजूद नहीं होना।[citation needed] हालाँकि, यह मामला है, उदाहरण के लिए, T घिरा है।[16] एक सघन रूप से परिभाषित, बंद ऑपरेटर T को सामान्य ऑपरेटर कहा जाता है यदि यह निम्नलिखित समकक्ष शर्तों को पूरा करता है:[17]

  • ;
  • का डोमेन T के डोमेन के बराबर है और हरएक के लिए x इस डोमेन में;
  • स्व-सहायक ऑपरेटर मौजूद हैं ऐसा है कि और हरएक के लिए x के क्षेत्र में T.

प्रत्येक स्व-सहायक संचालिका सामान्य है।

स्थानांतरण

होने देना बनच स्थानों के बीच एक ऑपरेटर बनें। फिर स्थानान्तरण (या दोहरा) का क्या रैखिक संचालिका संतोषजनक है:

सभी के लिए और यहां, हमने संकेतन का उपयोग किया है: [18] के स्थानान्तरण के लिए आवश्यक एवं पर्याप्त शर्त अस्तित्व में रहना ही वह है सघन रूप से परिभाषित किया गया है (अनिवार्य रूप से उसी कारण से जो जोड़ों के लिए है, जैसा कि ऊपर चर्चा की गई है।)

किसी भी हिल्बर्ट स्थान के लिए वहाँ विरोधी रेखीय समरूपता है:

द्वारा दिए गए कहाँ इस समरूपता के माध्यम से, स्थानान्तरण जोड़ से संबंधित है इस अनुसार:[19]
कहाँ . (परिमित-आयामी मामले के लिए, यह इस तथ्य से मेल खाता है कि मैट्रिक्स का जोड़ इसका संयुग्म स्थानान्तरण है।) ध्यान दें कि यह स्थानान्तरण के संदर्भ में जोड़ की परिभाषा देता है।

बंद रैखिक ऑपरेटर

क्लोज्ड लीनियर ऑपरेटर्स बानाच स्पेस पर लीनियर ऑपरेटर्स का एक वर्ग है। वे बंधे हुए ऑपरेटरों की तुलना में अधिक सामान्य हैं, और इसलिए आवश्यक रूप से निरंतर कार्य नहीं करते हैं, लेकिन वे अभी भी पर्याप्त गुण बरकरार रखते हैं कि कोई ऐसे ऑपरेटरों के लिए स्पेक्ट्रम (कार्यात्मक विश्लेषण) और (कुछ मान्यताओं के साथ) कार्यात्मक कैलकुलस को परिभाषित कर सकता है। कई महत्वपूर्ण रैखिक ऑपरेटर जो परिबद्ध होने में विफल रहते हैं, बंद हो जाते हैं, जैसे व्युत्पन्न और अंतर ऑपरेटरों का एक बड़ा वर्ग।

होने देना X, Y दो बनच स्थान हों। एक रेखीय परिवर्तन A : D(A) ⊆ XY यदि प्रत्येक अनुक्रम के लिए बंद है {xn} में D(A) किसी अनुक्रम की सीमा x में X ऐसा है कि AxnyY जैसा n → ∞ किसी के पास xD(A) और Ax = y. समान रूप से, A बंद है यदि इसका फ़ंक्शन ग्राफ़ बनच रिक्त स्थान के प्रत्यक्ष योग में बंद सेट है XY.

एक रैखिक संचालिका दी गई है A, जरूरी नहीं कि बंद हो, अगर इसके ग्राफ को बंद किया जाए XY किसी ऑपरेटर का ग्राफ होता है, उस ऑपरेटर को क्लोजर ऑफ कहा जाता है A, और हम ऐसा कहते हैं A बंद करने योग्य है. के समापन को निरूपित करें A द्वारा A. यह इस प्रकार है कि A का कार्य (गणित) है A को D(A).

एक बंद करने योग्य ऑपरेटर का कोर (या आवश्यक डोमेन) एक उपसमुच्चय है C का D(A) जैसे कि प्रतिबंध का समापन A को C है A.

उदाहरण

व्युत्पन्न ऑपरेटर पर विचार करें A = d/dx कहाँ X = Y = C([a, b]) एक अंतराल पर सभी निरंतर कार्यों का बानाच स्थान है (गणित) [a, b]. यदि कोई इसका डोमेन ले लेता है D(A) होना C1([a, b]), तब A एक बंद ऑपरेटर है जो बाध्य नहीं है।[20] दूसरी ओर यदि D(A) = C([a, b]), तब A अब बंद नहीं होगा, लेकिन यह बंद होने योग्य होगा, बंद होने पर इसका विस्तार परिभाषित किया जाएगा C1([a, b]).

सममित ऑपरेटर और स्व-सहायक ऑपरेटर

हिल्बर्ट स्पेस पर एक ऑपरेटर टी सममित है यदि और केवल यदि के डोमेन में प्रत्येक x और y के लिए T हमारे पास है . सघन रूप से परिभाषित ऑपरेटर T सममित है यदि और केवल यदि यह अपने संलग्न टी से सहमत हैT के डोमेन तक ही सीमित है, दूसरे शब्दों में जब T का विस्तार है T.[21] सामान्य तौर पर, यदि T सघन रूप से परिभाषित और सममित है, तो आसन्न T का डोमेन को T के डोमेन के बराबर होने की आवश्यकता नहीं है। यदि T सममित है और T का डोमेन और एडजॉइंट का डोमेन मेल खाता है, तो हम कहते हैं कि T स्व-सहायक है।[22] ध्यान दें कि, जब T स्वयं-सहायक है, तो सहायक के अस्तित्व का अर्थ है कि T सघन रूप से परिभाषित है और चूँकि T आवश्यक रूप से बंद है, T बंद है।

एक सघन रूप से परिभाषित ऑपरेटर टी सममित है, यदि उप-स्थान Γ(T) (पिछले अनुभाग में परिभाषित) इसकी छवि के लिए ऑर्थोगोनल है J(Γ(T)) J के अंतर्गत (जहाँ J(x,y):=(y,-x))।[nb 6] समान रूप से, एक ऑपरेटर टी स्व-सहायक है यदि यह सघन रूप से परिभाषित, बंद, सममित है, और चौथी शर्त को संतुष्ट करता है: दोनों ऑपरेटर Ti, T + i विशेषण हैं, अर्थात, T के डोमेन को संपूर्ण स्थान H पर मैप करें। दूसरे शब्दों में: H में प्रत्येक x के लिए T के डोमेन में y और z मौजूद हैं जैसे कि Tyiy = x और Tz + iz = x.[23] यदि दो उपस्थान हों तो एक संचालिका T स्व-सहायक है Γ(T), J(Γ(T)) ऑर्थोगोनल हैं और उनका योग संपूर्ण स्थान है [12]

यह दृष्टिकोण गैर-सघन रूप से परिभाषित बंद ऑपरेटरों को कवर नहीं करता है। गैर-घनत्व परिभाषित सममित ऑपरेटरों को सीधे या ग्राफ़ के माध्यम से परिभाषित किया जा सकता है, लेकिन सहायक ऑपरेटरों के माध्यम से नहीं।

एक सममित ऑपरेटर का अध्ययन अक्सर इसके केली परिवर्तन के माध्यम से किया जाता है।

जटिल हिल्बर्ट स्थान पर एक ऑपरेटर टी सममित है यदि और केवल यदि इसका द्विघात रूप वास्तविक है, अर्थात संख्या T के डोमेन में सभी x के लिए वास्तविक है।[21]

एक सघन रूप से परिभाषित बंद सममित ऑपरेटर टी स्व-सहायक है यदि और केवल यदि टीसममित है।[24] ऐसा हो सकता है कि ऐसा न हो.[25][26] सघन रूप से परिभाषित संकारक T को धनात्मक कहा जाता है[8] (या गैर-नकारात्मक[27]) यदि इसका द्विघात रूप अऋणात्मक है, अर्थात, T के डोमेन में सभी x के लिए। ऐसा ऑपरेटर आवश्यक रूप से सममित है।

संचालक टीT स्व-सहायक है[28] और सकारात्मक[8]प्रत्येक सघन रूप से परिभाषित, बंद टी के लिए।

सेल्फ-एडजॉइंट ऑपरेटर#स्पेक्ट्रल प्रमेय सेल्फ-एडजॉइंट ऑपरेटर्स पर लागू होता है [29] और इसके अलावा, सामान्य ऑपरेटरों के लिए,[30][31] लेकिन सामान्य तौर पर सघन रूप से परिभाषित, बंद ऑपरेटरों के लिए नहीं, क्योंकि इस मामले में स्पेक्ट्रम खाली हो सकता है।[32][33] हर जगह परिभाषित एक सममित ऑपरेटर बंद है, इसलिए घिरा हुआ है,[6]जो हेलिंगर-टोएप्लिट्ज़ प्रमेय है।[34]


विस्तार-संबंधी

परिभाषा के अनुसार, एक ऑपरेटर T, एक ऑपरेटर S का विस्तार है यदि Γ(S) ⊆ Γ(T).[35] एक समतुल्य प्रत्यक्ष परिभाषा: S के डोमेन में प्रत्येक x के लिए, x, T के डोमेन से संबंधित है Sx = Tx.[5][35]

ध्यान दें कि प्रत्येक ऑपरेटर के लिए हर जगह परिभाषित एक्सटेंशन मौजूद है, जो कि एक विशुद्ध रूप से बीजगणितीय तथ्य है Discontinuous linear map § General existence theorem और पसंद के सिद्धांत पर आधारित है। यदि दिया गया ऑपरेटर परिबद्ध नहीं है तो विस्तार एक असंतत रैखिक मानचित्र है। इसका बहुत कम उपयोग है क्योंकि यह दिए गए ऑपरेटर के महत्वपूर्ण गुणों को संरक्षित नहीं कर सकता है (नीचे देखें), और आमतौर पर अत्यधिक गैर-अद्वितीय है।

एक ऑपरेटर टी को बंद करने योग्य कहा जाता है यदि यह निम्नलिखित समकक्ष शर्तों को पूरा करता है:[6][35][36]

  • टी का एक बंद विस्तार है;
  • टी के ग्राफ का बंद होना किसी ऑपरेटर का ग्राफ है;
  • प्रत्येक अनुक्रम के लिए (xn) T के डोमेन से बिंदु इस प्रकार हैं कि xn→ 0 और Tx भीn→ यह इसे धारण करता है y = 0.

सभी ऑपरेटर बंद करने योग्य नहीं हैं.[37] एक बंद करने योग्य ऑपरेटर T का बंद एक्सटेंशन सबसे कम है इसे T का समापन कहा जाता है। T के ग्राफ़ का समापन, के ग्राफ़ के बराबर है [6][35]अन्य, गैर-न्यूनतम बंद एक्सटेंशन मौजूद हो सकते हैं।[25][26]

सघन रूप से परिभाषित ऑपरेटर T बंद हो सकता है यदि और केवल यदि T सघन रूप से परिभाषित है। इस मामले में और [12][38] यदि S सघन रूप से परिभाषित है और T, S का विस्तार है तो S T का विस्तार है.[39] प्रत्येक सममित ऑपरेटर बंद करने योग्य है।[40] एक सममित ऑपरेटर को अधिकतम सममित कहा जाता है यदि उसके पास स्वयं को छोड़कर कोई सममित विस्तार नहीं है।[21]प्रत्येक स्व-सहायक ऑपरेटर अधिकतम सममित है।[21]उलटा गलत है.[41] एक ऑपरेटर को अनिवार्य रूप से स्व-सहायक कहा जाता है यदि उसका समापन स्व-सहायक है।[40]एक ऑपरेटर अनिवार्य रूप से स्व-सहायक होता है यदि और केवल तभी जब उसके पास एक और केवल एक स्व-सहायक एक्सटेंशन हो।[24]

एक सममित ऑपरेटर के पास एक से अधिक स्व-सहायक विस्तार और यहां तक ​​कि उनका एक सातत्य भी हो सकता है।[26]

एक सघन रूप से परिभाषित, सममित ऑपरेटर टी अनिवार्य रूप से स्व-सहायक है यदि और केवल यदि दोनों ऑपरेटर हों Ti, T + i सघन सीमा है।[42] मान लीजिए T एक सघन रूप से परिभाषित संचालिका है। संबंध को दर्शाते हुए T, S द्वारा S ⊂ T का विस्तार है (Γ(S) ⊆ Γ(T) के लिए एक पारंपरिक संक्षिप्त नाम) निम्नलिखित है।[43]

  • यदि T सममित है तो T ⊂ T∗∗ ⊂ टी.
  • यदि T बंद और सममित है तो T = T∗∗ ⊂ टी.
  • यदि T स्व-संयुक्त है तो T = T∗∗ = टी.
  • यदि T मूलतः स्व-संयुक्त है तो T ⊂ T∗∗ = टी.

स्वयं-सहायक ऑपरेटरों का महत्व

गणितीय भौतिकी में स्व-सहायक संचालकों का वर्ग विशेष रूप से महत्वपूर्ण है। प्रत्येक स्व-सहायक ऑपरेटर सघन रूप से परिभाषित, बंद और सममित है। यह बातचीत बंधे हुए ऑपरेटरों के लिए है लेकिन सामान्य तौर पर विफल रहती है। स्व-संयुक्तता इन तीन गुणों की तुलना में काफी हद तक अधिक प्रतिबंधित है। प्रसिद्ध सेल्फ-एडजॉइंट ऑपरेटर#स्पेक्ट्रल प्रमेय सेल्फ-एडजॉइंट ऑपरेटरों के लिए लागू है। एक-पैरामीटर एकात्मक समूहों पर स्टोन के प्रमेय के साथ संयोजन में यह पता चलता है कि स्व-सहायक ऑपरेटर दृढ़ता से निरंतर एक-पैरामीटर एकात्मक समूहों के असीम रूप से छोटे जनरेटर हैं, देखें Self-adjoint operator § Self-adjoint extensions in quantum mechanics. ऐसे एकात्मक समूह शास्त्रीय और क्वांटम यांत्रिकी में समय विकास का वर्णन करने के लिए विशेष रूप से महत्वपूर्ण हैं।

यह भी देखें

टिप्पणियाँ

  1. Suppose fj is a sequence in the domain of T that converges to gX. Since T is uniformly continuous on its domain, Tfj is Cauchy in Y. Thus, ( fj , T fj ) is Cauchy and so converges to some ( f , T f ) since the graph of T is closed. Hence, f  = g, and the domain of T is closed.
  2. Proof: being closed, the everywhere defined is bounded, which implies boundedness of the latter being the closure of T. See also (Pedersen 1989, 2.3.11) for the case of everywhere defined T.
  3. Proof: So if is bounded then its adjoint T is bounded.
  4. Proof: If T is closed densely defined then exists and is densely defined. Thus exists. The graph of T is dense in the graph of hence Conversely, since the existence of implies that that of which in turn implies T is densely defined. Since is closed, T is densely defined and closed.
  5. If is surjective then has bounded inverse, denoted by The estimate then follows since
    Conversely, suppose the estimate holds. Since has closed range, it is the case that Since is dense, it suffices to show that has closed range. If is convergent then is convergent by the estimate since
    Say, Since is self-adjoint; thus, closed, (von Neumann's theorem), QED
  6. Follows from (Pedersen 1989, 5.1.5) and the definition via adjoint operators.


संदर्भ

उद्धरण

  1. Reed & Simon 1980, Notes to Chapter VIII, page 305
  2. von Neumann 1930, pp. 49–131
  3. Stone 1932
  4. von Neumann 1932, pp. 294–310
  5. 5.0 5.1 5.2 Pedersen 1989, 5.1.1
  6. 6.0 6.1 6.2 6.3 6.4 Pedersen 1989, 5.1.4
  7. Berezansky, Sheftel & Us 1996, page 5
  8. 8.0 8.1 8.2 8.3 Pedersen 1989, 5.1.12
  9. Berezansky, Sheftel & Us 1996, Example 3.2 on page 16
  10. Reed & Simon 1980, page 252
  11. Berezansky, Sheftel & Us 1996, Example 3.1 on page 15
  12. 12.0 12.1 12.2 12.3 12.4 Pedersen 1989, 5.1.5
  13. Berezansky, Sheftel & Us 1996, page 12
  14. Brezis 1983, p. 28
  15. Yoshida 1980, p. 200
  16. Yoshida 1980, p. 195.
  17. Pedersen 1989, 5.1.11
  18. Yoshida 1980, p. 193
  19. Yoshida 1980, p. 196
  20. Kreyszig 1978, p. 294
  21. 21.0 21.1 21.2 21.3 Pedersen 1989, 5.1.3
  22. Kato 1995, 5.3.3
  23. Pedersen 1989, 5.2.5
  24. 24.0 24.1 Reed & Simon 1980, page 256
  25. 25.0 25.1 Pedersen 1989, 5.1.16
  26. 26.0 26.1 26.2 Reed & Simon 1980, Example on pages 257-259
  27. Berezansky, Sheftel & Us 1996, page 25
  28. Pedersen 1989, 5.1.9
  29. Pedersen 1989, 5.3.8
  30. Berezansky, Sheftel & Us 1996, page 89
  31. Pedersen 1989, 5.3.19
  32. Reed & Simon 1980, Example 5 on page 254
  33. Pedersen 1989, 5.2.12
  34. Reed & Simon 1980, page 84
  35. 35.0 35.1 35.2 35.3 Reed & Simon 1980, page 250
  36. Berezansky, Sheftel & Us 1996, pages 6,7
  37. Berezansky, Sheftel & Us 1996, page 7
  38. Reed & Simon 1980, page 253
  39. Pedersen 1989, 5.1.2
  40. 40.0 40.1 Pedersen 1989, 5.1.6
  41. Pedersen 1989, 5.2.6
  42. Reed & Simon 1980, page 257
  43. Reed & Simon 1980, pages 255, 256


ग्रन्थसूची

  • Berezansky, Y.M.; Sheftel, Z.G.; Us, G.F. (1996), Functional analysis, vol. II, Birkhäuser (see Chapter 12 "General theory of unbounded operators in Hilbert spaces").
  • Brezis, Haïm (1983), Analyse fonctionnelle — Théorie et applications (in français), Paris: Mason
  • "Unbounded operator", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Hall, B.C. (2013), "Chapter 9. Unbounded Self-adjoint Operators", Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
  • Kato, Tosio (1995), "Chapter 5. Operators in Hilbert Space", Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, ISBN 3-540-58661-X
  • Kreyszig, Erwin (1978). Introductory Functional Analysis With Applications. USA: John Wiley & Sons. Inc. ISBN 0-471-50731-8.
  • Pedersen, Gert K. (1989), Analysis now, Springer (see Chapter 5 "Unbounded operators").
  • Reed, Michael; Simon, Barry (1980), Methods of Modern Mathematical Physics, vol. 1: Functional Analysis (revised and enlarged ed.), Academic Press (see Chapter 8 "Unbounded operators").
  • Stone, Marshall Harvey (1932). Linear Transformations in Hilbert Space and Their Applications to Analysis. Reprint of the 1932 Ed. American Mathematical Society. ISBN 978-0-8218-7452-3.
  • Teschl, Gerald (2009). Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators. Providence: American Mathematical Society. ISBN 978-0-8218-4660-5.
  • von Neumann, J. (1930), "Allgemeine Eigenwerttheorie Hermitescher Functionaloperatoren (General Eigenvalue Theory of Hermitian Functional Operators)", Mathematische Annalen, 102 (1), doi:10.1007/BF01782338, S2CID 121249803
  • von Neumann, J. (1932), "Über Adjungierte Funktionaloperatore (On Adjoint Functional Operators)", Annals of Mathematics, Second Series, 33 (2), doi:10.2307/1968331, JSTOR 1968331
  • Yoshida, Kôsaku (1980), Functional Analysis (sixth ed.), Springer

This article incorporates material from Closed operator on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.