आंतरिक गुणन समष्‍टि: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
[[File:Inner-product-angle.png|thumb|300px|आंतरिक गुणन का उपयोग करके परिभाषित दो सदिशों के मध्य कोण की ज्यामितीय व्याख्या]]
[[File:Inner-product-angle.png|thumb|300px|आंतरिक गुणन का उपयोग करके परिभाषित दो सदिशों के मध्य कोण की ज्यामितीय व्याख्या]]
[[File:Product Spaces Drawing (1).png|alt=Scalar product spaces, inner product spaces, Hermitian product spaces.|thumb|300px|अदिश गुणन स्थान, किसी भी क्षेत्र में, "अदिश गुणन" होते हैं जो प्रथम तर्क में सममित और रैखिक होते हैं। हर्मिटियन गुणन समष्‍टि जटिल संख्याओं के क्षेत्र तक ही सीमित हैं और "हर्मिटियन गुणन" हैं जो प्रथम तर्क में संयुग्म-सममित और रैखिक हैं। आंतरिक गुणन रिक्त समष्‍टि को किसी भी क्षेत्र में परिभाषित किया जा सकता है, जिसमें "आंतरिक गुणन" होते हैं जो प्रथम तर्क में रैखिक होते हैं, संयुग्म-सममित और धनात्मक-निश्चित होते हैं। आंतरिक गुणनों के विपरीत, अदिश गुणनों और हर्मिटियन गुणनों को धनात्मक-निश्चित नहीं होना चाहिए।]]गणित में, आंतरिक गुणन समष्‍टि (या, संभवतः कभी, [[ हॉसडॉर्फ स्पेस |हॉसडॉर्फ पूर्व-हिल्बर्ट स्पेस]]{{sfn|Trèves|2006|pp=112-125}}{{sfn|Schaefer|Wolff|1999|pp=40-45}}) वास्तविक सदिश समष्टि या संक्रिया जटिल सदिश समष्टि है जिसमें ऑपरेशन होता है जिसे आंतरिक गुणन कहा जाता है। स्पेस में दो सदिशों का आंतरिक गुणन [[ अदिश (गणित) |अदिश]] है, जिसे अधिकांशतः[[ कोण कोष्ठक | कोण कोष्ठक]] के साथ निरूपित किया जाता है जैसे कि <math>\langle a, b \rangle</math> दर्शाया जाता है, आंतरिक गुणन सदिश की लंबाई, [[ कोण |कोण]] और [[ ओर्थोगोनालिटी |ओर्थोगोनालिटी]] (शून्य आंतरिक गुणन) जैसी सहज ज्यामितीय धारणाओं की औपचारिक परिभाषा की अनुमति देते हैं। आंतरिक गुणन रिक्त समष्‍टि [[ यूक्लिडियन वेक्टर अंतरिक्ष |यूक्लिडियन सदिश स्पेस]] समष्‍टि को सामान्यीकृत करते हैं, जिसमें आंतरिक गुणन कार्टेशियन निर्देशांक का [[ डॉट उत्पाद |डॉट]] गुणन या अदिश गुणन है। [[ कार्यात्मक विश्लेषण |कार्यात्मक विश्लेषण]] में अनंत आयाम (सदिश स्पेस) के आंतरिक गुणन रिक्त समष्‍टि का व्यापक रूप से उपयोग किया जाता है। [[ जटिल संख्या |जटिल संख्याओं]] के [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] पर आंतरिक गुणन रिक्त समष्‍टि को कभी-कभी 'एकात्मक स्थान' के रूप में संदर्भित किया जाता है। आंतरिक गुणन के साथ सदिश समष्‍टि की अवधारणा का प्रथम उपयोग 1898 में [[ जोसेफ पीनो |ग्यूसेप पीनो]] के कारण हुआ था।<ref>{{cite journal|last1=Moore|first1=Gregory H.|title=रैखिक बीजगणित का स्वयंसिद्धीकरण: 1875-1940|journal=Historia Mathematica|date=1995|volume=22|issue=3|pages=262–303|doi=10.1006/hmat.1995.1025|doi-access=free}}</ref>
[[File:Product Spaces Drawing (1).png|alt=Scalar product spaces, inner product spaces, Hermitian product spaces.|thumb|300px|अदिश गुणन स्थान, किसी भी क्षेत्र में, "अदिश गुणन" होते हैं जो प्रथम तर्क में सममित और रैखिक होते हैं। हर्मिटियन गुणन समष्‍टि जटिल संख्याओं के क्षेत्र तक ही सीमित हैं और "हर्मिटियन गुणन" हैं जो प्रथम तर्क में संयुग्म-सममित और रैखिक हैं। आंतरिक गुणन रिक्त समष्‍टि को किसी भी क्षेत्र में परिभाषित किया जा सकता है, जिसमें "आंतरिक गुणन" होते हैं जो प्रथम तर्क में रैखिक होते हैं, संयुग्म-सममित और धनात्मक-निश्चित होते हैं। आंतरिक गुणनों के विपरीत, अदिश गुणनों और हर्मिटियन गुणनों को धनात्मक-निश्चित नहीं होना चाहिए।]]गणित में, आंतरिक गुणन समष्‍टि (या, संभवतः कभी, [[ हॉसडॉर्फ स्पेस |हॉसडॉर्फ पूर्व-हिल्बर्ट स्पेस]]{{sfn|Trèves|2006|pp=112-125}}{{sfn|Schaefer|Wolff|1999|pp=40-45}}) वास्तविक सदिश समष्टि या संक्रिया जटिल सदिश समष्टि है जिसमें ऑपरेशन होता है जिसे आंतरिक गुणन कहा जाता है। स्पेस में दो सदिशों का आंतरिक गुणन [[ अदिश (गणित) |अदिश]] है, जिसे अधिकांशतः[[ कोण कोष्ठक | कोण कोष्ठक]] के साथ निरूपित किया जाता है जैसे कि <math>\langle a, b \rangle</math> दर्शाया जाता है, आंतरिक गुणन सदिश की लंबाई, [[ कोण |कोण]] और [[ ओर्थोगोनालिटी |ओर्थोगोनालिटी]] (शून्य आंतरिक गुणन) जैसी सहज ज्यामितीय धारणाओं की औपचारिक परिभाषा की अनुमति देते हैं। आंतरिक गुणन रिक्त समष्‍टि [[ यूक्लिडियन वेक्टर अंतरिक्ष |यूक्लिडियन सदिश स्पेस]] समष्‍टि को सामान्यीकृत करते हैं, जिसमें आंतरिक गुणन कार्टेशियन निर्देशांक का [[ डॉट उत्पाद |डॉट]] गुणन या अदिश गुणन है। [[ कार्यात्मक विश्लेषण |कार्यात्मक विश्लेषण]] में अनंत आयाम (सदिश स्पेस) के आंतरिक गुणन रिक्त समष्‍टि का व्यापक रूप से उपयोग किया जाता है। [[ जटिल संख्या |जटिल संख्याओं]] के [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] पर आंतरिक गुणन रिक्त समष्‍टि को कभी-कभी 'एकात्मक स्थान' के रूप में संदर्भित किया जाता है। आंतरिक गुणन के साथ सदिश समष्‍टि की अवधारणा का प्रथम उपयोग 1898 में [[ जोसेफ पीनो |ग्यूसेप पीनो]] के कारण हुआ था।<ref>{{cite journal|last1=Moore|first1=Gregory H.|title=रैखिक बीजगणित का स्वयंसिद्धीकरण: 1875-1940|journal=Historia Mathematica|date=1995|volume=22|issue=3|pages=262–303|doi=10.1006/hmat.1995.1025|doi-access=free}}</ref>
आंतरिक गुणन स्वाभाविक रूप से संबद्ध [[ मानदंड (गणित) |मानदंड]] को प्रेरित करता है, (जिसे निरूपित) <math>|x|</math> तथा <math>|y|</math> चित्र में चित्र में दिखाया गया है); इसलिए, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि है। यदि यह आदर्श समष्‍टि भी [[ पूर्ण मीट्रिक स्थान |पूर्ण मीट्रिक]] समष्‍टि है (अर्थात, बानाच समष्‍टि) तो आंतरिक गुणन समष्‍टि [[ हिल्बर्ट स्पेस |हिल्बर्ट स्पेस]] है।{{sfn|Trèves|2006|pp=112-125}} यदि कोई आंतरिक गुणन समष्‍टि {{mvar|H}} हिल्बर्ट स्पेस नहीं है, तो इसे पूर्ण टोपोलॉजिकल सदिश स्पेस समापन द्वारा हिल्बर्ट स्पेस <math>\overline{H}</math> तक बढ़ाया जा सकता है I इस का तात्पर्य है कि <math>H</math> का रैखिक उप-समष्टि <math>\overline{H}</math> है, आंतरिक गुणन <math>H</math> का [[ प्रतिबंध (गणित) |प्रतिबंध (गणित)]] <math>\overline{H}</math> है, तथा आदर्श द्वारा परिभाषित [[ टोपोलॉजी (संरचना) |स्थिरीकरण (संरचना)]] के लिए <math>H</math> में घना उपसमुच्चय <math>\overline{H}</math> है I{{sfn|Trèves|2006|pp=112-125}}{{sfn|Schaefer|Wolff|1999|pp=36-72}}
आंतरिक गुणन स्वाभाविक रूप से संबद्ध [[ मानदंड (गणित) |पैरामीटर]] को प्रेरित करता है, (जिसे निरूपित) <math>|x|</math> तथा <math>|y|</math> चित्र में चित्र में दिखाया गया है); इसलिए, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि है। यदि यह आदर्श समष्‍टि भी [[ पूर्ण मीट्रिक स्थान |पूर्ण मीट्रिक]] समष्‍टि है (अर्थात, बानाच समष्‍टि) तो आंतरिक गुणन समष्‍टि [[ हिल्बर्ट स्पेस |हिल्बर्ट स्पेस]] है।{{sfn|Trèves|2006|pp=112-125}} यदि कोई आंतरिक गुणन समष्‍टि {{mvar|H}} हिल्बर्ट स्पेस नहीं है, तो इसे पूर्ण टोपोलॉजिकल सदिश स्पेस समापन द्वारा हिल्बर्ट स्पेस <math>\overline{H}</math> तक बढ़ाया जा सकता है I इस का तात्पर्य है कि <math>H</math> का रैखिक उप-समष्टि <math>\overline{H}</math> है, आंतरिक गुणन <math>H</math> का [[ प्रतिबंध (गणित) |प्रतिबंध (गणित)]] <math>\overline{H}</math> है, तथा आदर्श द्वारा परिभाषित [[ टोपोलॉजी (संरचना) |स्थिरीकरण (संरचना)]] के लिए <math>H</math> में घना उपसमुच्चय <math>\overline{H}</math> है I{{sfn|Trèves|2006|pp=112-125}}{{sfn|Schaefer|Wolff|1999|pp=36-72}}
== परिभाषा ==
== परिभाषा ==
इस आलेख में, {{math|''F''}} क्षेत्र (गणित) को दर्शाता है जो या तो [[ वास्तविक संख्या |वास्तविक संख्या]] है <math>\R,</math> या जटिल संख्याएँ <math>\Complex.</math> है इस प्रकार अदिश {{math|''F''}} का तत्व है। अदिश का प्रतिनिधित्व करने वाली अभिव्यक्ति पर बार इस अदिश के जटिल संयुग्म को दर्शाता है। शून्य सदिश को अदिश 0 से अलग करने के लिए <math>\mathbf 0</math> से दर्शाया जाता है।
इस आलेख में, {{math|''F''}} क्षेत्र (गणित) को दर्शाता है जो या तो [[ वास्तविक संख्या |वास्तविक संख्या]] है <math>\R,</math> या जटिल संख्याएँ <math>\Complex.</math> है इस प्रकार अदिश {{math|''F''}} का तत्व है। अदिश का प्रतिनिधित्व करने वाली अभिव्यक्ति पर बार इस अदिश के जटिल संयुग्म को दर्शाता है। शून्य सदिश को अदिश 0 से अलग करने के लिए <math>\mathbf 0</math> से दर्शाया जाता है।
Line 71: Line 71:
यह समष्‍टि पूर्ण नहीं है; उदाहरण के लिए, अंतराल के लिए विचार करें {{closed-closed|−1, 1}} निरंतर चरण कार्यों का क्रम, <math>\{ f_k \}_k,</math> द्वारा परिभाषित है :
यह समष्‍टि पूर्ण नहीं है; उदाहरण के लिए, अंतराल के लिए विचार करें {{closed-closed|−1, 1}} निरंतर चरण कार्यों का क्रम, <math>\{ f_k \}_k,</math> द्वारा परिभाषित है :
<math display=block>f_k(t) = \begin{cases} 0 & t \in [-1, 0] \\ 1 & t \in \left[\tfrac{1}{k}, 1\right] \\ kt & t \in \left(0, \tfrac{1}{k}\right) \end{cases}</math>
<math display=block>f_k(t) = \begin{cases} 0 & t \in [-1, 0] \\ 1 & t \in \left[\tfrac{1}{k}, 1\right] \\ kt & t \in \left(0, \tfrac{1}{k}\right) \end{cases}</math>
यह अनुक्रम पूर्ववर्ती आंतरिक गुणन द्वारा प्रेरित मानदंड के लिए [[ कॉची अनुक्रम |कॉची अनुक्रम]] है, जो a में परिवर्तित नहीं होता है {{em| निरंतर}}  फलन है।
यह अनुक्रम पूर्ववर्ती आंतरिक गुणन द्वारा प्रेरित पैरामीटर के लिए [[ कॉची अनुक्रम |कॉची अनुक्रम]] है, जो a में परिवर्तित नहीं होता है {{em| निरंतर}}  फलन है।


=== यादृच्छिक चर ===
=== यादृच्छिक चर ===
Line 81: Line 81:
=== जटिल आव्यूह ===
=== जटिल आव्यूह ===


ही आकार के जटिल वर्ग आव्यूह के लिए आंतरिक गुणन [[ फ्रोबेनियस आंतरिक उत्पाद |फ्रोबेनियस आंतरिक]] गुणन <math>\langle A, B \rangle := \operatorname{tr}\left(AB^{\textsf{H}}\right)</math> है, चूँकि ट्रेस और स्थानांतरण रैखिक होते हैं और संयुग्मन दूसरे आव्यूह पर होता है, यह सेसक्विलिनियर ऑपरेटर होता है। हम आगे हर्मिटियन समरूपता प्राप्त करते हैं,
एक ही आकार के जटिल वर्ग आव्यूह के लिए आंतरिक गुणन [[ फ्रोबेनियस आंतरिक उत्पाद |फ्रोबेनियस आंतरिक]] गुणन <math>\langle A, B \rangle := \operatorname{tr}\left(AB^{\textsf{H}}\right)</math> है, चूँकि ट्रेस और स्थानांतरण रैखिक होते हैं और संयुग्मन दूसरे आव्यूह पर होता है, यह सेसक्विलिनियर ऑपरेटर होता है। हम आगे हर्मिटियन समरूपता प्राप्त करते हैं,
<math display=block>\langle A, B \rangle = \operatorname{tr}\left(AB^{\textsf{H}}\right) = \overline{\operatorname{tr}\left(BA^{\textsf{H}}\right)} = \overline{\left\langle B,A \right\rangle}</math>
<math display=block>\langle A, B \rangle = \operatorname{tr}\left(AB^{\textsf{H}}\right) = \overline{\operatorname{tr}\left(BA^{\textsf{H}}\right)} = \overline{\left\langle B,A \right\rangle}</math>
अंत में, चूँकि <math>A</math> अशून्य <math>\langle A, A\rangle = \sum_{ij} \left|A_{ij}\right|^2 > 0 </math> हम पाते हैं कि फ्रोबेनियस आंतरिक गुणन भी धनात्मक निश्चित है, और इसलिए आंतरिक गुणन है।
अंत में, चूँकि <math>A</math> अशून्य <math>\langle A, A\rangle = \sum_{ij} \left|A_{ij}\right|^2 > 0 </math> हम पाते हैं कि फ्रोबेनियस आंतरिक गुणन भी धनात्मक निश्चित है, और इसलिए आंतरिक गुणन है।
Line 92: Line 92:


=== सामान्य गुण ===
=== सामान्य गुण ===
प्रत्येक आंतरिक गुणन समष्‍टि मानदंड (गणित) को प्रेरित करता है, जिसे इसका {{em|{{visible anchor|प्रामाणिक मानदंड}}}} कहा जाता है , जिसके द्वारा परिभाषित किया गया है
प्रत्येक आंतरिक गुणन समष्‍टि पैरामीटर (गणित) को प्रेरित करता है, जिसे इसका {{em|{{visible anchor|प्रामाणिक मानदंड}}}} कहा जाता है , जिसके द्वारा परिभाषित किया गया है
<math display=block>\|x\| = \sqrt{\langle x, x \rangle}.</math> इस मानदंड के साथ, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि बन जाता है।
<math display=block>\|x\| = \sqrt{\langle x, x \rangle}.</math> इस पैरामीटर के साथ, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि बन जाता है।


तो, मानक सदिश रिक्त समष्‍टि की प्रत्येक सामान्य संपत्ति आंतरिक गुणन रिक्त समष्‍टि पर लागू होती है।  
तो, मानक सदिश रिक्त समष्‍टि की प्रत्येक सामान्य संपत्ति आंतरिक गुणन रिक्त समष्‍टि पर लागू होती है।  
Line 126: Line 126:
<math>V_{\R}</math> निरूपित <math>V</math> जटिल संख्याओं के अतिरिक्त वास्तविक संख्याओं पर सदिश समष्‍टि के रूप में माना जाता है। जटिल आंतरिक गुणन का वास्तविक हिस्सा <math>\langle x, y \rangle</math> चित्र है <math>\langle x, y \rangle_{\R} = \operatorname{Re} \langle x, y \rangle ~:~ V_{\R} \times V_{\R} \to \R,</math> जो आवश्यक रूप से वास्तविक सदिश समष्‍टि पर वास्तविक आंतरिक गुणन <math>V_{\R}.</math> बनाता है वास्तविक सदिश स्पेस पर प्रत्येक आंतरिक गुणन बिलिनियर मानचित्र और सममित मानचित्र है।
<math>V_{\R}</math> निरूपित <math>V</math> जटिल संख्याओं के अतिरिक्त वास्तविक संख्याओं पर सदिश समष्‍टि के रूप में माना जाता है। जटिल आंतरिक गुणन का वास्तविक हिस्सा <math>\langle x, y \rangle</math> चित्र है <math>\langle x, y \rangle_{\R} = \operatorname{Re} \langle x, y \rangle ~:~ V_{\R} \times V_{\R} \to \R,</math> जो आवश्यक रूप से वास्तविक सदिश समष्‍टि पर वास्तविक आंतरिक गुणन <math>V_{\R}.</math> बनाता है वास्तविक सदिश स्पेस पर प्रत्येक आंतरिक गुणन बिलिनियर मानचित्र और सममित मानचित्र है।


उदाहरण के लिए, यदि <math>V = \Complex</math> आंतरिक गुणन के साथ <math>\langle x, y \rangle = x \overline{y},</math> जहाँ <math>V</math> क्षेत्र के ऊपर सदिश समष्‍टि है <math>\Complex,</math> फिर <math>V_{\R} = \R^2</math> सदिश समष्‍टि है <math>\R</math> तथा <math>\langle x, y \rangle_{\R}</math> डॉट गुणन है <math>x \cdot y,</math> जहाँ <math>x = a + i b \in V = \Complex</math> बिंदु के साथ पहचाना जाता है <math>(a, b) \in V_{\R} = \R^2</math> (और इसी तरह के लिए <math>y</math>); इस प्रकार मानक आंतरिक गुणन <math>\langle x, y \rangle = x \overline{y},</math> पर <math>\Complex</math> डॉट गुणन का विस्तार है। यह भी था <math>\langle x, y \rangle</math> इसे अतिरिक्त रूप में परिभाषित किया गया है {{EquationNote|सममित|सममित चित्र}} <math>\langle x, y \rangle = x y</math> (सामान्य के अतिरिक्त {{EquationNote|संयुग्म सममित|संयुग्म सममित चित्र}} <math>\langle x, y \rangle = x \overline{y}</math>) तो इसका असली भाग <math>\langle x, y \rangle_{\R}</math> चाहेंगे {{em|नॉट }} डॉट गुणन हो; इसके अतिरिक्त, जटिल संयुग्म के बिना, यदि <math>x \in \C</math> किन्तु <math>x \not\in \R</math> फिर <math>\langle x, x \rangle = x x = x^2 \not\in [0, \infty)</math> तो असाइनमेंट <math>x \mapsto \sqrt{\langle x, x \rangle}</math> मानदंड परिभाषित नहीं करेगा।
उदाहरण के लिए, यदि <math>V = \Complex</math> आंतरिक गुणन के साथ <math>\langle x, y \rangle = x \overline{y},</math> जहाँ <math>V</math> क्षेत्र के ऊपर सदिश समष्‍टि है <math>\Complex,</math> फिर <math>V_{\R} = \R^2</math> सदिश समष्‍टि है <math>\R</math> तथा <math>\langle x, y \rangle_{\R}</math> डॉट गुणन है <math>x \cdot y,</math> जहाँ <math>x = a + i b \in V = \Complex</math> बिंदु के साथ पहचाना जाता है <math>(a, b) \in V_{\R} = \R^2</math> (और इसी तरह के लिए <math>y</math>); इस प्रकार मानक आंतरिक गुणन <math>\langle x, y \rangle = x \overline{y},</math> पर <math>\Complex</math> डॉट गुणन का विस्तार है। यह भी था <math>\langle x, y \rangle</math> इसे अतिरिक्त रूप में परिभाषित किया गया है {{EquationNote|सममित|सममित चित्र}} <math>\langle x, y \rangle = x y</math> (सामान्य के अतिरिक्त {{EquationNote|संयुग्म सममित|संयुग्म सममित चित्र}} <math>\langle x, y \rangle = x \overline{y}</math>) तो इसका असली भाग <math>\langle x, y \rangle_{\R}</math> चाहेंगे {{em|नॉट }} डॉट गुणन हो; इसके अतिरिक्त, जटिल संयुग्म के बिना, यदि <math>x \in \C</math> किन्तु <math>x \not\in \R</math> फिर <math>\langle x, x \rangle = x x = x^2 \not\in [0, \infty)</math> तो असाइनमेंट <math>x \mapsto \sqrt{\langle x, x \rangle}</math> पैरामीटर परिभाषित नहीं करेगा।


अगले उदाहरणों से पता चलता है कि वास्तविक और जटिल आंतरिक गुणनों में कई गुण और परिणाम समान हैं, वे पूरी तरह से विनिमेय नहीं हैं। उदाहरण के लिए, यदि <math>\langle x, y \rangle = 0</math> फिर <math>\langle x, y \rangle_{\R} = 0,</math> किन्तु अगले उदाहरण से पता चलता है कि बातचीत सामान्य रूप से है {{em|नॉट }} सच हैं। दिया गया कोई भी <math>x \in V,</math> सदिश <math>i x</math> (जो सदिश है <math>x</math> 90° से घुमाया जाता है) से संबंधित है <math>V</math> और इसलिए भी के अंतर्गत आता है <math>V_{\R}</math> (चूंकि का अदिश गुणन <math>x</math> द्वारा <math>i = \sqrt{-1}</math> में परिभाषित नहीं है <math>V_{\R},</math> सदिश <math>V</math> द्वारा चिह्नित <math>i x</math> फिर भी का तत्व है <math>V_{\R}</math>). जटिल आंतरिक गुणन के लिए, <math>\langle x, ix \rangle = -i \|x\|^2,</math> जबकि वास्तविक आंतरिक गुणन के लिए मूल्य हमेशा होता है <math>\langle x, ix \rangle_{\R} = 0.</math> यदि <math>\langle \,\cdot, \cdot\, \rangle</math> जटिल आंतरिक गुणन है और <math>A : V \to V</math> सतत रैखिक ऑपरेटर है जो संतुष्ट करता है <math>\langle x, A x \rangle = 0</math> सभी के लिए <math>x \in V,</math> फिर <math>A = 0.</math> यह कथन अब सत्य नहीं है यदि <math>\langle \,\cdot, \cdot\, \rangle</math> इसके अतिरिक्त वास्तविक आंतरिक गुणन है, जैसा कि यह अगला उदाहरण दिखाता है।
अगले उदाहरणों से पता चलता है कि वास्तविक और जटिल आंतरिक गुणनों में कई गुण और परिणाम समान हैं, वे पूरी तरह से विनिमेय नहीं हैं। उदाहरण के लिए, यदि <math>\langle x, y \rangle = 0</math> फिर <math>\langle x, y \rangle_{\R} = 0,</math> किन्तु अगले उदाहरण से पता चलता है कि बातचीत सामान्य रूप से है {{em|नॉट }} सच हैं। दिया गया कोई भी <math>x \in V,</math> सदिश <math>i x</math> (जो सदिश है <math>x</math> 90° से घुमाया जाता है) से संबंधित है <math>V</math> और इसलिए भी के अंतर्गत आता है <math>V_{\R}</math> (चूंकि का अदिश गुणन <math>x</math> द्वारा <math>i = \sqrt{-1}</math> में परिभाषित नहीं है <math>V_{\R},</math> सदिश <math>V</math> द्वारा चिह्नित <math>i x</math> फिर भी का तत्व है <math>V_{\R}</math>). जटिल आंतरिक गुणन के लिए, <math>\langle x, ix \rangle = -i \|x\|^2,</math> जबकि वास्तविक आंतरिक गुणन के लिए मूल्य हमेशा होता है <math>\langle x, ix \rangle_{\R} = 0.</math> यदि <math>\langle \,\cdot, \cdot\, \rangle</math> जटिल आंतरिक गुणन है और <math>A : V \to V</math> सतत रैखिक ऑपरेटर है जो संतुष्ट करता है <math>\langle x, A x \rangle = 0</math> सभी के लिए <math>x \in V,</math> फिर <math>A = 0.</math> यह कथन अब सत्य नहीं है यदि <math>\langle \,\cdot, \cdot\, \rangle</math> इसके अतिरिक्त वास्तविक आंतरिक गुणन है, जैसा कि यह अगला उदाहरण दिखाता है।
Line 134: Line 134:
{{See also|ऑर्थोगोनल आधार|ऑर्थोगोनल आधार}}
{{See also|ऑर्थोगोनल आधार|ऑर्थोगोनल आधार}}


<math>V</math> को आयाम <math>n.</math> का परिमित आयामी आंतरिक गुणन समष्‍टि होने दें। याद रखें कि V के प्रत्येक [[ आधार (रैखिक बीजगणित) |आधार (रैखिक बीजगणित)]] पर n रैखिक रूप से स्वतंत्र सदिश होते हैं। ग्राम-श्मिट प्रक्रिया का उपयोग करके हम मनमाना आधार से शुरू कर सकते हैं और इसे ऑर्थोनॉर्मल आधार में परिवर्तित कर सकते हैं। अर्थात्, ऐसे आधार में जिसमें सभी तत्व ओर्थोगोनल हैं और इकाई मानदंड हैं। प्रतीकों में, आधार <math>\{e_1, \ldots, e_n\}</math> 2 ऑर्थोनॉर्मल यदि <math>\langle e_i, e_j \rangle = 0</math> प्रत्येक के लिए <math>i \neq j</math> तथा <math>\langle e_i, e_i \rangle = \|e_a\|^2 = 1</math> प्रत्येक सूचकांक के लिए <math>i.</math>
<math>V</math> को आयाम <math>n.</math> का परिमित आयामी आंतरिक गुणन समष्‍टि होने दें। याद रखें कि V के प्रत्येक [[ आधार (रैखिक बीजगणित) |आधार (रैखिक बीजगणित)]] पर n रैखिक रूप से स्वतंत्र सदिश होते हैं। ग्राम-श्मिट प्रक्रिया का उपयोग करके हम मनमाना आधार से शुरू कर सकते हैं और इसे ऑर्थोनॉर्मल आधार में परिवर्तित कर सकते हैं। अर्थात्, ऐसे आधार में जिसमें सभी तत्व ओर्थोगोनल हैं और इकाई पैरामीटर हैं। प्रतीकों में, आधार <math>\{e_1, \ldots, e_n\}</math> 2 ऑर्थोनॉर्मल यदि <math>\langle e_i, e_j \rangle = 0</math> प्रत्येक के लिए <math>i \neq j</math> तथा <math>\langle e_i, e_i \rangle = \|e_a\|^2 = 1</math> प्रत्येक सूचकांक के लिए <math>i.</math>
ऑर्थोनॉर्मल बेसिस की यह परिभाषा निम्नलिखित तरीके से अनंत-आयामी आंतरिक गुणन रिक्त समष्‍टि की परिस्थिति में सामान्यीकृत करती है। मान लें कि <math>V</math> कोई आंतरिक गुणन समष्‍टि है। फिर संग्रह
ऑर्थोनॉर्मल बेसिस की यह परिभाषा निम्नलिखित तरीके से अनंत-आयामी आंतरिक गुणन रिक्त समष्‍टि की परिस्थिति में सामान्यीकृत करती है। मान लें कि <math>V</math> कोई आंतरिक गुणन समष्‍टि है। फिर संग्रह
<math display=block>E = \left\{ e_a \right\}_{a \in A}</math>
<math display=block>E = \left\{ e_a \right\}_{a \in A}</math>
<math>V</math> के लिए आधार है यदि <math>V</math> के उप-समष्‍टि <math>E</math> के तत्वों के परिमित रैखिक संयोजनों द्वारा उत्पन्न <math>V</math> में सघन है (मानदंड से प्रेरित मानदंड में) अंदरूनी प्रोडक्ट)। <math>E</math> के <math>V</math> लिए {{em|[[ऑर्थोनॉर्मल आधार]]}} है, यदि यह आधार है और  
<math>V</math> के लिए आधार है यदि <math>V</math> के उप-समष्‍टि <math>E</math> के तत्वों के परिमित रैखिक संयोजनों द्वारा उत्पन्न <math>V</math> में सघन है (पैरामीटर से प्रेरित पैरामीटर में) अंदरूनी प्रोडक्ट)। <math>E</math> के <math>V</math> लिए {{em|[[ऑर्थोनॉर्मल आधार]]}} है, यदि यह आधार है और  
<math display=block>\left\langle e_{a}, e_{b} \right\rangle = 0</math>
<math display=block>\left\langle e_{a}, e_{b} \right\rangle = 0</math>
यदि <math>a \neq b</math> तथा <math>\langle e_a, e_a \rangle = \|e_a\|^2 = 1</math> सभी के लिए <math>a, b \in A.</math> ग्राम-श्मिट प्रक्रिया के अनंत-आयामी एनालॉग का उपयोग करके कोई दिखा सकता है:
यदि <math>a \neq b</math> तथा <math>\langle e_a, e_a \rangle = \|e_a\|^2 = 1</math> सभी के लिए <math>a, b \in A.</math> ग्राम-श्मिट प्रक्रिया के अनंत-आयामी एनालॉग का उपयोग करके कोई दिखा सकता है:
Line 181: Line 181:
अनुक्रम की ओर्थोगोनलिटी <math>\{ e_k \}_k</math> इस तथ्य से तुरंत अनुसरण करता है कि यदि <math>k \neq j,</math> फिर
अनुक्रम की ओर्थोगोनलिटी <math>\{ e_k \}_k</math> इस तथ्य से तुरंत अनुसरण करता है कि यदि <math>k \neq j,</math> फिर
<math display=block>\int_{-\pi}^\pi e^{-i (j - k) t} \, \mathrm{d}t = 0.</math>
<math display=block>\int_{-\pi}^\pi e^{-i (j - k) t} \, \mathrm{d}t = 0.</math>
अनुक्रम की सामान्यता डिज़ाइन द्वारा होती है, अर्थात, गुणांकों को इस प्रकार चुना जाता है ताकि मानदंड 1 पर आ जाए। अंत में तथ्य यह है कि अनुक्रम में घने बीजीय विस्तार हैं, {{em|inner product norm}}, इस तथ्य से अनुसरण करता है कि अनुक्रम में सघन बीजगणितीय विस्तार है, इस बार निरंतर आवधिक कार्यों के समष्‍टि पर <math>[-\pi, \pi]</math> समान मानदंड के साथ। यह त्रिकोणमितीय बहुपदों के एकसमान घनत्व पर वीयरस्ट्रास सन्निकटन प्रमेय की सामग्री है।
अनुक्रम की सामान्यता डिज़ाइन द्वारा होती है, अर्थात, गुणांकों को इस प्रकार चुना जाता है ताकि पैरामीटर 1 पर आ जाए। अंत में तथ्य यह है कि अनुक्रम में घने बीजीय विस्तार हैं, {{em|inner product norm}}, इस तथ्य से अनुसरण करता है कि अनुक्रम में सघन बीजगणितीय विस्तार है, इस बार निरंतर आवधिक कार्यों के समष्‍टि पर <math>[-\pi, \pi]</math> समान पैरामीटर के साथ। यह त्रिकोणमितीय बहुपदों के एकसमान घनत्व पर वीयरस्ट्रास सन्निकटन प्रमेय की सामग्री है।


== आंतरिक गुणन रिक्त समष्‍टि पर ऑपरेटर ==
== आंतरिक गुणन रिक्त समष्‍टि पर ऑपरेटर ==

Latest revision as of 16:55, 28 October 2023

आंतरिक गुणन का उपयोग करके परिभाषित दो सदिशों के मध्य कोण की ज्यामितीय व्याख्या
Scalar product spaces, inner product spaces, Hermitian product spaces.
अदिश गुणन स्थान, किसी भी क्षेत्र में, "अदिश गुणन" होते हैं जो प्रथम तर्क में सममित और रैखिक होते हैं। हर्मिटियन गुणन समष्‍टि जटिल संख्याओं के क्षेत्र तक ही सीमित हैं और "हर्मिटियन गुणन" हैं जो प्रथम तर्क में संयुग्म-सममित और रैखिक हैं। आंतरिक गुणन रिक्त समष्‍टि को किसी भी क्षेत्र में परिभाषित किया जा सकता है, जिसमें "आंतरिक गुणन" होते हैं जो प्रथम तर्क में रैखिक होते हैं, संयुग्म-सममित और धनात्मक-निश्चित होते हैं। आंतरिक गुणनों के विपरीत, अदिश गुणनों और हर्मिटियन गुणनों को धनात्मक-निश्चित नहीं होना चाहिए।

गणित में, आंतरिक गुणन समष्‍टि (या, संभवतः कभी, हॉसडॉर्फ पूर्व-हिल्बर्ट स्पेस[1][2]) वास्तविक सदिश समष्टि या संक्रिया जटिल सदिश समष्टि है जिसमें ऑपरेशन होता है जिसे आंतरिक गुणन कहा जाता है। स्पेस में दो सदिशों का आंतरिक गुणन अदिश है, जिसे अधिकांशतः कोण कोष्ठक के साथ निरूपित किया जाता है जैसे कि दर्शाया जाता है, आंतरिक गुणन सदिश की लंबाई, कोण और ओर्थोगोनालिटी (शून्य आंतरिक गुणन) जैसी सहज ज्यामितीय धारणाओं की औपचारिक परिभाषा की अनुमति देते हैं। आंतरिक गुणन रिक्त समष्‍टि यूक्लिडियन सदिश स्पेस समष्‍टि को सामान्यीकृत करते हैं, जिसमें आंतरिक गुणन कार्टेशियन निर्देशांक का डॉट गुणन या अदिश गुणन है। कार्यात्मक विश्लेषण में अनंत आयाम (सदिश स्पेस) के आंतरिक गुणन रिक्त समष्‍टि का व्यापक रूप से उपयोग किया जाता है। जटिल संख्याओं के क्षेत्र (गणित) पर आंतरिक गुणन रिक्त समष्‍टि को कभी-कभी 'एकात्मक स्थान' के रूप में संदर्भित किया जाता है। आंतरिक गुणन के साथ सदिश समष्‍टि की अवधारणा का प्रथम उपयोग 1898 में ग्यूसेप पीनो के कारण हुआ था।[3]

आंतरिक गुणन स्वाभाविक रूप से संबद्ध पैरामीटर को प्रेरित करता है, (जिसे निरूपित) तथा चित्र में चित्र में दिखाया गया है); इसलिए, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि है। यदि यह आदर्श समष्‍टि भी पूर्ण मीट्रिक समष्‍टि है (अर्थात, बानाच समष्‍टि) तो आंतरिक गुणन समष्‍टि हिल्बर्ट स्पेस है।[1] यदि कोई आंतरिक गुणन समष्‍टि H हिल्बर्ट स्पेस नहीं है, तो इसे पूर्ण टोपोलॉजिकल सदिश स्पेस समापन द्वारा हिल्बर्ट स्पेस तक बढ़ाया जा सकता है I इस का तात्पर्य है कि का रैखिक उप-समष्टि है, आंतरिक गुणन का प्रतिबंध (गणित) है, तथा आदर्श द्वारा परिभाषित स्थिरीकरण (संरचना) के लिए में घना उपसमुच्चय है I[1][4]

परिभाषा

इस आलेख में, F क्षेत्र (गणित) को दर्शाता है जो या तो वास्तविक संख्या है या जटिल संख्याएँ है इस प्रकार अदिश F का तत्व है। अदिश का प्रतिनिधित्व करने वाली अभिव्यक्ति पर बार इस अदिश के जटिल संयुग्म को दर्शाता है। शून्य सदिश को अदिश 0 से अलग करने के लिए से दर्शाया जाता है।

आंतरिक गुणन समष्‍टि आंतरिक गुणन के साथ फ़ील्ड F पर सदिश स्थल V है, जो कि मानचित्र है:

जो सभी सदिशों और सभी अदिशों .[5][6] के लिए निम्नलिखित तीन गुणों को संतुष्ट करता है:

  • संयुग्म समरूपता:
    जैसा कि यदि और केवल यदि a वास्तविक है, तो संयुग्मी सममिति का तात्पर्य है कि हमेशा वास्तविक संख्या होती है। यदि F , है तो संयुग्म समरूपता सिर्फ समरूपता है।
  • प्रथम तर्क में रेखीय मानचित्र है:[Note 1]
  • धनात्मक-निश्चितता: यदि तो, x शून्य नहीं है,
    (संयुग्म समरूपता का तात्पर्य है कि वास्तविक है)।

यदि धनात्मक-निश्चितता की स्थिति को केवल इसकी आवश्यकता से परिवर्तित कर दिया जाता हैं सभी के लिए x, तो कोई धनात्मक अर्ध-निश्चित हर्मिटियन रूप की परिभाषा प्राप्त करता है। धनात्मक अर्ध-निश्चित हर्मिटियन रूप आंतरिक गुणन है यदि सभी x के लिए, फिर x = 0 है।[7]

मूल गुण

निम्नलिखित गुणों में, जो आंतरिक गुणन की परिभाषा से लगभग तुरंत परिणाम देते हैं, x, y और z स्वेच्छ सदिश हैं, और a और b स्वेच्छ अदिश हैं।

  • वास्तविक और नकारात्मक नहीं है।
  • यदि और केवल यदि है।

  • इसका तात्पर्य है कि आंतरिक गुणन सेस्क्विलिनियर रूप है।
  • जहाँ
    इसके तर्क के वास्तविक भाग को दर्शाता है।

ऊपर , संयुग्म-समरूपता समरूपता में कम हो जाती है, और सेस्क्विलाइनरिटी बिलिनियरिटी में कम हो जाती है। इसलिए वास्तविक सदिश समष्‍टि पर आंतरिक गुणन धनात्मक-निश्चित सममित द्विरेखीय रूप है। वर्ग का द्विपद प्रसार हो जाता है

कन्वेंशन संस्करण

कुछ लेखक, विशेष रूप से भौतिकी और आव्यूह बीजगणित में, पूर्व के अतिरिक्त दूसरे तर्क में आंतरिक गुणनों और सेसक्विलिनियर रूपों को रैखिकता के साथ परिभाषित करना पसंद करते हैं। तब प्रथम तर्क दूसरे के अतिरिक्त संयुग्मी रैखिक बन जाता है।

कुछ उदाहरण

वास्तविक और जटिल संख्या

आंतरिक गुणन रिक्त समष्‍टि के सबसे सरल उदाहरणों में से तथा हैं। वास्तविक संख्याएँ सदिश समष्‍टि है जो अपने आंतरिक गुणन के रूप में अंकगणितीय गुणन के साथ आंतरिक गुणन समष्‍टि बन जाता है:

जटिल संख्याएँ सदिश समष्‍टि है जो आंतरिक गुणन के साथ आंतरिक गुणन समष्‍टि बन जाता है:
वास्तविक संख्याओं के विपरीत, असाइनमेंट करता है not जटिल आंतरिक गुणन को परिभाषित करें।


यूक्लिडियन सदिश स्पेस

अधिक सामान्यतः, वास्तविक समन्वय स्थान|वास्तविक -स्पेस डॉट गुणन के साथ आंतरिक गुणन समष्‍टि है, जो यूक्लिडियन सदिश स्पेस का उदाहरण है।

जहाँ पर का स्थानान्तरण है , फंक्शन आंतरिक गुणन है और केवल यदि सममित आव्यूह धनात्मक-निश्चित आव्यूह सम्मलित है ऐसा है कि सभी के लिए यदि तब पहचान आव्यूह है डॉट गुणन है। दूसरे उदाहरण के लिए, यदि तथा धनात्मक-निश्चित है (जो होता है यदि और केवल यदि और एक/दोनों विकर्ण तत्व धनात्मक हैं) तो किसी के लिए
जैसा कि पूर्व उल्लेख किया गया है, प्रत्येक आंतरिक गुणन का रूप है (जहां तथा संतुष्ट करना ).

जटिल समन्वय स्थान

आंतरिक गुणन का सामान्य रूप हर्मिटियन रूप के रूप में जाना जाता है और इसके द्वारा दिया जाता है:

जहाँ कोई हर्मिटियन आव्यूह धनात्मक-निश्चित आव्यूह है और का संयुग्मी स्थानांतरण है वास्तविक परिस्थिति के लिए, यह धनात्मक पैमाने के कारको और स्केलिंग के ऑर्थोगोनल दिशाओं के साथ दो सदिशों के प्रत्यक्ष रूप से भिन्न स्केलिंग (ज्यामिति) के परिणामों के डॉट गुणन से युग्मित होता है। यह धनात्मक भार के साथ डॉट गुणन का भारित-योग संस्करण है - ओर्थोगोनल रूपांतरण तक है ।

हिल्बर्ट स्पेस

हिल्बर्ट रिक्त समष्‍टि पर आलेख में आंतरिक गुणन रिक्त समष्‍टि के कई उदाहरण हैं, जिसमें आंतरिक गुणन द्वारा प्रेरित मीट्रिक पूर्ण मीट्रिक समष्‍टि उत्पन्न करता है। आंतरिक गुणन समष्‍टि का उदाहरण जो अपूर्ण मीट्रिक को प्रेरित करता है वह समष्‍टि है निरंतर जटिल मूल्यवान कार्यों की तथा अंतराल पर आंतरिक गुणन है:

यह समष्‍टि पूर्ण नहीं है; उदाहरण के लिए, अंतराल के लिए विचार करें [−1, 1] निरंतर चरण कार्यों का क्रम, द्वारा परिभाषित है :
यह अनुक्रम पूर्ववर्ती आंतरिक गुणन द्वारा प्रेरित पैरामीटर के लिए कॉची अनुक्रम है, जो a में परिवर्तित नहीं होता है निरंतर फलन है।

यादृच्छिक चर

वास्तविक यादृच्छिक चर के लिए तथा उनके गुणन का अपेक्षित मूल्य

आंतरिक गुणन है।[8][9][10] इस परिस्थिति में, और यदि (वह है, लगभग निश्चित रूप से ), जहाँ घटना की संभावना को दर्शाता है। आंतरिक गुणन के रूप में अपेक्षा की यह परिभाषा यादृच्छिक सदिशों तक भी विस्तारित की जा सकती है।

जटिल आव्यूह

एक ही आकार के जटिल वर्ग आव्यूह के लिए आंतरिक गुणन फ्रोबेनियस आंतरिक गुणन है, चूँकि ट्रेस और स्थानांतरण रैखिक होते हैं और संयुग्मन दूसरे आव्यूह पर होता है, यह सेसक्विलिनियर ऑपरेटर होता है। हम आगे हर्मिटियन समरूपता प्राप्त करते हैं,

अंत में, चूँकि अशून्य हम पाते हैं कि फ्रोबेनियस आंतरिक गुणन भी धनात्मक निश्चित है, और इसलिए आंतरिक गुणन है।

रूपों के साथ सदिश रिक्त स्थान

आंतरिक गुणन समष्‍टि पर, या अधिक सामान्यतः गैर-अपघटित रूप के साथ सदिश समष्‍टि (इसलिए समरूपता ), सदिश को को-सदिश (निर्देशांक में, ट्रांसपोज़ के माध्यम से) में भेजा जा सकता है, जिससे कि कोई दो सदिश के आंतरिक गुणन और बाहरी गुणन ले सके - न कि केवल सदिश और कोवेक्टर का।

मूल परिणाम, शब्दावली, और परिभाषाएं

सामान्य गुण

प्रत्येक आंतरिक गुणन समष्‍टि पैरामीटर (गणित) को प्रेरित करता है, जिसे इसका प्रामाणिक मानदंड कहा जाता है , जिसके द्वारा परिभाषित किया गया है

इस पैरामीटर के साथ, प्रत्येक आंतरिक गुणन समष्‍टि आदर्श सदिश समष्‍टि बन जाता है।

तो, मानक सदिश रिक्त समष्‍टि की प्रत्येक सामान्य संपत्ति आंतरिक गुणन रिक्त समष्‍टि पर लागू होती है।

विशेष रूप से, इसमें निम्नलिखित गुण होते हैं:

आंतरिक गुणनों के वास्तविक और जटिल भाग

मान लो कि आंतरिक गुणन है (इसलिए यह अपने दूसरे तर्क में प्रतिरेखीय है)। ध्रुवीकरण पहचान से ज्ञात होता है कि आंतरिक गुणन का वास्तविक भाग है:

यदि तब वास्तविक सदिश समष्‍टि है:
और काल्पनिक भाग (यह जटिल भाग भी कहा जाता है ) का हमेशा से रहा है इस खंड के शेष भाग के लिए मान लें कि जटिल सदिश समष्‍टि है। जटिल सदिश स्थानों के लिए ध्रुवीकरण की पहचान यह दर्शाती है:

द्वारा परिभाषित मानचित्र सभी के लिए आंतरिक गुणन के स्वयंसिद्धों को संतुष्ट करता है इसके अतिरिक्त कि यह अपने में प्रतिरेखीय है प्रथम इसके दूसरे, तर्क के अतिरिक्त । दोनों का असली भाग तथा के बराबर हैं किन्तु आंतरिक गुणन उनके जटिल भाग में भिन्न होते हैं:

अंतिम समानता अपने वास्तविक भाग के संदर्भ में रेखीय कार्यात्मक के वास्तविक और काल्पनिक भागों के सूत्र के समान है।

ये सूत्र बताते हैं कि प्रत्येक जटिल आंतरिक गुणन उसके वास्तविक भाग द्वारा पूरी तरह से निर्धारित होता है। इसके अतिरिक्त, यह वास्तविक भाग आंतरिक गुणन को परिभाषित करता है वास्तविक सदिश समष्‍टि के रूप में माना जाता है। इस प्रकार जटिल सदिश समष्‍टि पर जटिल आंतरिक गुणनों के मध्य एक-से- पत्राचार होता है और वास्तविक आंतरिक गुणन चालू हैं उदाहरण के लिए, मान लीजिए कि कुछ पूर्णांक के लिए कब सामान्य तरीके से वास्तविक सदिश समष्‍टि के रूप में माना जाता है (जिसका अर्थ है कि इसकी पहचान की जाती है आयामी वास्तविक सदिश स्पेस प्रत्येक के साथ के साथ पहचान की गई ), फिर डॉट गुणन इस समष्‍टि पर वास्तविक आंतरिक गुणन को परिभाषित करता है। अद्वितीय जटिल आंतरिक गुणन पर डॉट गुणन द्वारा प्रेरित वह चित्र है जो भेजता है प्रति (क्योंकि इस चित्र का असली भाग डॉट गुणन के बराबर है)।

वास्तविक बनाम जटिल आंतरिक गुणन

निरूपित जटिल संख्याओं के अतिरिक्त वास्तविक संख्याओं पर सदिश समष्‍टि के रूप में माना जाता है। जटिल आंतरिक गुणन का वास्तविक हिस्सा चित्र है जो आवश्यक रूप से वास्तविक सदिश समष्‍टि पर वास्तविक आंतरिक गुणन बनाता है वास्तविक सदिश स्पेस पर प्रत्येक आंतरिक गुणन बिलिनियर मानचित्र और सममित मानचित्र है।

उदाहरण के लिए, यदि आंतरिक गुणन के साथ जहाँ क्षेत्र के ऊपर सदिश समष्‍टि है फिर सदिश समष्‍टि है तथा डॉट गुणन है जहाँ बिंदु के साथ पहचाना जाता है (और इसी तरह के लिए ); इस प्रकार मानक आंतरिक गुणन पर डॉट गुणन का विस्तार है। यह भी था इसे अतिरिक्त रूप में परिभाषित किया गया है सममित चित्र (सामान्य के अतिरिक्त संयुग्म सममित चित्र ) तो इसका असली भाग चाहेंगे नॉट डॉट गुणन हो; इसके अतिरिक्त, जटिल संयुग्म के बिना, यदि किन्तु फिर तो असाइनमेंट पैरामीटर परिभाषित नहीं करेगा।

अगले उदाहरणों से पता चलता है कि वास्तविक और जटिल आंतरिक गुणनों में कई गुण और परिणाम समान हैं, वे पूरी तरह से विनिमेय नहीं हैं। उदाहरण के लिए, यदि फिर किन्तु अगले उदाहरण से पता चलता है कि बातचीत सामान्य रूप से है नॉट सच हैं। दिया गया कोई भी सदिश (जो सदिश है 90° से घुमाया जाता है) से संबंधित है और इसलिए भी के अंतर्गत आता है (चूंकि का अदिश गुणन द्वारा में परिभाषित नहीं है सदिश द्वारा चिह्नित फिर भी का तत्व है ). जटिल आंतरिक गुणन के लिए, जबकि वास्तविक आंतरिक गुणन के लिए मूल्य हमेशा होता है यदि जटिल आंतरिक गुणन है और सतत रैखिक ऑपरेटर है जो संतुष्ट करता है सभी के लिए फिर यह कथन अब सत्य नहीं है यदि इसके अतिरिक्त वास्तविक आंतरिक गुणन है, जैसा कि यह अगला उदाहरण दिखाता है। मान लो कि आंतरिक गुणन है उपर्युक्त। फिर चित्र द्वारा परिभाषित रेखीय चित्र है (दोनों के लिए रैखिक तथा ) जो रोटेशन को दर्शाता है प्लेन में। इसलिये तथा लंबवत सदिश और सिर्फ डॉट गुणन है, सभी सदिश के लिए फिर भी, यह रोटेशन मैप निश्चित रूप से समान नहीं है इसके विपरीत, जटिल आंतरिक गुणन का उपयोग करने से जो समान रूप से शून्य नहीं है।

ऑर्थोनॉर्मल सीक्वेंस

को आयाम का परिमित आयामी आंतरिक गुणन समष्‍टि होने दें। याद रखें कि V के प्रत्येक आधार (रैखिक बीजगणित) पर n रैखिक रूप से स्वतंत्र सदिश होते हैं। ग्राम-श्मिट प्रक्रिया का उपयोग करके हम मनमाना आधार से शुरू कर सकते हैं और इसे ऑर्थोनॉर्मल आधार में परिवर्तित कर सकते हैं। अर्थात्, ऐसे आधार में जिसमें सभी तत्व ओर्थोगोनल हैं और इकाई पैरामीटर हैं। प्रतीकों में, आधार 2 ऑर्थोनॉर्मल यदि प्रत्येक के लिए तथा प्रत्येक सूचकांक के लिए ऑर्थोनॉर्मल बेसिस की यह परिभाषा निम्नलिखित तरीके से अनंत-आयामी आंतरिक गुणन रिक्त समष्‍टि की परिस्थिति में सामान्यीकृत करती है। मान लें कि कोई आंतरिक गुणन समष्‍टि है। फिर संग्रह

के लिए आधार है यदि के उप-समष्‍टि के तत्वों के परिमित रैखिक संयोजनों द्वारा उत्पन्न में सघन है (पैरामीटर से प्रेरित पैरामीटर में) अंदरूनी प्रोडक्ट)। के लिए ऑर्थोनॉर्मल आधार है, यदि यह आधार है और
यदि तथा सभी के लिए ग्राम-श्मिट प्रक्रिया के अनंत-आयामी एनालॉग का उपयोग करके कोई दिखा सकता है:

प्रमेय। किसी भी वियोज्य समष्‍टि के आंतरिक गुणन समष्‍टि का अलौकिक आधार है।

हौसडॉर्फ अधिकतम सिद्धांत का उपयोग करना और तथ्य यह है कि हिल्बर्ट स्पेस में रैखिक उप-स्थानों पर ऑर्थोगोनल प्रक्षेपण अच्छी तरह से परिभाषित है, कोई यह भी दिखा सकता है कि

प्रमेय। किसी भी हिल्बर्ट समष्‍टि का अलौकिक आधार है।

दो पिछले प्रमेय इस सवाल को उठाते हैं कि क्या सभी आंतरिक गुणन रिक्त समष्‍टि का अलौकिक आधार है। उत्तर, यह पता चला है नकारात्मक है। यह गैर-तुच्छ परिणाम है, और नीचे सिद्ध किया गया है। निम्नलिखित प्रमाण हेल्मोस की ए हिल्बर्ट स्पेस प्रॉब्लम बुक से लिया गया है (संदर्भ देखें)।

परसेवल की पहचान तुरंत निम्नलिखित प्रमेय की ओर ले जाती है:

प्रमेय। होने देना वियोज्य आंतरिक गुणन समष्‍टि हो और का दैहिक आधार फिर मानचित्र

सममितीय रेखीय मानचित्र है घनी छवि के साथ।

इस प्रमेय को फूरियर श्रृंखला का अमूर्त रूप माना जा सकता है, जिसमें मनमाना ऑर्थोनॉर्मल आधार त्रिकोणमितीय बहुपद के अनुक्रम की भूमिका निभाता है। ध्यान दें कि अंतर्निहित इंडेक्स सेट को किसी भी गणनीय सेट के रूप में लिया जा सकता है (और वास्तव में कोई भी सेट, बशर्ते उचित रूप से परिभाषित किया गया है, जैसा कि लेख हिल्बर्ट स्पेस में बताया गया है)। विशेष रूप से, हम फूरियर श्रृंखला के सिद्धांत में निम्नलिखित परिणाम प्राप्त करते हैं:

प्रमेय। होने देना आंतरिक गुणन समष्‍टि हो फिर निरंतर कार्यों का अनुक्रम (सभी पूर्णांकों के सेट पर अनुक्रमित)।

स्पेस का लम्बवत आधार है साथ अंदरूनी प्रोडक्ट। मानचित्रण
घनी छवि वाला आइसोमेट्रिक रैखिक मानचित्र है।

अनुक्रम की ओर्थोगोनलिटी इस तथ्य से तुरंत अनुसरण करता है कि यदि फिर

अनुक्रम की सामान्यता डिज़ाइन द्वारा होती है, अर्थात, गुणांकों को इस प्रकार चुना जाता है ताकि पैरामीटर 1 पर आ जाए। अंत में तथ्य यह है कि अनुक्रम में घने बीजीय विस्तार हैं, inner product norm, इस तथ्य से अनुसरण करता है कि अनुक्रम में सघन बीजगणितीय विस्तार है, इस बार निरंतर आवधिक कार्यों के समष्‍टि पर समान पैरामीटर के साथ। यह त्रिकोणमितीय बहुपदों के एकसमान घनत्व पर वीयरस्ट्रास सन्निकटन प्रमेय की सामग्री है।

आंतरिक गुणन रिक्त समष्‍टि पर ऑपरेटर

कई प्रकार के रैखिक चित्र आंतरिक गुणन रिक्त समष्‍टि के मध्य तथा प्रासंगिकता के हैं:

  • निरंतर रेखीय मानचित्र: ऊपर या समकक्ष रूप से परिभाषित मीट्रिक के संबंध में रैखिक और निरंतर है, रैखिक है और गैर-ऋणात्मक वास्तविकताओं का सेट है कहाँ की बंद इकाई गेंद पर पर्वतमाला पे घिरा है।
  • सममित रैखिक ऑपरेटर: रैखिक है और सभी के लिए
  • आइसोमेट्री: संतुष्ट सभी के लिए रेखीय समरूपता ( एंटीलाइनर आइसोमेट्री) आइसोमेट्री है जो रेखीय मानचित्र भी है (प्रतिरेखीय मानचित्र)। आंतरिक गुणन रिक्त समष्‍टि के लिए, ध्रुवीकरण पहचान का उपयोग यह दिखाने के लिए किया जा सकता है आइसोमेट्री है यदि सभी के लिए सभी आइसोमेट्री इंजेक्शन हैं। मजूर-उलम प्रमेय स्थापित करता है कि दो के मध्य प्रत्येक विशेषण समरूपता वास्तविक नॉर्म्ड स्पेस एफ़िन परिवर्तन है। परिणाम स्वरुप , आइसोमेट्री वास्तविक आंतरिक गुणन रिक्त समष्‍टि के मध्य रैखिक मानचित्र है यदि और केवल यदि आइसोमेट्री आंतरिक गुणन रिक्त समष्‍टि के मध्य s रूपवाद हैं, और वास्तविक आंतरिक गुणन रिक्त समष्‍टि के रूपवाद ऑर्थोगोनल परिवर्तन हैं ( ओर्थोगोनल आव्यूह के साथ तुलना करें)।
  • सममितीय समरूपता: आइसोमेट्री है जो विशेषण (और इसलिए विशेषण) है। आइसोमेट्रिकल आइसोमोर्फिम्स को एकात्मक ऑपरेटर ( एकात्मक आव्यूह के साथ तुलना) के रूप में भी जाना जाता है।

आंतरिक गुणन समष्‍टि सिद्धांत के दृष्टिकोण से, दो स्थानों के मध्य अंतर करने की कोई आवश्यकता नहीं है जो कि आइसोमेट्रिक रूप से आइसोमोर्फिक हैं। वर्णक्रमीय प्रमेय परिमित आयामी आंतरिक गुणन रिक्त समष्‍टि पर सममित, एकात्मक और अधिक सामान्यतः सामान्य आपरेटरों के लिए विहित रूप प्रदान करता है। स्पेक्ट्रल प्रमेय का सामान्यीकरण हिल्बर्ट रिक्त समष्‍टि में निरंतर सामान्य ऑपरेटरों के लिए होता है।[11]

सामान्यीकरण

किसी आंतरिक गुणन के किसी भी स्वयंसिद्ध को कमजोर किया जा सकता है, जिससे सामान्यीकृत धारणाएं उत्पन्न होती हैं। सामान्यीकरण जो आंतरिक गुणनों के सबसे करीब होते हैं, जहां द्विरेखीयता और संयुग्म समरूपता को निरंतर रखा जाता है, किन्तु धनात्मक-निश्चितता कमजोर होती है।

आंतरिक गुणनों को पतित करें

यदि सदिश समष्‍टि है और अर्ध-निश्चित सेसक्विलिनियर रूप, फिर कार्य:

समझ में आता है और आदर्श के सभी गुणों को संतुष्ट करता है इसके कि तात्पर्य नहीं है (इस प्रकार के कार्यात्मक को तब अर्ध-मानक कहा जाता है)। हम भागफल पर विचार करके आंतरिक गुणन समष्‍टि का गुणनन कर सकते हैं सेसक्विलिनियर फॉर्म के माध्यम से कारक यह निर्माण कई संदर्भों में प्रयोग किया जाता है। गेलफैंड-नैमार्क-सेगल निर्माण इस तकनीक के उपयोग का विशेष रूप से महत्वपूर्ण उदाहरण है। और उदाहरण मर्सर के प्रमेय का प्रतिनिधित्व है।

गैरपतित संयुग्म सममित रूप

वैकल्पिक रूप से, किसी को आवश्यकता हो सकती है कि जोड़ी गैर-अपूर्ण रूप हो, जिसका अर्थ है कि सभी गैर-शून्य के लिए कुछ सम्मलित है ऐसा है कि यद्यपि बराबर नहीं चाहिए ; दूसरे शब्दों में, प्रेरित चित्र दोहरी जगह के लिए इंजेक्शन है। अंतर ज्यामिति में यह सामान्यीकरण महत्वपूर्ण है: विविध जिसका स्पर्शरेखा रिक्त समष्‍टि आंतरिक गुणन है, छद्म रीमैनियन विविध है, जबकि यदि यह गैरपतित संयुग्मित सममित रूप से संबंधित है तो विविध छद्म- रीमैनियन विविध है। सिल्वेस्टर के जड़त्व के नियम के अनुसार, जिस तरह प्रत्येक आंतरिक गुणन सदिशों के सेट पर धनात्मक भार के साथ डॉट गुणन के समान होता है, उसी तरह प्रत्येक गैर-डीजेनरेट संयुग्म सममित रूप डॉट गुणन के समान होता है अशून्य सदिश के सेट पर वजन, और धनात्मक और नकारात्मक वजन की संख्या को क्रमशः धनात्मक सूचकांक और नकारात्मक सूचकांक कहा जाता है। मिन्कोव्स्की स्पेस में सदिश का गुणन अनिश्चित आंतरिक गुणन का उदाहरण है, चूंकि, तकनीकी रूप से बोलते हुए, यह उपरोक्त मानक परिभाषा के अनुसार आंतरिक गुणन नहीं है। मिन्कोव्स्की स्पेस में चार आयाम (गणित) और सूचकांक 3 और 1 (साइन (गणित) का असाइनमेंट + और - उनके लिए साइन कन्वेंशन मीट्रिक हस्ताक्षर) हैं।

विशुद्ध रूप से बीजगणितीय कथन (वे जो धनात्मकता का उपयोग नहीं करते हैं) सामान्यतः केवल गैर-अपघटन (इंजेक्शनी होमोमोर्फिज्म) पर निर्भर करते हैं। ) और इस प्रकार सामान्यतः धारण करते हैं।

संबंधित गुणन

आंतरिक गुणन शब्द बाहरी गुणन के विपरीत है, जो थोड़ा अधिक सामान्य और विपरीत है। सीधे शब्दों में, निर्देशांक में, आंतरिक गुणन a का गुणन है कोवेक्टर साथ सदिश, उपज a आव्यूह (अदिश) है, जबकि बाहरी गुणन का गुणन है a के साथ सदिश कोसदिश, उपज आव्यूह है। बाहरी गुणन को विभिन्न आयामों के लिए परिभाषित किया गया है, जबकि आंतरिक गुणन को समान आयाम की आवश्यकता है। यदि आयाम समान हैं, तो आंतरिक गुणन ट्रेस है बाहरी गुणन का (ट्रेस केवल स्क्वायर मैट्रिसेस के लिए ठीक से परिभाषित किया जा रहा है)। अनौपचारिक सारांश में: आंतरिक क्षैतिज समय ऊर्ध्वाधर है और नीचे सिकुड़ता है, बाहरी ऊर्ध्वाधर समय क्षैतिज है और बाहर विस्तारित करता है।

अधिक संक्षेप में, बाहरी गुणन द्विरेखीय मानचित्र है सदिश और कोवेक्टर को श्रेणी 1 रैखिक परिवर्तन (प्रकार का साधारण टेंसर (1, 1)) में भेज रहा है, जबकि आंतरिक गुणन बिलिनियर द्विरेखीय मानचित्र है है सदिश पर कोवेक्टर का मूल्यांकन करके दिया गया; यहाँ डोमेन सदिश रिक्त समष्‍टि का क्रम कोसदिश/सदिश भेद को दर्शाता है।

आंतरिक गुणन और बाहरी गुणन को आंतरिक गुणन और बाहरी गुणन के साथ भ्रमित नहीं होना चाहिए, जो इसके अतिरिक्त सदिश क्षेत्रों और अंतर रूपों, या अधिक सामान्यतः बाहरी बीजगणित पर संचालन होते हैं।

समष्‍टिता के रूप में, ज्यामितीय बीजगणित में आंतरिक गुणन और बाहरी (ग्रासमैन) गुणन को ज्यामितीय गुणन (क्लिफोर्ड बीजगणित में क्लिफोर्ड गुणन) में संयोजित किया जाता है - आंतरिक गुणन दो सदिश (1-सदिश) को अदिश ( 0-सदिश) भेजता है, जबकि बाहरी गुणन दो सदिश को भेजता है। बायसदिश (2-सदिश) - और इस संदर्भ में बाहरी गुणन को सामान्यतः बाहरी गुणन (वैकल्पिक रूप से, कील गुणन) कहा जाता है। इस संदर्भ में आंतरिक गुणन को अधिक उचित रूप सेअदिश गुणन कहा जाता है, क्योंकि प्रश्न में गैर-अपक्षयी द्विघात रूप धनात्मक निश्चित होना आवश्यक नहीं है (आंतरिक गुणन होने की आवश्यकता नहीं है)।

यह भी देखें

टिप्पणियाँ

  1. By combining the linear in the first argument property with the conjugate symmetry property you get conjugate-linear in the second argument: . This is how the inner product was originally defined and is used in most mathematical contexts. A different convention has been adopted in theoretical physics and quantum mechanics, originating in the bra-ket notation of Paul Dirac, where the inner product is taken to be linear in the second argument and conjugate-linear in the first argument; this convention is used in many other domains such as engineering and computer science.

संदर्भ

  1. 1.0 1.1 1.2 Trèves 2006, pp. 112–125.
  2. Schaefer & Wolff 1999, pp. 40–45.
  3. Moore, Gregory H. (1995). "रैखिक बीजगणित का स्वयंसिद्धीकरण: 1875-1940". Historia Mathematica. 22 (3): 262–303. doi:10.1006/hmat.1995.1025.
  4. Schaefer & Wolff 1999, pp. 36–72.
  5. Jain, P. K.; Ahmad, Khalil (1995). "5.1 Definitions and basic properties of inner product spaces and Hilbert spaces". Functional Analysis (2nd ed.). New Age International. p. 203. ISBN 81-224-0801-X.
  6. Prugovečki, Eduard (1981). "Definition 2.1". Quantum Mechanics in Hilbert Space (2nd ed.). Academic Press. pp. 18ff. ISBN 0-12-566060-X.
  7. Schaefer 1999, p. 44.
  8. Ouwehand, Peter (November 2010). "यादृच्छिक चर के स्थान" (PDF). AIMS. Retrieved 2017-09-05.
  9. Siegrist, Kyle (1997). "यादृच्छिक चर के वेक्टर रिक्त स्थान". Random: Probability, Mathematical Statistics, Stochastic Processes. Retrieved 2017-09-05.
  10. Bigoni, Daniele (2015). "Appendix B: Probability theory and functional spaces" (PDF). इंजीनियरिंग समस्याओं के अनुप्रयोगों के साथ अनिश्चितता मात्रा (PhD). Technical University of Denmark. Retrieved 2017-09-05.
  11. Rudin 1991


ग्रन्थसूची