आयनीकरण कक्ष: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(72 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Gas-filled radiation detector}}
{{short description|Gas-filled radiation detector}}
आयनीकरण कक्ष गैसीय आयनीकरण संसूचक का सबसे सरल प्रकार है, और [[एक्स-रे]], [[गामा किरण|गामा किरणों]] और [[बीटा कण|बीटा कणों]] सहित कई प्रकार के आयनकारी विकिरण का पता लगाने और मापने के लिए व्यापक रूप से उपयोग किया जाता है। परंपरागत रूप से, शब्द आयनीकरण कक्ष विशेष रूप से उन डिटेक्टरों को संदर्भित करता है जो विद्युत क्षेत्र के अनुप्रयोग के माध्यम से गैस के भीतर 'प्रत्यक्ष आयनीकरण' द्वारा बनाए गए सभी शुल्क एकत्र करते हैं।<ref name="knoll">{{cite book |first=Glenn F |last=Knoll |title=Radiation detection and measurement |edition=3rd |year=1999 |location=New York |publisher=Wiley |isbn=978-0-471-07338-3}}</ref> यह केवल घटना विकिरण और गैस के बीच प्रत्येक बातचीत द्वारा बनाए गए असतत शुल्क का उपयोग करता है। गैसीय [[आयनीकरण]] डिटेक्टरों में आयनीकरण कक्ष और उपकरण सम्मिलित हैं जो गैस गुणन का उपयोग करते हैं, अर्थात् [[आनुपातिक काउंटर]] और [[गीगर काउंटर]]
'''आयनीकरण कक्ष''' गैसीय आयनीकरण संसूचक का सबसे सरल प्रकार है, और [[एक्स-रे]], [[गामा किरण|गामा किरणों]] और [[बीटा कण|बीटा कणों]] सहित कई प्रकार के आयनकारी विकिरण का ज्ञात करने और मापने के लिए व्यापक रूप से उपयोग किया जाता है। परंपरागत रूप से, आयनीकरण कक्ष शब्द विशेष रूप से उन संसूचकों को संदर्भित करता है जो विद्युत क्षेत्र के अनुप्रयोग के माध्यम से गैस के अंदर 'प्रत्यक्ष आयनीकरण' द्वारा बनाए गए सभी शुल्क एकत्र करते हैं।<ref name="knoll">{{cite book |first=Glenn F |last=Knoll |title=Radiation detection and measurement |edition=3rd |year=1999 |location=New York |publisher=Wiley |isbn=978-0-471-07338-3}}</ref> यह घटना विकिरण और गैस के मध्य प्रत्येक अंतःक्रिया द्वारा बनाए गए असतत आवेशों का उपयोग लघु प्रत्यक्ष प्रवाह के रूप में उत्पादन उत्पन्न करने के लिए करता है। इसका अर्थ है कि भिन्न-भिन्न आयनकारी घटनाओं को मापा नहीं जा सकता है, इसलिए विभिन्न प्रकार के विकिरण की ऊर्जा को भिन्न नहीं किया जा सकता है, लेकिन यह समग्र [[आयनीकरण]] प्रभाव का अति उत्तम [[आनुपातिक काउंटर]] देता है। 


आयन कक्षों में ऊर्जा की विस्तृत श्रृंखला में विकिरण के लिए समान प्रतिक्रिया होती है और गामा विकिरण के उच्च स्तर को मापने का पसंदीदा साधन है। वे व्यापक रूप से परमाणु ऊर्जा उद्योग, अनुसंधान प्रयोगशालाओं, [[रेडियोग्राफ़]], [[रेडियोजीवविज्ञान]] और पर्यावरण निगरानी में उपयोग किए जाते हैं।
आयन कक्षों में ऊर्जा की विस्तृत श्रृंखला में विकिरण के लिए समान प्रतिक्रिया होती है और गामा विकिरण के उच्च स्तर को मापने का रुचिकर साधन होते है। जैसे कि विकिरण गर्म सेल में बिना क्षरण के उच्च विकिरण क्षेत्रों में लंबे समय तक सहन कर सकते हैं। वे व्यापक रूप से परमाणु ऊर्जा उद्योग, अनुसंधान प्रयोगशालाओं, [[रेडियोग्राफ़|अग्नि को ज्ञात करना]], [[रेडियोजीवविज्ञान|विकिरण संरक्षण]] और पर्यावरण निरक्षण में उपयोग किए जाते हैं।


== संचालन का सिद्धांत ==
== संचालन का सिद्धांत ==
[[File:Ion chamber operation.gif|thumb|right|300px|समानांतर प्लेट आयन कक्ष का योजनाबद्ध आरेख, आयन जोड़े का निर्माण और विद्युत क्षेत्र के कारण आयनों का बहाव दिखा रहा है। इलेक्ट्रॉन आमतौर पर अपने छोटे द्रव्यमान के कारण धनात्मक आयनों की तुलना में 1000 गुना तेजी से प्रवाहित होते हैं।<ref name=knoll/>]]
[[File:Ion chamber operation.gif|thumb|right|300px|समानांतर समतल आयन कक्ष का योजनाबद्ध आरेख, आयन जोड़े का निर्माण और विद्युत क्षेत्र के कारण आयनों का बहाव दिखा रहा है। इलेक्ट्रॉन सामान्यतः अपने छोटे द्रव्यमान के कारण धनात्मक आयनों की तुलना में 1000 गुना तीव्रता से प्रवाहित होते हैं।<ref name=knoll/>]]
[[File:Detector regions.gif|thumb|300px|एक वैचारिक तार सिलेंडर गैसीय विकिरण डिटेक्टर के लिए वोल्टेज के विरुद्ध आयन करंट का प्लॉट। आयन कक्ष सबसे कम वोल्टेज पठार का उपयोग करते हैं।]]गैस [[आयन|आयनीकरण]] कक्ष घटना विकिरण के कारण गैस के अंदर निर्मित आयन की संख्या से आवेश को मापता है। इसमें दो [[इलेक्ट्रोड]] के साथ गैस से भरा कक्ष होता है; जो [[एनोड]] और [[कैथोड]] के रूप में जाना जाता है। इलेक्ट्रोड समानांतर प्लेटों (समानांतर प्लेट आयोनाइजेशन चेम्बर्स: पीपीआईसी) के रूप में हो सकते हैं, या समाक्षीय रूप से स्थित आंतरिक एनोड तार के साथ सिलेंडर व्यवस्था हो सकती है।
[[File:Detector regions.gif|thumb|300px|वैचारिक तार सिलेंडर गैसीय विकिरण संसूचक के लिए वोल्टेज के विरुद्ध आयन धारा का कथानक। आयन कक्ष सबसे अल्प वोल्टेज का उपयोग करते हैं।]]गैस [[आयन|आयनीकरण]] कक्ष घटना विकिरण के कारण गैस के अंदर निर्मित आयन की संख्या से आवेश को मापता है। इसमें दो [[इलेक्ट्रोड]] के साथ गैस से भरा कक्ष होता है; जो [[एनोड]] और [[कैथोड]] के रूप में जाना जाता है। इलेक्ट्रोड समानांतर प्लेटों के रूप में हो सकते हैं, या समाक्षीय रूप से स्थित आंतरिक एनोड तार के साथ सिलेंडर हो सकते हैं।


भरण गैस में विद्युत क्षेत्र बनाने के लिए इलेक्ट्रोड के बीच [[वोल्टेज]] क्षमता लागू की जाती है। जब इलेक्ट्रोड के बीच गैस परमाणु या अणु घटना आयनीकरण विकिरण द्वारा आयनित होते हैं, तो आयनीकरण | आयन-जोड़े बनते हैं और परिणामी सकारात्मक आयन और अलग-अलग इलेक्ट्रॉन विद्युत क्षेत्र के प्रभाव में विपरीत [[रासायनिक ध्रुवीयता]] के इलेक्ट्रोड में चले जाते हैं। यह आयनीकरण धारा उत्पन्न करता है जिसे [[विद्युतमापी]] सर्किट द्वारा मापा जाता है। इलेक्ट्रोमीटर बहुत कम आउटपुट करंट को मापने में सक्षम होना चाहिए जो चैम्बर डिजाइन, विकिरण खुराक और लागू वोल्टेज के आधार पर [[femtoamps]] से [[picoampere]] के क्षेत्र में है। प्रत्येक आयन जोड़ी ने इलेक्ट्रोड से या उसके लिए छोटे विद्युत आवेश को जमा किया या हटा दिया, जैसे कि संचित आवेश निर्मित आयन जोड़े की संख्या के अनुपात में है, और इसलिए विकिरण की खुराक। आवेश की यह निरंतर पीढ़ी आयनीकरण धारा उत्पन्न करती है, जो कक्ष में प्रवेश करने वाली कुल आयनकारी खुराक का उपाय है।<ref name=knoll/>
भरण गैस में विद्युत क्षेत्र बनाने के लिए इलेक्ट्रोड के मध्य [[वोल्टेज]] क्षमता प्रारम्भ की जाती है। जब इलेक्ट्रोड के मध्य गैस परमाणु या अणु घटना आयनीकरण विकिरण द्वारा आयनित होते हैं, तो आयन-जोड़े बनते हैं और परिणामी सकारात्मक आयन और पृथक इलेक्ट्रॉन विद्युत क्षेत्र के प्रभाव में विपरीत [[रासायनिक ध्रुवीयता]] के इलेक्ट्रोड में चले जाते हैं। यह आयनीकरण धारा उत्पन्न करता है जिसे [[विद्युतमापी]] परिपथ द्वारा मापा जाता है। इलेक्ट्रोमीटर अधिक अल्प उत्पादन धारा को मापने में सक्षम होना चाहिए जो चैम्बर डिजाइन, विकिरण मात्रा और प्रारंभिक वोल्टेज के आधार पर [[femtoamps|फेम्टोएम्पीयर]] से [[picoampere|पीकोएम्पीयर]] के क्षेत्र में होता है।  


विद्युत क्षेत्र पर्याप्त रूप से मजबूत है ताकि उपकरण सभी आयन जोड़े को हटाकर लगातार काम कर सके, जिससे आयन जोड़े के [[प्लाज्मा पुनर्संयोजन]] को रोका जा सके जो आयन धारा को कम कर देगा। ऑपरेशन के इस मोड को वर्तमान मोड के रूप में संदर्भित किया जाता है, जिसका अर्थ है कि आउटपुट सिग्नल निरंतर चालू है, न कि पल्स आउटपुट जैसा कि गीजर-मुलर ट्यूब या आनुपातिक काउंटर के मामले में है।<ref name=knoll/>क्योंकि उत्पादित आयन जोड़े की संख्या घटना विकिरण की ऊर्जा के समानुपाती होती है, यह निरंतर मापी गई धारा आयनीकरण कक्ष में खुराक दर (प्रति यूनिट समय में जमा ऊर्जा) के समानुपाती होती है। साथ में आयन-जोड़ी संग्रह ग्राफ का जिक्र करते हुए, यह देखा जा सकता है कि आयन कक्ष ऑपरेटिंग क्षेत्र में एकत्रित आयन जोड़ी का प्रभार लागू वोल्टेज की सीमा पर प्रभावी रूप से स्थिर होता है, क्योंकि इसकी अपेक्षाकृत कम विद्युत क्षेत्र की ताकत आयन कक्ष के कारण होती है। गुणन प्रभाव नहीं होता है। यह गीजर-मुलर ट्यूब या आनुपातिक काउंटर के विपरीत है जिससे द्वितीयक इलेक्ट्रॉन, और अंततः कई हिमस्खलन, मूल आयन-वर्तमान चार्ज को बहुत बढ़ाते हैं।<ref name=knoll/>
आयन युग्मों के [[प्लाज्मा पुनर्संयोजन|पुनर्संयोजन]] का अवरोधक करने के लिए विद्युत क्षेत्र पर्याप्त रूप से स्थिर होना चाहिए जो आयन धारा को अल्प कर देगा, और कैथोड तक पहुंचने पर इलेक्ट्रॉनों के साथ उनके पुनर्संयोजन द्वारा सकारात्मक आयनों के निर्माण का अवरोधक करते है। ऑपरेशन के इस मोड को "वर्तमान" मोड के रूप में संदर्भित किया जाता है, जिसका अर्थ है कि उत्पादन सिग्नल निरंतर प्रारम्भ होता है, न कि पल्स उत्पादन जैसा कि गीजर-मुलर ट्यूब या आनुपातिक काउंटर की स्थिति में होता है।<ref name=knoll/>




== चैंबर प्रकार और निर्माण ==
== कक्ष के प्रकार और निर्माण ==
निम्नलिखित कक्ष प्रकार सामान्यतः उपयोग किए जाते हैं।
निम्नलिखित कक्ष प्रकार सामान्यतः उपयोग किए जाते हैं।


=== फ्री-एयर चैंबर ===
=== फ्री-एयर कक्ष ===
यह वायुमंडल के लिए स्वतंत्र रूप से खुला कक्ष है, जहां भरण गैस परिवेशी वायु है। घरेलू [[स्मोक डिटेक्टर]] इसका अच्छा उदाहरण है, जहां कक्ष के माध्यम से हवा का प्राकृतिक प्रवाह आवश्यक है जिससे आयन धारा में परिवर्तन से धुएं के कणों का पता लगाया जा सके। अन्य उदाहरण ऐसे अनुप्रयोग हैं जहां कक्ष के बाहर आयन बनाए जाते हैं लेकिन हवा या गैस के मजबूर प्रवाह द्वारा ले जाया जाता है।
यह वायुमंडल के लिए स्वतंत्र रूप से खुला कक्ष है, जहां भरण गैस परिवेशी वायु होती है। घरेलू [[स्मोक डिटेक्टर|धुआँ संसूचक]] इसका उत्तम उदाहरण है, जहां कक्ष के माध्यम से वायु का प्राकृतिक प्रवाह आवश्यक है जिससे आयन धारा में परिवर्तन से धुएं के कणों को ज्ञात किया जा सके। अन्य उदाहरण ऐसे अनुप्रयोग हैं जहां कक्ष के बाहर आयन बनाए जाते हैं लेकिन वायु या गैस को विवश प्रवाह द्वारा ले जाया जाता है।


==== वेंटेड चैंबर ====
==== निकासित कक्ष ====
ये कक्ष सामान्य रूप से बेलनाकार होते हैं और वायुमंडलीय दबाव पर काम करते हैं, लेकिन नमी के प्रवेश को रोकने के लिए जलशुष्कक युक्त फिल्टर को वेंट लाइन में स्थापित किया जाता है।<ref name=radpro>{{cite journal |last=Steinmeyer |first=Paul R. |journal=RSO Magazine |volume=8 |number=5 |year=2003 |title=Ion Chambers: Everything You've Wanted to Know (But Were Afraid to Ask) |url=http://www.radpro.com/ION2.pdf |access-date=2013-08-18 |url-status=dead |archive-url=https://web.archive.org/web/20120915030829/http://www.radpro.com/ION2.pdf |archive-date=2012-09-15 }}</ref> यह कक्ष के इंटीरियर में नमी के निर्माण को रोकने के लिए है, जो अन्यथा वायुमंडलीय वायु दबाव को बदलने के पंप प्रभाव से प्रस्तुत किया जाएगा। इन कक्षों में बेलनाकार शरीर होता है जो कुछ मिलीमीटर मोटी एल्यूमीनियम या प्लास्टिक से बना होता है। सामग्री को हवा के समान परमाणु संख्या के लिए चुना जाता है जिससे कि दीवार को विकिरण बीम ऊर्जा की सीमा पर हवा के बराबर कहा जा सके।<ref name=knoll/><ref>{{cite journal |last1=Seco |first1=Joao |last2=Clasie |first2=Ben |last3=Partridge |first3=Mike |title=Review on the characteristics of radiation detectors for dosimetry and imaging |journal=Physics in Medicine and Biology |date=21 October 2014 |volume=59 |issue=20 |pages=R303–R347 |doi=10.1088/0031-9155/59/20/R303 |pmid=25229250 |doi-access=free |bibcode=2014PMB....59R.303S}}</ref><ref name=Hill2014>{{cite journal |last1=Hill |first1=Robin |last2=Healy |first2=Brendan |last3=Holloway |first3=Lois |last4=Kuncic |first4=Zdenka |last5=Thwaites |first5=David |last6=Baldock |first6=Clive |title=Advances in kilovoltage x-ray beam dosimetry |journal=Physics in Medicine and Biology |date=21 March 2014 |volume=59 |issue=6 |pages=R183–R231 |doi=10.1088/0031-9155/59/6/R183 |pmid=24584183 |bibcode=2014PMB....59R.183H|s2cid=18082594 }}</ref> यह सुनिश्चित करने का प्रभाव है कि कक्ष में गैस कार्य कर रही है जैसे कि यह असीम रूप से बड़ी गैस मात्रा का हिस्सा था, और दीवार सामग्री के साथ गामा की बातचीत को कम करके सटीकता को बढ़ाता है। दीवार सामग्री की परमाणु संख्या जितनी अधिक होगी, बातचीत की संभावना उतनी ही अधिक होगी। दीवार की मोटाई मोटी दीवार के साथ हवा के प्रभाव को बनाए रखने और पतली दीवार का उपयोग करके बढ़ती संवेदनशीलता के बीच व्यापार-बंद है। इन कक्षों में अक्सर पर्याप्त पतली सामग्री से बनी अंत खिड़की होती है, जैसे कि माइलर, जिससे कि बीटा कण गैस की मात्रा में प्रवेश कर सकें। गामा विकिरण अंत खिड़की और बगल की दीवारों दोनों से प्रवेश करता है। हाथ से पकड़े जाने वाले उपकरणों के लिए दीवार की मोटाई फोटॉन दिशात्मकता को कम करने के लिए यथासंभव समान बनाई जाती है, चूंकि कोई भी बीटा विंडो प्रतिक्रिया स्पष्ट रूप से अत्यधिक दिशात्मक होती है। हवा के दबाव के साथ दक्षता में छोटे बदलावों के लिए वेंटेड कक्ष अतिसंवेदनशील होते हैं <ref name=radpro/>और सुधार कारक बहुत सटीक माप अनुप्रयोगों के लिए लागू किए जा सकते हैं।
ये कक्ष सामान्य रूप से बेलनाकार के होते हैं और वायुमंडलीय दबाव पर कार्य करते हैं, लेकिन आर्द्रता के प्रवेश का अवरोध करने के लिए जलशुष्कक युक्त फिल्टर को निकासित कक्ष में स्थापित किया जाता है।<ref name=radpro>{{cite journal |last=Steinmeyer |first=Paul R. |journal=RSO Magazine |volume=8 |number=5 |year=2003 |title=Ion Chambers: Everything You've Wanted to Know (But Were Afraid to Ask) |url=http://www.radpro.com/ION2.pdf |access-date=2013-08-18 |url-status=dead |archive-url=https://web.archive.org/web/20120915030829/http://www.radpro.com/ION2.pdf |archive-date=2012-09-15 }}</ref> यह कक्ष के आंतरिक भाग में आर्द्रता के निर्माण के अवरोधक के लिए है, जो अन्यथा परिवर्तित वायुमंडलीय वायु दबाव के "पंप" प्रभाव से प्रारंभ हो जाएगा। इन कक्षों का आकार बेलनाकार होता है जो कुछ मिलीमीटर मोटी एल्यूमीनियम या प्लास्टिक से बना होता है। सामग्री का वायु के समान परमाणु संख्या के लिए चयन किया जाता है जिससे कि विकिरण बीम ऊर्जा की सीमा पर दीवार को "वायु समतुल्य" कहा जा सके।<ref name=knoll/><ref>{{cite journal |last1=Seco |first1=Joao |last2=Clasie |first2=Ben |last3=Partridge |first3=Mike |title=Review on the characteristics of radiation detectors for dosimetry and imaging |journal=Physics in Medicine and Biology |date=21 October 2014 |volume=59 |issue=20 |pages=R303–R347 |doi=10.1088/0031-9155/59/20/R303 |pmid=25229250 |doi-access=free |bibcode=2014PMB....59R.303S}}</ref><ref name=Hill2014>{{cite journal |last1=Hill |first1=Robin |last2=Healy |first2=Brendan |last3=Holloway |first3=Lois |last4=Kuncic |first4=Zdenka |last5=Thwaites |first5=David |last6=Baldock |first6=Clive |title=Advances in kilovoltage x-ray beam dosimetry |journal=Physics in Medicine and Biology |date=21 March 2014 |volume=59 |issue=6 |pages=R183–R231 |doi=10.1088/0031-9155/59/6/R183 |pmid=24584183 |bibcode=2014PMB....59R.183H|s2cid=18082594 }}</ref> यह सुनिश्चित करने का प्रभाव होता है कि कक्ष में गैस कार्य कर रही है जैसे कि यह अनंत रूप से बड़ी गैस मात्रा का भाग था, और दीवार सामग्री के साथ गामा की अंतःक्रिया को अल्प करके त्रुटिहीन को बढ़ाता है। दीवार सामग्री की परमाणु संख्या जितनी अधिक होगी, अंतःक्रिया की संभावना उतनी ही अधिक होगी। दीवार की मोटाई मोटी दीवार के साथ वायु के प्रभाव को बनाए रखने और पतली दीवार का उपयोग करके बढ़ती संवेदनशीलता के मध्य होता है। इन कक्षों में प्रायः पर्याप्त पतली सामग्री से बनी अंत खिड़की होती है, जैसे कि माइलर, जिससे कि बीटा कण गैस की मात्रा में प्रवेश कर सकें। गामा विकिरण अंत खिड़की और निकट की दीवारों दोनों से प्रवेश करता है। हाथ से पकड़े जाने वाले उपकरणों के लिए दीवार की मोटाई फोटॉन दिशात्मकता को अल्प करने के लिए यथासंभव समान बनाई जाती है, चूंकि कोई भी बीटा विंडो प्रतिक्रिया स्पष्ट रूप से अत्यधिक दिशात्मक होती है। वायु के दबाव के साथ दक्षता में लघु परिवर्तनों के लिए निकासित कक्ष अतिसंवेदनशील होते हैं <ref name=radpro/>और सुधार कारक अधिक त्रुटिहीन माप अनुप्रयोगों के लिए प्रारम्भ किए जा सकते हैं।


==== मुहरबंद कम दबाव कक्ष ====
==== सील अल्प दबाव कक्ष ====
ये वेंटेड चैंबर के निर्माण के समान हैं, लेकिन वायुमंडलीय दबाव पर या उसके आसपास सील और संचालित होते हैं। इन कक्षों में वेंट और डिसेकेंट की आवश्यकता नहीं होने का भी लाभ होता है। पता लगाने की दक्षता में सुधार करने के लिए, वे महान गैस से भरे हुए हैं क्योंकि हवा में अत्यधिक विद्युतीय ऑक्सीजन आसानी से मुक्त इलेक्ट्रॉनों को पकड़ लेती है, जिससे नकारात्मक आयन बनते हैं। बीटा विंडो की ताकत वायुमंडलीय दबाव से भिन्न दबाव को सीमित करती है जिसे सहन किया जा सकता है, और सामान्य सामग्री स्टेनलेस स्टील या टाइटेनियम है जिसकी सामान्य मोटाई 25 माइक्रोमीटर है।<ref>[https://www.lndinc.com/product-category/ionization-chambers/end-window-beta-gamma-ionization-chambers/ LND, Inc. ion chamber specification sheets]</ref>
ये निकासित कक्ष के निर्माण के समान होते हैं, लेकिन वायुमंडलीय दबाव पर या उसके निकट सील और संचालित होते हैं। इन कक्षों में निकासित और डिसेकेंट की आवश्यकता नहीं होने का भी लाभ होता है। ज्ञात करने की दक्षता में सुधार करने के लिए, वे उत्तम गैस से भरे हुए हैं क्योंकि वायु में अत्यधिक विद्युतीय ऑक्सीजन सरलता से मुक्त इलेक्ट्रॉनों को ग्रहण कर लेती है, जिससे नकारात्मक आयन बनते हैं। बीटा विंडो की शक्ति वायुमंडलीय दबाव से भिन्न दबाव को सीमित करती है जिसे सहन किया जा सकता है, और सामान्य सामग्री स्टेनलेस स्टील या टाइटेनियम है जिसकी सामान्य मोटाई 25 माइक्रोमीटर है।<ref>[https://www.lndinc.com/product-category/ionization-chambers/end-window-beta-gamma-ionization-chambers/ LND, Inc. ion chamber specification sheets]</ref>




==== उच्च दबाव कक्ष ====
==== उच्च दबाव कक्ष ====
[[File:Ionizacni komory v dozimetru.jpg|thumb|एक बाड़े में दो उच्च दाब बेलनाकार आयन कक्ष।]]उच्च दबाव वाली गैस के उपयोग से कक्ष की दक्षता को और बढ़ाया जा सकता है। सामान्यतः 8-10 वायुमंडल का दबाव उपयोग किया जा सकता है, और विभिन्न महान गैसों को नियोजित किया जाता है। उच्च दबाव के परिणामस्वरूप अधिक गैस घनत्व होता है और इस प्रकार घटना विकिरण द्वारा भरण गैस और आयन-जोड़ी निर्माण के साथ टकराव की अधिक संभावना होती है। इस उच्च दबाव का सामना करने के लिए आवश्यक दीवार की मोटाई में वृद्धि के कारण, केवल गामा विकिरण का पता लगाया जा सकता है। इन डिटेक्टरों का उपयोग सर्वेक्षण मीटर और पर्यावरण निगरानी के लिए किया जाता है।<ref name=radpro/>
[[File:Ionizacni komory v dozimetru.jpg|thumb|समूह में दो उच्च दाब बेलनाकार आयन कक्ष।]]उच्च दबाव वाली गैस के उपयोग से कक्ष की दक्षता को और बढ़ाया जा सकता है। सामान्यतः 8-10 वायुमंडल का दबाव उपयोग किया जा सकता है, और विभिन्न महान गैसों को नियोजित किया जाता है। उच्च दबाव के परिणामस्वरूप अधिक गैस घनत्व होता है और इस प्रकार घटना विकिरण द्वारा भरण गैस और आयन-जोड़ी निर्माण के साथ विरोध की अधिक संभावना होती है। इस उच्च दबाव का सामना करने के लिए आवश्यक दीवार की मोटाई में वृद्धि के कारण, केवल गामा विकिरण को ज्ञात किया जा सकता है। इन संसूचकों का उपयोग सर्वेक्षण मीटर और पर्यावरण निरक्षण के लिए किया जाता है।<ref name=radpro/>




=== चैंबर ज्यामिति ===
=== कक्ष ज्यामिति ===


सामान्यतः [[विकिरण चिकित्सा]] मापन के लिए उपयोग किया जाने वाला बेलनाकार या थिम्बल कक्ष है। सक्रिय आयतन आंतरिक प्रवाहकीय सतह (कैथोड) और केंद्रीय एनोड के साथ थिम्बल आकार की गुहा के अंदर रखा जाता है। कैविटी में लगाया गया बायस वोल्टेज आयन एकत्र करता है और करंट उत्पन्न करता है जिसे इलेक्ट्रोमीटर से मापा जा सकता है।
सामान्यतः [[विकिरण चिकित्सा]] मापन के लिए बेलनाकार या किनारा कक्ष का उपयोग किया जाता है। सक्रिय आयतन आंतरिक प्रवाहकीय सतह (कैथोड) और केंद्रीय एनोड के साथ किनारा आकार की अंतःकरण के अंदर रखा जाता है। अंतःकरण में लगाया गया अनुचित वोल्टेज आयन एकत्र करता है और धारा उत्पन्न करता है जिसे इलेक्ट्रोमीटर से मापा जा सकता है।


समानांतर-प्लेट कक्ष (पीपीआईसी) छोटी सी डिस्क के आकार के होते हैं, जिसमें गोलाकार एकत्रित इलेक्ट्रोड छोटे से अंतर से अलग होते हैं, सामान्यतः 2 मिमी या उससे कम। ऊपरी डिस्क बेहद पतली है, जो बेलनाकार कक्ष के साथ संभव होने की तुलना में अधिक सटीक निकट-सतह खुराक माप की अनुमति देती है। मॉनिटर कक्ष सामान्यतः पीपीआईसी होते हैं जिनका उपयोग विकिरण बीम की तीव्रता जैसे लगातार मापने के लिए किया जाता है। उदाहरण के लिए, [[रेडियोथेरेपी]] के लिए उपयोग किए जाने वाले [[रैखिक त्वरक]] के शीर्ष के भीतर। मल्टी-कैविटी आयनीकरण कक्ष कई अलग-अलग क्षेत्रों में विकिरण बीम की तीव्रता को माप सकते हैं, बीम समरूपता और सपाटता की जानकारी प्रदान करते हैं।
समानांतर-समतल कक्ष (पीपीआईसी) छोटी सी डिस्क के आकार के होते हैं, जिसमें गोलाकार एकत्रित इलेक्ट्रोड छोटे अंतर से भिन्न होते हैं, सामान्यतः 2 मिमी या उससे अल्प ऊपरी डिस्क अत्यंत पतली होती है, जो बेलनाकार कक्ष के साथ संभव होने की तुलना में अधिक त्रुटिहीन निकट-सतह मात्रा माप की अनुमति देती है। मॉनिटर कक्ष सामान्यतः पीपीआईसी होते हैं जिनका उपयोग विकिरण बीम की तीव्रता जैसे निरंतर मापने के लिए किया जाता है। उदाहरण के लिए, [[रेडियोथेरेपी]] के लिए उपयोग किए जाने वाले [[रैखिक त्वरक]] के शीर्ष के भीतर बहु-अंतःकरण आयनीकरण कक्ष कई भिन्न-भिन्न क्षेत्रों में विकिरण बीम की तीव्रता को माप सकते हैं, जिसमे बीम समरूपता और समतलता की जानकारी प्रदान करते हैं।


===अनुसंधान और अंशांकन कक्ष ===
===अनुसंधान और अंशांकन कक्ष ===
[[File:Ionisation chamber made by Pierre Curie, c 1895-1900. (9660571297).jpg|thumb|पियरे क्यूरी द्वारा बनाया गया आयनीकरण कक्ष, c 1895-1900]]आयन कक्ष के प्रारंभिक संस्करणों का उपयोग [[मैरी क्यूरी]] और [[पियरे क्यूरी]] द्वारा रेडियोधर्मी सामग्री को अलग करने में उनके मूल कार्य में किया गया था। तब से आयन कक्ष अनुसंधान और अंशांकन उद्देश्यों के लिए प्रयोगशाला में व्यापक रूप से उपयोग किया जाने वाला उपकरण रहा है।
[[File:Ionisation chamber made by Pierre Curie, c 1895-1900. (9660571297).jpg|thumb|पियरे क्यूरी द्वारा बनाया गया आयनीकरण कक्ष, c 1895-1900]]आयन कक्ष के प्रारंभिक संस्करणों का उपयोग [[मैरी क्यूरी]] और [[पियरे क्यूरी]] द्वारा रेडियोधर्मी सामग्री को पृथक करने में उनके मूल कार्य में किया गया था। तब से आयन कक्ष अनुसंधान और अंशांकन उद्देश्यों के लिए प्रयोगशाला में व्यापक रूप से उपयोग किया जाने वाला उपकरण रहा है।


===ऐतिहासिक कक्ष ===
===ऐतिहासिक कक्ष ===


==== कंडेनसर कक्ष ====
==== संघनित्र कक्ष ====
संघनित्र कक्ष में तने के अंदर द्वितीयक गुहा होता है जो [[संधारित्र]] के रूप में कार्य करता है। जब यह संधारित्र पूरी तरह से चार्ज हो जाता है, तो थिम्बल के भीतर कोई भी आयनीकरण इस आवेश का प्रतिकार करता है, और आवेश में परिवर्तन को मापा जा सकता है। वे केवल 2 मेव या उससे कम ऊर्जा वाले बीम के लिए व्यावहारिक हैं, और उच्च स्टेम रिसाव उन्हें सटीक डोसिमेट्री के लिए अनुपयुक्त बनाता है।
संघनित्र कक्ष में तने के अंदर द्वितीयक अंतःकरण होता है जो [[संधारित्र]] के रूप में कार्य करता है। जब यह संधारित्र पूर्ण रूप से चार्ज हो जाता है, तो किनारे के अंदर कोई भी आयनीकरण इस आवेश का प्रतिकार करता है, और आवेश में परिवर्तन को मापा जा सकता है। वे केवल 2 मेव (MeV ) या उससे अल्प ऊर्जा वाले बीम के लिए व्यावहारिक हैं, और उच्च स्टेम बहिर्वाह उन्हें त्रुटिहीन मात्रामापी के लिए अनुपयुक्त बनाता है।


==== एक्सट्रपलेशन चैंबर ====
==== एक्सट्रपलेशन कक्ष ====
एक समानांतर प्लेट कक्ष के डिजाइन के समान, एक्सट्रपलेशन कक्ष की ऊपरी प्लेट को माइक्रोमीटर स्क्रू का उपयोग करके कम किया जा सकता है। मापन को अलग-अलग प्लेट स्पेसिंग के साथ लिया जा सकता है और शून्य की प्लेट स्पेसिंग के लिए एक्सट्रपलेशन किया जा सकता है, अर्थात चैम्बर के बिना खुराक।
समानांतर समतल कक्ष के निर्माण के समान, एक्सट्रपलेशन कक्ष की ऊपरी समतल भाग को माइक्रोमीटर पेंच का उपयोग करके अल्प किया जा सकता है। मापन को भिन्न-भिन्न समतल अंतर के साथ लिया जा सकता है और शून्य की समतल अंतर के लिए कक्ष के बिना मात्रा एक्सट्रपलेशन किया जा सकता है।


== साधन प्रकार ==
== साधन प्रकार ==
Line 51: Line 51:
===हाथ में पकड़ा हुआ===
===हाथ में पकड़ा हुआ===
[[File:RTG radiation measurement.jpg|thumb|300px|उपयोग में हाथ से आयोजित अभिन्न आयन कक्ष सर्वेक्षण मीटर]]
[[File:RTG radiation measurement.jpg|thumb|300px|उपयोग में हाथ से आयोजित अभिन्न आयन कक्ष सर्वेक्षण मीटर]]
[[File:CivilDefenseVictoreen720 underside.jpg|thumb|इंटीग्रल हैंड हेल्ड इंस्ट्रूमेंट पर स्लाइडिंग बीटा शील्ड का दृश्य]]बीटा और गामा विकिरण को मापने के लिए [[सर्वेक्षण मीटर]] में आयन कक्षों का व्यापक रूप से उपयोग किया जाता है। वे विशेष रूप से उच्च खुराक दर माप के लिए पसंद किए जाते हैं और गामा विकिरण के लिए वे 50-100 keV से ऊपर की ऊर्जा के लिए अच्छी सटीकता देते हैं।<ref name=knoll/>
[[File:CivilDefenseVictoreen720 underside.jpg|thumb|अभिन्न हाथ से पकड़ने वाला उपकरण  पर स्लाइडिंग बीटा शील्ड का दृश्य]]बीटा और गामा विकिरण को मापने के लिए हाथ से आयोजित विकिरण [[सर्वेक्षण मीटर]] में आयन कक्षों का व्यापक रूप से उपयोग किया जाता है। वे विशेष रूप से उच्च मात्रा दर माप के लिए स्वीकृति किए जाते हैं और गामा विकिरण के लिए वे 50-100 केवी से ऊपर की ऊर्जा के लिए उत्तम त्रुटिहीनता देते हैं।<ref name=knoll/>


दो बुनियादी विन्यास हैं; ही मामले में कक्ष और इलेक्ट्रॉनिक्स के साथ अभिन्न इकाई, और दो-टुकड़ा उपकरण जिसमें लचीली केबल द्वारा इलेक्ट्रॉनिक्स मॉड्यूल से जुड़ी अलग आयन कक्ष जांच होती है।
दो मूलभूत विन्यास हैं; विशेष स्थिति में कक्ष और इलेक्ट्रॉनिक्स के साथ अभिन्न इकाई, और दो-टुकड़ा उपकरण जिसमें केबल द्वारा इलेक्ट्रॉनिक्स मॉड्यूल से जुड़ी भिन्न आयन कक्ष का अन्वेषण होता है।


इंटीग्रल इंस्ट्रूमेंट का चैम्बर सामान्यतः केस के सामने नीचे की ओर होता है, और बीटा/गामा इंस्ट्रूमेंट्स के लिए केसिंग के नीचे विंडो होती है। इसमें सामान्यतः स्लाइडिंग शील्ड होता है जो गामा और बीटा विकिरण के बीच भेदभाव को सक्षम बनाता है। ऑपरेटर बीटा को बाहर करने के लिए शील्ड को बंद कर देता है, और इस प्रकार प्रत्येक विकिरण प्रकार की दर की गणना कर सकता है।
अभिन्न उपकरण का कक्ष सामान्यतः केस के सामने नीचे की ओर होता है, और बीटा/गामा उपकरण के लिए केसिंग के नीचे विंडो होती है। इसमें सामान्यतः स्लाइडिंग शील्ड होती है जो गामा और बीटा विकिरण के मध्य भेदभाव को सक्षम बनाता है। ऑपरेटर बीटा को बाहर करने के लिए शील्ड को बंद कर देता है, और इस प्रकार प्रत्येक विकिरण प्रकार की दर की गणना कर सकता है।


हाथ से चलने वाले कुछ यंत्र ऐसे ही श्रव्य क्लिक उत्पन्न करते हैं जो जी-एम काउंटर द्वारा उत्पन्न होने वाले ऑपरेटरों की सहायता के लिए होते हैं, जो विकिरण सर्वेक्षण और संदूषण जांच में ऑडियो फीडबैक का उपयोग करते हैं। जैसा कि आयन कक्ष वर्तमान मोड में काम करता है, न कि पल्स मोड में, यह विकिरण दर से संश्लेषित होता है।
हाथ से चलने वाले कुछ उपकरण ऐसे ही श्रव्य क्लिक उत्पन्न करते हैं जो जी-एम काउंटर द्वारा उत्पन्न होने वाले ऑपरेटरों की सहायता के लिए होते हैं, जो विकिरण सर्वेक्षण और संदूषण अन्वेषण में ऑडियो फीडबैक का उपयोग करते हैं। जैसा कि आयन कक्ष वर्तमान मोड में कार्य करता है, न कि पल्स मोड में, यह विकिरण दर से संश्लेषित होता है।


=== स्थापित ===
=== स्थापित ===
औद्योगिक प्रक्रिया मापन और निरंतर उच्च विकिरण स्तर वाले इंटरलॉक के लिए, आयन कक्ष पसंदीदा डिटेक्टर है। इन अनुप्रयोगों में केवल कक्ष माप क्षेत्र में स्थित है, और इलेक्ट्रॉनिक्स दूर से विकिरण से बचाने के लिए स्थित हैं और केबल द्वारा जुड़े हुए हैं। कर्मियों की सुरक्षा के लिए परिवेशी गामा को मापने के लिए स्थापित उपकरणों का उपयोग किया जा सकता है और सामान्यतः पूर्व निर्धारित दर से ऊपर अलार्म बजता है, चूंकि गीजर-मुलर ट्यूब उपकरण सामान्यतः पसंद किया जाता है जहां उच्च स्तर की सटीकता की आवश्यकता नहीं होती है।
औद्योगिक प्रक्रिया मापन और निरंतर उच्च विकिरण स्तर वाले इंटरलॉक के लिए, आयन कक्ष रुचिकर संसूचक होते है। इन अनुप्रयोगों में केवल कक्ष माप क्षेत्र में स्थित होते है, और इलेक्ट्रॉनिक्स विकिरण से बचाने के लिए स्थित हैं और केबल द्वारा जुड़े हुए हैं। कर्मियों की सुरक्षा के लिए परिवेशी गामा को मापने के लिए स्थापित उपकरणों का उपयोग किया जा सकता है और सामान्यतः पूर्व निर्धारित दर से ऊपर अलार्म बजता है, चूंकि गीजर-मुलर ट्यूब उपकरण सामान्यतः स्वीकृत किया जाता है जहां उच्च स्तर की त्रुटिहीनता की आवश्यकता नहीं होती है।


==उपयोग में सामान्य सावधानियाँ==
==उपयोग में सामान्य सावधानियाँ==
नमी मुख्य समस्या है जो आयन कक्षों की सटीकता को प्रभावित करती है। चैम्बर की आंतरिक मात्रा को पूरी तरह से सूखा रखा जाना चाहिए, और इसके साथ मदद करने के लिए वेंटेड प्रकार जलशुष्कक का उपयोग करता है।<ref name=radpro/>उत्पन्न होने वाली बहुत कम धाराओं के कारण, सटीकता को बनाए रखने के लिए किसी भी आवारा लीकेज करंट को न्यूनतम रखा जाना चाहिए। केबल डाइलेक्ट्रिक्स और कनेक्टर्स की सतह पर अदृश्य हाइग्रोस्कोपिक नमी लीकेज करंट पैदा करने के लिए पर्याप्त हो सकती है जो किसी भी विकिरण-प्रेरित आयन करंट को स्वाहा कर देगी। इसके लिए चेंबर की साफ-सफाई, इसके सिरे और केबल की सफाई और बाद में ओवन में सुखाने की जरूरत होती है। गार्ड रिंग सामान्यतः ट्यूब कनेक्शन इंसुलेटर की सतह के माध्यम से या साथ में रिसाव को कम करने के लिए उच्च वोल्टेज ट्यूबों पर डिज़ाइन सुविधा के रूप में उपयोग किया जाता है, जिसके लिए 10 के क्रम में प्रतिरोध की आवश्यकता हो सकती है।<sup>13</sup> ओह।<ref>{{cite journal |last1=Taylor |first1=D. |last2=Sharpe |first2=J. |title=Nuclear particle and radiation detectors. Part 1: Ion chambers and ion-chamber instruments |journal=Proceedings of the IEE - Part II: Power Engineering |date=April 1951 |volume=98 |issue=62 |pages=174–190 |doi=10.1049/pi-2.1951.0058}}</ref>
आर्द्रता मुख्य समस्या है जो आयन कक्षों की त्रुटिहीनता को प्रभावित करती है। कक्ष की आंतरिक मात्रा को पूर्ण रूप से शुष्क रखा जाना चाहिए, और इसमें सहायता करने के लिए निकासित जलशुष्कक का उपयोग किया जाता है।<ref name=radpro/>उत्पन्न होने वाली अधिक अल्प धाराओं के कारण, त्रुटिहीनता को बनाए रखने के लिए किसी भी निरकुंश प्रवाहित धारा को न्यूनतम रखा जाना चाहिए। केबल पारद्युतिक और कनेक्टर्स की सतह पर अदृश्य हाइग्रोस्कोपिक आर्द्रता प्रवाहित धारा को उत्पन्न करने के लिए पर्याप्त हो सकती है जो किसी भी विकिरण-प्रेरित आयन धारा को नष्ट कर देगी। इसके लिए कक्ष की साफ-सफाई, इसके सिरे और केबल की सफाई और अंत में ओवन में गर्म करने की आवश्यकता होती है। गार्ड रिंग सामान्यतः ट्यूब कनेक्शन इंसुलेटर की सतह के माध्यम से या साथ में प्रवाह को अल्प करने के लिए उच्च वोल्टेज ट्यूबों पर डिज़ाइन सुविधा के रूप में उपयोग किया जाता है, जिसके लिए 1013 Ω के क्रम में प्रतिरोध की आवश्यकता हो सकती है।<ref>{{cite journal |last1=Taylor |first1=D. |last2=Sharpe |first2=J. |title=Nuclear particle and radiation detectors. Part 1: Ion chambers and ion-chamber instruments |journal=Proceedings of the IEE - Part II: Power Engineering |date=April 1951 |volume=98 |issue=62 |pages=174–190 |doi=10.1049/pi-2.1951.0058}}</ref>


दूरस्थ इलेक्ट्रॉनिक्स के साथ औद्योगिक अनुप्रयोगों के लिए, आयन कक्ष को अलग बाड़े में रखा जाता है जो यांत्रिक सुरक्षा प्रदान करता है और इसमें नमी को हटाने के लिए जलशुष्कक होता है जो समाप्ति प्रतिरोध को प्रभावित कर सकता है।
दूरस्थ इलेक्ट्रॉनिक्स के साथ औद्योगिक अनुप्रयोगों के लिए, आयन कक्ष को भिन्न समूह में रखा जाता है जो यांत्रिक सुरक्षा प्रदान करता है और इसमें आर्द्रता को विस्थापित करने के लिए जलशुष्कक होता है जो समाप्ति प्रतिरोध को प्रभावित कर सकता है।


प्रतिष्ठानों में जहां कक्ष मापने वाले इलेक्ट्रॉनिक्स से लंबी दूरी पर है, केबल पर अभिनय करने वाले बाहरी विद्युत चुम्बकीय विकिरण से रीडिंग प्रभावित हो सकती है। इसे दूर करने के लिए स्थानीय कनवर्टर मॉड्यूल का उपयोग अक्सर बहुत कम आयन कक्ष धाराओं को पल्स ट्रेन या घटना विकिरण से संबंधित डेटा सिग्नल में अनुवाद करने के लिए किया जाता है। ये विद्युत चुम्बकीय प्रभावों के प्रति प्रतिरक्षित हैं।
प्रतिष्ठानों में कक्ष मापने वाले इलेक्ट्रॉनिक्स लंबी दूरी पर है, केबल पर अभिनय करने वाले बाहरी विद्युत चुम्बकीय विकिरण से रीडिंग प्रभावित हो सकती है। इसे दूर करने के लिए स्थानीय कनवर्टर मॉड्यूल का उपयोग प्रायः अधिक अल्प आयन कक्ष धाराओं को पल्स ट्रेन या घटना विकिरण से संबंधित डेटा सिग्नल में अनुवाद करने के लिए किया जाता है। ये विद्युत चुम्बकीय प्रभावों के प्रतिरक्षित हैं।


== अनुप्रयोग ==
== अनुप्रयोग ==


===परमाणु उद्योग===
===परमाणु उद्योग===
परमाणु उद्योग में आयनीकरण कक्षों का व्यापक रूप से उपयोग किया जाता है क्योंकि वे आउटपुट प्रदान करते हैं जो विकिरण खुराक के समानुपाती होता है। वे उन स्थितियों में व्यापक उपयोग पाते हैं जहां निरंतर उच्च खुराक दर को मापा जा रहा है क्योंकि उनके पास मानक गीजर-मुलर ट्यूबों की तुलना में अधिक परिचालन जीवनकाल है, जो गैस टूटने से पीड़ित हैं और सामान्यतः लगभग 10 के जीवन तक सीमित हैं<sup>11</sup> ईवेंट गिनें।<ref name=knoll/>इसके अतिरिक्त, गीजर-मुलर ट्यूब लगभग 10 से ऊपर काम नहीं कर सकता<sup>डेड-टाइम प्रभावों के कारण 4</sup> प्रति सेकंड गिना जाता है, जबकि आयन कक्ष पर ऐसी कोई सीमा नहीं है।
परमाणु उद्योग में आयनीकरण कक्षों का व्यापक रूप से उपयोग किया जाता है क्योंकि वे उत्पादन प्रदान करते हैं जो विकिरण मात्रा के समानुपाती होता है। वे उन स्थितियों में व्यापक उपयोग पाते हैं जहां निरंतर उच्च मात्रा दर को मापा जा रहा है क्योंकि उनके निकट मानक गीजर-मुलर ट्यूबों की तुलना में अधिक परिचालन जीवनकाल है, जो गैस टूटने से पीड़ित हैं और सामान्यतः लगभग 1011 गिनती की घटनाओं के जीवन तक सीमित हैं।।<ref name=knoll/>इसके अतिरिक्त, गीजर-मुलर ट्यूब डेड-टाइम प्रभावों के कारण लगभग 104 काउंट प्रति सेकंड से ऊपर कार्य नहीं कर सकता है, जबकि आयन कक्ष पर कोई समान सीमा नहीं है।


=== [[धुआँ]] डिटेक्टर ===
=== धुआँ संसूचक ===
आयनीकरण कक्ष ने स्मोक डिटेक्टरों में व्यापक और लाभकारी उपयोग पाया है। आयनीकरण प्रकार के स्मोक डिटेक्टर में, परिवेशी वायु को आयनीकरण कक्ष में स्वतंत्र रूप से प्रवेश करने की अनुमति दी जाती है। चैम्बर में थोड़ी मात्रा में एमरिकियम -241 होता है, जो [[अल्फा कण]]ों का उत्सर्जक होता है जो निरंतर आयन धारा उत्पन्न करता है। यदि धुआं डिटेक्टर में प्रवेश करता है, तो यह इस धारा को बाधित करता है क्योंकि आयन धुएं के कणों से टकराते हैं और निष्प्रभावी हो जाते हैं। करंट में यह गिरावट अलार्म को ट्रिगर करती है। संसूचक में संदर्भ कक्ष भी होता है जिसे सीलबंद किया जाता है लेकिन उसी तरह से आयनित किया जाता है। दो कक्षों में आयन धाराओं की तुलना हवा के दबाव, तापमान या स्रोत की उम्र बढ़ने के कारण होने वाले परिवर्तनों के लिए मुआवजे की अनुमति देती है। <ref>Cote, Arthur; Bugbee, Percy (1988). "Ionization smoke detectors". Principles of fire protection. Quincy, MA: National Fire Protection Association. p. 249. ISBN 0-87765-345-3.</ref>
आयनीकरण कक्ष ने धुआँ संसूचकों में व्यापक और लाभकारी उपयोग पाया है। आयनीकरण प्रकार के धुआँ संसूचक में, परिवेशी वायु को आयनीकरण कक्ष में स्वतंत्र रूप से प्रवेश करने की अनुमति दी जाती है। कक्ष में अल्प मात्रा में एमरिकियम -241 होता है, जो [[अल्फा कण|अल्फा कणों]] का उत्सर्जक होता है जो निरंतर आयन धारा उत्पन्न करता है। यदि धुआं संसूचक में प्रवेश करता है, तो यह इस धारा को बाधित करता है क्योंकि आयन धुएं के कणों से टकराते हैं और निष्प्रभावी हो जाते हैं। धारा में यह अपकर्षण अलार्म को प्रारम्भ करती है। संसूचक में संदर्भ कक्ष भी होता है जिसे सीलबंद किया जाता है लेकिन उसी प्रकार से आयनित किया जाता है। दो कक्षों में आयन धाराओं की तुलना वायु के दबाव, तापमान या स्रोत की उम्र बढ़ने के कारण होने वाले परिवर्तनों के लिए भुगतान की अनुमति देता है। <ref>Cote, Arthur; Bugbee, Percy (1988). "Ionization smoke detectors". Principles of fire protection. Quincy, MA: National Fire Protection Association. p. 249. ISBN 0-87765-345-3.</ref>




=== चिकित्सा विकिरण माप ===
=== चिकित्सा विकिरण माप ===
[[File:Dose Calibrator Diagram.png|thumb|354x354px|एक परमाणु दवा खुराक अंशशोधक या रेडियोन्यूक्लाइड अंशशोधक का आरेख जो अच्छी तरह के आयनीकरण कक्ष का उपयोग करता है। सप्तऋषि प्रतिलिपि प्रस्तुत करने योग्य स्रोत स्थिति देने के लिए प्रयोग किया जाता है। इस उदाहरण में रेडियोधर्मी पदार्थ तरल है।]][[चिकित्सा भौतिकी]] और रेडियोथेरेपी में, आयनीकरण कक्षों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि चिकित्सा इकाई से [[अवशोषित खुराक]] वितरित की जाए<ref>{{cite journal |last1=Hill |first1=R |last2=Mo |first2=Z |last3=Haque |first3=M |last4=Baldock |first4=C |year=2009 |title=An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams |journal=Medical Physics |volume=36 |issue=9Part1 |pages=3971–3981 |doi=10.1118/1.3183820 |pmid=19810470 |bibcode=2009MedPh..36.3971H}}</ref> या [[रेडियोफार्मास्युटिकल]] वह है जिसका इरादा है। रेडियोथेरेपी के लिए उपयोग किए जाने वाले उपकरणों को रेफरेंस डोसिमीटर कहा जाता है, जबकि रेडियोफार्मास्यूटिकल्स के लिए उपयोग किए जाने वाले को रेडियोआइसोटोप खुराक अंशशोधक कहा जाता है - रेडियोन्यूक्लाइड रेडियोधर्मिता अंशशोधक के लिए अचूक नाम, जो रेडियोधर्मिता के मापन के लिए उपयोग किया जाता है लेकिन खुराक को अवशोषित नहीं करता है।<ref>{{cite journal |last1=Mo |first1=L. |last2=Reinhard |first2=M.I. |last3=Davies |first3=J.B. |last4=Alexiev |first4=D. |last5=Baldock |first5=C. |title=Calibration of the Capintec CRC-712M dose calibrator for 18F |journal=Applied Radiation and Isotopes |date=April 2006 |volume=64 |issue=4 |pages=485–489 |doi=10.1016/j.apradiso.2005.09.006 |pmid=16293417}}</ref> कक्ष में राष्ट्रीय मानक प्रयोगशाला जैसे ऑस्ट्रेलिया में ARPANSA या ब्रिटेन में राष्ट्रीय भौतिक प्रयोगशाला, यूके द्वारा स्थापित अंशांकन कारक होगा, या उपयोगकर्ता की साइट पर राष्ट्रीय मानकों के लिए हस्तांतरण मानक कक्ष के विरुद्ध तुलना द्वारा निर्धारित कारक होगा। .<ref name=Hill2014/><ref>{{cite journal |doi=10.1088/0031-9155/59/20/R303 |volume=59 |issue=20 |title=Review on the characteristics of radiation detectors for dosimetry and imaging |journal=Physics in Medicine and Biology |pages=R303–R347 |pmid=25229250 |date=Oct 2014 |bibcode=2014PMB....59R.303S |last1=Seco |first1=Joao |last2=Clasie |first2=Ben |last3=Partridge |first3=Mike |s2cid=4393848 }}</ref>
[[File:Dose Calibrator Diagram.png|thumb|354x354px|परमाणु दवा मात्रा अंशशोधक या रेडियोन्यूक्लाइड अंशशोधक का आरेख जो उत्तम प्रकार के आयनीकरण कक्ष का उपयोग करता है। सप्तऋषि प्रतिलिपि प्रस्तुत करने योग्य स्रोत स्थिति देने के लिए प्रयोग किया जाता है। इस उदाहरण में रेडियोधर्मी पदार्थ तरल है।]]चिकित्सा भौतिकी और रेडियोथेरेपी में, आयनीकरण कक्षों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि चिकित्सा इकाई से [[अवशोषित खुराक|अवशोषित मात्रा]] वितरित की जाए।<ref>{{cite journal |last1=Hill |first1=R |last2=Mo |first2=Z |last3=Haque |first3=M |last4=Baldock |first4=C |year=2009 |title=An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams |journal=Medical Physics |volume=36 |issue=9Part1 |pages=3971–3981 |doi=10.1118/1.3183820 |pmid=19810470 |bibcode=2009MedPh..36.3971H}}</ref> या [[रेडियोफार्मास्युटिकल|रेडियो दवा]] वह है जिसका उद्देश्य है। रेडियोथेरेपी के लिए उपयोग किए जाने वाले उपकरणों को संदर्भ डोसिमीटर कहा जाता है, जबकि रेडियो फार्मास्यूटिकल्स के लिए उपयोग किए जाने वाले रेडियोआइसोटोप मात्रा को अंशशोधक कहा जाता है - रेडियोन्यूक्लाइड रेडियोधर्मिता अंशशोधक के लिए अव्यर्थ नाम, जो रेडियोधर्मिता के मापन के लिए उपयोग किया जाता है लेकिन मात्रा को अवशोषित नहीं करता है।<ref>{{cite journal |last1=Mo |first1=L. |last2=Reinhard |first2=M.I. |last3=Davies |first3=J.B. |last4=Alexiev |first4=D. |last5=Baldock |first5=C. |title=Calibration of the Capintec CRC-712M dose calibrator for 18F |journal=Applied Radiation and Isotopes |date=April 2006 |volume=64 |issue=4 |pages=485–489 |doi=10.1016/j.apradiso.2005.09.006 |pmid=16293417}}</ref> कक्ष में राष्ट्रीय मानक प्रयोगशाला जैसे ऑस्ट्रेलिया में अर्पणसा या ब्रिटेन में राष्ट्रीय भौतिक प्रयोगशाला, यूके द्वारा स्थापित अंशांकन कारक होगा, या उपयोगकर्ता की साइट पर राष्ट्रीय मानकों के लिए हस्तांतरण मानक कक्ष के विरुद्ध तुलना द्वारा निर्धारित कारक होगा। .<ref name=Hill2014/><ref>{{cite journal |doi=10.1088/0031-9155/59/20/R303 |volume=59 |issue=20 |title=Review on the characteristics of radiation detectors for dosimetry and imaging |journal=Physics in Medicine and Biology |pages=R303–R347 |pmid=25229250 |date=Oct 2014 |bibcode=2014PMB....59R.303S |last1=Seco |first1=Joao |last2=Clasie |first2=Ben |last3=Partridge |first3=Mike |s2cid=4393848 }}</ref>




=== आवेदन के उपयोग पर मार्गदर्शन ===
=== आवेदन के उपयोग पर मार्गदर्शन ===
[[यूनाइटेड किंगडम]] में स्वास्थ्य और सुरक्षा कार्यकारी ने संबंधित आवेदन के लिए सही विकिरण माप उपकरण का चयन करने के लिए उपयोगकर्ता मार्गदर्शिका जारी की है।<ref name="ukhse">{{cite web |title=Selection, use and maintenance of portable monitoring instruments |url=http://www.hse.gov.uk/pubns/irp7.pdf |publisher=[[Health & Safety Executive]] |archive-url=https://webarchive.nationalarchives.gov.uk/ukgwa/20180108215843/http://www.hse.gov.uk//pubns/irp7.pdf |archive-date=8 January 2018 |date=2001}}</ref> यह सभी विकिरण उपकरण प्रौद्योगिकियों को सम्मिलित करता है, और आयन कक्ष उपकरणों के उपयोग के लिए उपयोगी तुलनात्मक मार्गदर्शिका है।
[[यूनाइटेड किंगडम]] में स्वास्थ्य और सुरक्षा कार्यकारी ने संबंधित आवेदन के लिए सही विकिरण माप उपकरण का चयन करने के लिए उपयोगकर्ता मार्गदर्शिका प्रस्तावित की है।<ref name="ukhse">{{cite web |title=Selection, use and maintenance of portable monitoring instruments |url=http://www.hse.gov.uk/pubns/irp7.pdf |publisher=[[Health & Safety Executive]] |archive-url=https://webarchive.nationalarchives.gov.uk/ukgwa/20180108215843/http://www.hse.gov.uk//pubns/irp7.pdf |archive-date=8 January 2018 |date=2001}}</ref> यह सभी विकिरण उपकरण प्रौद्योगिकियों को सम्मिलित करता है, और आयन कक्ष उपकरणों के उपयोग के लिए उपयोगी तुलनात्मक मार्गदर्शिका है।


== यह भी देखें ==
== यह भी देखें ==
* अवशोषित खुराक
* अवशोषित मात्रा
* ब्रैग-ग्रे गुहा सिद्धांत
* ब्रैग-ग्रे गुहा सिद्धांत
*[[मात्रामापी]]
*[[मात्रामापी]]
* गैसीय आयनीकरण डिटेक्टर
* गैसीय आयनीकरण संसूचक
* [[सीवर्ट कक्ष]]
* [[सीवर्ट कक्ष]]
* [[रोकने की शक्ति (कण विकिरण)]]
* [[रोकने की शक्ति (कण विकिरण)]]
Line 98: Line 98:


==संदर्भ==
==संदर्भ==
{{Commons category|Ionization chambers}}
{{Reflist}}
{{Reflist}}


{{Radiation protection|state=uncollapsed}}
[[Category:Collapse templates]]
 
[[Category:Commons category link is locally defined]]
[[Category: आयनकारी विकिरण डिटेक्टर]] [[Category: कण डिटेक्टर]] [[Category: विकिरण सुरक्षा]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 30/01/2023]]
[[Category:Created On 30/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 13:40, 27 October 2023

आयनीकरण कक्ष गैसीय आयनीकरण संसूचक का सबसे सरल प्रकार है, और एक्स-रे, गामा किरणों और बीटा कणों सहित कई प्रकार के आयनकारी विकिरण का ज्ञात करने और मापने के लिए व्यापक रूप से उपयोग किया जाता है। परंपरागत रूप से, आयनीकरण कक्ष शब्द विशेष रूप से उन संसूचकों को संदर्भित करता है जो विद्युत क्षेत्र के अनुप्रयोग के माध्यम से गैस के अंदर 'प्रत्यक्ष आयनीकरण' द्वारा बनाए गए सभी शुल्क एकत्र करते हैं।[1] यह घटना विकिरण और गैस के मध्य प्रत्येक अंतःक्रिया द्वारा बनाए गए असतत आवेशों का उपयोग लघु प्रत्यक्ष प्रवाह के रूप में उत्पादन उत्पन्न करने के लिए करता है। इसका अर्थ है कि भिन्न-भिन्न आयनकारी घटनाओं को मापा नहीं जा सकता है, इसलिए विभिन्न प्रकार के विकिरण की ऊर्जा को भिन्न नहीं किया जा सकता है, लेकिन यह समग्र आयनीकरण प्रभाव का अति उत्तम आनुपातिक काउंटर देता है।

आयन कक्षों में ऊर्जा की विस्तृत श्रृंखला में विकिरण के लिए समान प्रतिक्रिया होती है और गामा विकिरण के उच्च स्तर को मापने का रुचिकर साधन होते है। जैसे कि विकिरण गर्म सेल में बिना क्षरण के उच्च विकिरण क्षेत्रों में लंबे समय तक सहन कर सकते हैं। वे व्यापक रूप से परमाणु ऊर्जा उद्योग, अनुसंधान प्रयोगशालाओं, अग्नि को ज्ञात करना, विकिरण संरक्षण और पर्यावरण निरक्षण में उपयोग किए जाते हैं।

संचालन का सिद्धांत

समानांतर समतल आयन कक्ष का योजनाबद्ध आरेख, आयन जोड़े का निर्माण और विद्युत क्षेत्र के कारण आयनों का बहाव दिखा रहा है। इलेक्ट्रॉन सामान्यतः अपने छोटे द्रव्यमान के कारण धनात्मक आयनों की तुलना में 1000 गुना तीव्रता से प्रवाहित होते हैं।[1]
वैचारिक तार सिलेंडर गैसीय विकिरण संसूचक के लिए वोल्टेज के विरुद्ध आयन धारा का कथानक। आयन कक्ष सबसे अल्प वोल्टेज का उपयोग करते हैं।

गैस आयनीकरण कक्ष घटना विकिरण के कारण गैस के अंदर निर्मित आयन की संख्या से आवेश को मापता है। इसमें दो इलेक्ट्रोड के साथ गैस से भरा कक्ष होता है; जो एनोड और कैथोड के रूप में जाना जाता है। इलेक्ट्रोड समानांतर प्लेटों के रूप में हो सकते हैं, या समाक्षीय रूप से स्थित आंतरिक एनोड तार के साथ सिलेंडर हो सकते हैं।

भरण गैस में विद्युत क्षेत्र बनाने के लिए इलेक्ट्रोड के मध्य वोल्टेज क्षमता प्रारम्भ की जाती है। जब इलेक्ट्रोड के मध्य गैस परमाणु या अणु घटना आयनीकरण विकिरण द्वारा आयनित होते हैं, तो आयन-जोड़े बनते हैं और परिणामी सकारात्मक आयन और पृथक इलेक्ट्रॉन विद्युत क्षेत्र के प्रभाव में विपरीत रासायनिक ध्रुवीयता के इलेक्ट्रोड में चले जाते हैं। यह आयनीकरण धारा उत्पन्न करता है जिसे विद्युतमापी परिपथ द्वारा मापा जाता है। इलेक्ट्रोमीटर अधिक अल्प उत्पादन धारा को मापने में सक्षम होना चाहिए जो चैम्बर डिजाइन, विकिरण मात्रा और प्रारंभिक वोल्टेज के आधार पर फेम्टोएम्पीयर से पीकोएम्पीयर के क्षेत्र में होता है।

आयन युग्मों के पुनर्संयोजन का अवरोधक करने के लिए विद्युत क्षेत्र पर्याप्त रूप से स्थिर होना चाहिए जो आयन धारा को अल्प कर देगा, और कैथोड तक पहुंचने पर इलेक्ट्रॉनों के साथ उनके पुनर्संयोजन द्वारा सकारात्मक आयनों के निर्माण का अवरोधक करते है। ऑपरेशन के इस मोड को "वर्तमान" मोड के रूप में संदर्भित किया जाता है, जिसका अर्थ है कि उत्पादन सिग्नल निरंतर प्रारम्भ होता है, न कि पल्स उत्पादन जैसा कि गीजर-मुलर ट्यूब या आनुपातिक काउंटर की स्थिति में होता है।[1]


कक्ष के प्रकार और निर्माण

निम्नलिखित कक्ष प्रकार सामान्यतः उपयोग किए जाते हैं।

फ्री-एयर कक्ष

यह वायुमंडल के लिए स्वतंत्र रूप से खुला कक्ष है, जहां भरण गैस परिवेशी वायु होती है। घरेलू धुआँ संसूचक इसका उत्तम उदाहरण है, जहां कक्ष के माध्यम से वायु का प्राकृतिक प्रवाह आवश्यक है जिससे आयन धारा में परिवर्तन से धुएं के कणों को ज्ञात किया जा सके। अन्य उदाहरण ऐसे अनुप्रयोग हैं जहां कक्ष के बाहर आयन बनाए जाते हैं लेकिन वायु या गैस को विवश प्रवाह द्वारा ले जाया जाता है।

निकासित कक्ष

ये कक्ष सामान्य रूप से बेलनाकार के होते हैं और वायुमंडलीय दबाव पर कार्य करते हैं, लेकिन आर्द्रता के प्रवेश का अवरोध करने के लिए जलशुष्कक युक्त फिल्टर को निकासित कक्ष में स्थापित किया जाता है।[2] यह कक्ष के आंतरिक भाग में आर्द्रता के निर्माण के अवरोधक के लिए है, जो अन्यथा परिवर्तित वायुमंडलीय वायु दबाव के "पंप" प्रभाव से प्रारंभ हो जाएगा। इन कक्षों का आकार बेलनाकार होता है जो कुछ मिलीमीटर मोटी एल्यूमीनियम या प्लास्टिक से बना होता है। सामग्री का वायु के समान परमाणु संख्या के लिए चयन किया जाता है जिससे कि विकिरण बीम ऊर्जा की सीमा पर दीवार को "वायु समतुल्य" कहा जा सके।[1][3][4] यह सुनिश्चित करने का प्रभाव होता है कि कक्ष में गैस कार्य कर रही है जैसे कि यह अनंत रूप से बड़ी गैस मात्रा का भाग था, और दीवार सामग्री के साथ गामा की अंतःक्रिया को अल्प करके त्रुटिहीन को बढ़ाता है। दीवार सामग्री की परमाणु संख्या जितनी अधिक होगी, अंतःक्रिया की संभावना उतनी ही अधिक होगी। दीवार की मोटाई मोटी दीवार के साथ वायु के प्रभाव को बनाए रखने और पतली दीवार का उपयोग करके बढ़ती संवेदनशीलता के मध्य होता है। इन कक्षों में प्रायः पर्याप्त पतली सामग्री से बनी अंत खिड़की होती है, जैसे कि माइलर, जिससे कि बीटा कण गैस की मात्रा में प्रवेश कर सकें। गामा विकिरण अंत खिड़की और निकट की दीवारों दोनों से प्रवेश करता है। हाथ से पकड़े जाने वाले उपकरणों के लिए दीवार की मोटाई फोटॉन दिशात्मकता को अल्प करने के लिए यथासंभव समान बनाई जाती है, चूंकि कोई भी बीटा विंडो प्रतिक्रिया स्पष्ट रूप से अत्यधिक दिशात्मक होती है। वायु के दबाव के साथ दक्षता में लघु परिवर्तनों के लिए निकासित कक्ष अतिसंवेदनशील होते हैं [2]और सुधार कारक अधिक त्रुटिहीन माप अनुप्रयोगों के लिए प्रारम्भ किए जा सकते हैं।

सील अल्प दबाव कक्ष

ये निकासित कक्ष के निर्माण के समान होते हैं, लेकिन वायुमंडलीय दबाव पर या उसके निकट सील और संचालित होते हैं। इन कक्षों में निकासित और डिसेकेंट की आवश्यकता नहीं होने का भी लाभ होता है। ज्ञात करने की दक्षता में सुधार करने के लिए, वे उत्तम गैस से भरे हुए हैं क्योंकि वायु में अत्यधिक विद्युतीय ऑक्सीजन सरलता से मुक्त इलेक्ट्रॉनों को ग्रहण कर लेती है, जिससे नकारात्मक आयन बनते हैं। बीटा विंडो की शक्ति वायुमंडलीय दबाव से भिन्न दबाव को सीमित करती है जिसे सहन किया जा सकता है, और सामान्य सामग्री स्टेनलेस स्टील या टाइटेनियम है जिसकी सामान्य मोटाई 25 माइक्रोमीटर है।[5]


उच्च दबाव कक्ष

समूह में दो उच्च दाब बेलनाकार आयन कक्ष।

उच्च दबाव वाली गैस के उपयोग से कक्ष की दक्षता को और बढ़ाया जा सकता है। सामान्यतः 8-10 वायुमंडल का दबाव उपयोग किया जा सकता है, और विभिन्न महान गैसों को नियोजित किया जाता है। उच्च दबाव के परिणामस्वरूप अधिक गैस घनत्व होता है और इस प्रकार घटना विकिरण द्वारा भरण गैस और आयन-जोड़ी निर्माण के साथ विरोध की अधिक संभावना होती है। इस उच्च दबाव का सामना करने के लिए आवश्यक दीवार की मोटाई में वृद्धि के कारण, केवल गामा विकिरण को ज्ञात किया जा सकता है। इन संसूचकों का उपयोग सर्वेक्षण मीटर और पर्यावरण निरक्षण के लिए किया जाता है।[2]


कक्ष ज्यामिति

सामान्यतः विकिरण चिकित्सा मापन के लिए बेलनाकार या किनारा कक्ष का उपयोग किया जाता है। सक्रिय आयतन आंतरिक प्रवाहकीय सतह (कैथोड) और केंद्रीय एनोड के साथ किनारा आकार की अंतःकरण के अंदर रखा जाता है। अंतःकरण में लगाया गया अनुचित वोल्टेज आयन एकत्र करता है और धारा उत्पन्न करता है जिसे इलेक्ट्रोमीटर से मापा जा सकता है।

समानांतर-समतल कक्ष (पीपीआईसी) छोटी सी डिस्क के आकार के होते हैं, जिसमें गोलाकार एकत्रित इलेक्ट्रोड छोटे अंतर से भिन्न होते हैं, सामान्यतः 2 मिमी या उससे अल्प ऊपरी डिस्क अत्यंत पतली होती है, जो बेलनाकार कक्ष के साथ संभव होने की तुलना में अधिक त्रुटिहीन निकट-सतह मात्रा माप की अनुमति देती है। मॉनिटर कक्ष सामान्यतः पीपीआईसी होते हैं जिनका उपयोग विकिरण बीम की तीव्रता जैसे निरंतर मापने के लिए किया जाता है। उदाहरण के लिए, रेडियोथेरेपी के लिए उपयोग किए जाने वाले रैखिक त्वरक के शीर्ष के भीतर बहु-अंतःकरण आयनीकरण कक्ष कई भिन्न-भिन्न क्षेत्रों में विकिरण बीम की तीव्रता को माप सकते हैं, जिसमे बीम समरूपता और समतलता की जानकारी प्रदान करते हैं।

अनुसंधान और अंशांकन कक्ष

पियरे क्यूरी द्वारा बनाया गया आयनीकरण कक्ष, c 1895-1900

आयन कक्ष के प्रारंभिक संस्करणों का उपयोग मैरी क्यूरी और पियरे क्यूरी द्वारा रेडियोधर्मी सामग्री को पृथक करने में उनके मूल कार्य में किया गया था। तब से आयन कक्ष अनुसंधान और अंशांकन उद्देश्यों के लिए प्रयोगशाला में व्यापक रूप से उपयोग किया जाने वाला उपकरण रहा है।

ऐतिहासिक कक्ष

संघनित्र कक्ष

संघनित्र कक्ष में तने के अंदर द्वितीयक अंतःकरण होता है जो संधारित्र के रूप में कार्य करता है। जब यह संधारित्र पूर्ण रूप से चार्ज हो जाता है, तो किनारे के अंदर कोई भी आयनीकरण इस आवेश का प्रतिकार करता है, और आवेश में परिवर्तन को मापा जा सकता है। वे केवल 2 मेव (MeV ) या उससे अल्प ऊर्जा वाले बीम के लिए व्यावहारिक हैं, और उच्च स्टेम बहिर्वाह उन्हें त्रुटिहीन मात्रामापी के लिए अनुपयुक्त बनाता है।

एक्सट्रपलेशन कक्ष

समानांतर समतल कक्ष के निर्माण के समान, एक्सट्रपलेशन कक्ष की ऊपरी समतल भाग को माइक्रोमीटर पेंच का उपयोग करके अल्प किया जा सकता है। मापन को भिन्न-भिन्न समतल अंतर के साथ लिया जा सकता है और शून्य की समतल अंतर के लिए कक्ष के बिना मात्रा एक्सट्रपलेशन किया जा सकता है।

साधन प्रकार

हाथ में पकड़ा हुआ

उपयोग में हाथ से आयोजित अभिन्न आयन कक्ष सर्वेक्षण मीटर
अभिन्न हाथ से पकड़ने वाला उपकरण पर स्लाइडिंग बीटा शील्ड का दृश्य

बीटा और गामा विकिरण को मापने के लिए हाथ से आयोजित विकिरण सर्वेक्षण मीटर में आयन कक्षों का व्यापक रूप से उपयोग किया जाता है। वे विशेष रूप से उच्च मात्रा दर माप के लिए स्वीकृति किए जाते हैं और गामा विकिरण के लिए वे 50-100 केवी से ऊपर की ऊर्जा के लिए उत्तम त्रुटिहीनता देते हैं।[1]

दो मूलभूत विन्यास हैं; विशेष स्थिति में कक्ष और इलेक्ट्रॉनिक्स के साथ अभिन्न इकाई, और दो-टुकड़ा उपकरण जिसमें केबल द्वारा इलेक्ट्रॉनिक्स मॉड्यूल से जुड़ी भिन्न आयन कक्ष का अन्वेषण होता है।

अभिन्न उपकरण का कक्ष सामान्यतः केस के सामने नीचे की ओर होता है, और बीटा/गामा उपकरण के लिए केसिंग के नीचे विंडो होती है। इसमें सामान्यतः स्लाइडिंग शील्ड होती है जो गामा और बीटा विकिरण के मध्य भेदभाव को सक्षम बनाता है। ऑपरेटर बीटा को बाहर करने के लिए शील्ड को बंद कर देता है, और इस प्रकार प्रत्येक विकिरण प्रकार की दर की गणना कर सकता है।

हाथ से चलने वाले कुछ उपकरण ऐसे ही श्रव्य क्लिक उत्पन्न करते हैं जो जी-एम काउंटर द्वारा उत्पन्न होने वाले ऑपरेटरों की सहायता के लिए होते हैं, जो विकिरण सर्वेक्षण और संदूषण अन्वेषण में ऑडियो फीडबैक का उपयोग करते हैं। जैसा कि आयन कक्ष वर्तमान मोड में कार्य करता है, न कि पल्स मोड में, यह विकिरण दर से संश्लेषित होता है।

स्थापित

औद्योगिक प्रक्रिया मापन और निरंतर उच्च विकिरण स्तर वाले इंटरलॉक के लिए, आयन कक्ष रुचिकर संसूचक होते है। इन अनुप्रयोगों में केवल कक्ष माप क्षेत्र में स्थित होते है, और इलेक्ट्रॉनिक्स विकिरण से बचाने के लिए स्थित हैं और केबल द्वारा जुड़े हुए हैं। कर्मियों की सुरक्षा के लिए परिवेशी गामा को मापने के लिए स्थापित उपकरणों का उपयोग किया जा सकता है और सामान्यतः पूर्व निर्धारित दर से ऊपर अलार्म बजता है, चूंकि गीजर-मुलर ट्यूब उपकरण सामान्यतः स्वीकृत किया जाता है जहां उच्च स्तर की त्रुटिहीनता की आवश्यकता नहीं होती है।

उपयोग में सामान्य सावधानियाँ

आर्द्रता मुख्य समस्या है जो आयन कक्षों की त्रुटिहीनता को प्रभावित करती है। कक्ष की आंतरिक मात्रा को पूर्ण रूप से शुष्क रखा जाना चाहिए, और इसमें सहायता करने के लिए निकासित जलशुष्कक का उपयोग किया जाता है।[2]उत्पन्न होने वाली अधिक अल्प धाराओं के कारण, त्रुटिहीनता को बनाए रखने के लिए किसी भी निरकुंश प्रवाहित धारा को न्यूनतम रखा जाना चाहिए। केबल पारद्युतिक और कनेक्टर्स की सतह पर अदृश्य हाइग्रोस्कोपिक आर्द्रता प्रवाहित धारा को उत्पन्न करने के लिए पर्याप्त हो सकती है जो किसी भी विकिरण-प्रेरित आयन धारा को नष्ट कर देगी। इसके लिए कक्ष की साफ-सफाई, इसके सिरे और केबल की सफाई और अंत में ओवन में गर्म करने की आवश्यकता होती है। गार्ड रिंग सामान्यतः ट्यूब कनेक्शन इंसुलेटर की सतह के माध्यम से या साथ में प्रवाह को अल्प करने के लिए उच्च वोल्टेज ट्यूबों पर डिज़ाइन सुविधा के रूप में उपयोग किया जाता है, जिसके लिए 1013 Ω के क्रम में प्रतिरोध की आवश्यकता हो सकती है।[6]

दूरस्थ इलेक्ट्रॉनिक्स के साथ औद्योगिक अनुप्रयोगों के लिए, आयन कक्ष को भिन्न समूह में रखा जाता है जो यांत्रिक सुरक्षा प्रदान करता है और इसमें आर्द्रता को विस्थापित करने के लिए जलशुष्कक होता है जो समाप्ति प्रतिरोध को प्रभावित कर सकता है।

प्रतिष्ठानों में कक्ष मापने वाले इलेक्ट्रॉनिक्स लंबी दूरी पर है, केबल पर अभिनय करने वाले बाहरी विद्युत चुम्बकीय विकिरण से रीडिंग प्रभावित हो सकती है। इसे दूर करने के लिए स्थानीय कनवर्टर मॉड्यूल का उपयोग प्रायः अधिक अल्प आयन कक्ष धाराओं को पल्स ट्रेन या घटना विकिरण से संबंधित डेटा सिग्नल में अनुवाद करने के लिए किया जाता है। ये विद्युत चुम्बकीय प्रभावों के प्रतिरक्षित हैं।

अनुप्रयोग

परमाणु उद्योग

परमाणु उद्योग में आयनीकरण कक्षों का व्यापक रूप से उपयोग किया जाता है क्योंकि वे उत्पादन प्रदान करते हैं जो विकिरण मात्रा के समानुपाती होता है। वे उन स्थितियों में व्यापक उपयोग पाते हैं जहां निरंतर उच्च मात्रा दर को मापा जा रहा है क्योंकि उनके निकट मानक गीजर-मुलर ट्यूबों की तुलना में अधिक परिचालन जीवनकाल है, जो गैस टूटने से पीड़ित हैं और सामान्यतः लगभग 1011 गिनती की घटनाओं के जीवन तक सीमित हैं।।[1]इसके अतिरिक्त, गीजर-मुलर ट्यूब डेड-टाइम प्रभावों के कारण लगभग 104 काउंट प्रति सेकंड से ऊपर कार्य नहीं कर सकता है, जबकि आयन कक्ष पर कोई समान सीमा नहीं है।

धुआँ संसूचक

आयनीकरण कक्ष ने धुआँ संसूचकों में व्यापक और लाभकारी उपयोग पाया है। आयनीकरण प्रकार के धुआँ संसूचक में, परिवेशी वायु को आयनीकरण कक्ष में स्वतंत्र रूप से प्रवेश करने की अनुमति दी जाती है। कक्ष में अल्प मात्रा में एमरिकियम -241 होता है, जो अल्फा कणों का उत्सर्जक होता है जो निरंतर आयन धारा उत्पन्न करता है। यदि धुआं संसूचक में प्रवेश करता है, तो यह इस धारा को बाधित करता है क्योंकि आयन धुएं के कणों से टकराते हैं और निष्प्रभावी हो जाते हैं। धारा में यह अपकर्षण अलार्म को प्रारम्भ करती है। संसूचक में संदर्भ कक्ष भी होता है जिसे सीलबंद किया जाता है लेकिन उसी प्रकार से आयनित किया जाता है। दो कक्षों में आयन धाराओं की तुलना वायु के दबाव, तापमान या स्रोत की उम्र बढ़ने के कारण होने वाले परिवर्तनों के लिए भुगतान की अनुमति देता है। [7]


चिकित्सा विकिरण माप

परमाणु दवा मात्रा अंशशोधक या रेडियोन्यूक्लाइड अंशशोधक का आरेख जो उत्तम प्रकार के आयनीकरण कक्ष का उपयोग करता है। सप्तऋषि प्रतिलिपि प्रस्तुत करने योग्य स्रोत स्थिति देने के लिए प्रयोग किया जाता है। इस उदाहरण में रेडियोधर्मी पदार्थ तरल है।

चिकित्सा भौतिकी और रेडियोथेरेपी में, आयनीकरण कक्षों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि चिकित्सा इकाई से अवशोषित मात्रा वितरित की जाए।[8] या रेडियो दवा वह है जिसका उद्देश्य है। रेडियोथेरेपी के लिए उपयोग किए जाने वाले उपकरणों को संदर्भ डोसिमीटर कहा जाता है, जबकि रेडियो फार्मास्यूटिकल्स के लिए उपयोग किए जाने वाले रेडियोआइसोटोप मात्रा को अंशशोधक कहा जाता है - रेडियोन्यूक्लाइड रेडियोधर्मिता अंशशोधक के लिए अव्यर्थ नाम, जो रेडियोधर्मिता के मापन के लिए उपयोग किया जाता है लेकिन मात्रा को अवशोषित नहीं करता है।[9] कक्ष में राष्ट्रीय मानक प्रयोगशाला जैसे ऑस्ट्रेलिया में अर्पणसा या ब्रिटेन में राष्ट्रीय भौतिक प्रयोगशाला, यूके द्वारा स्थापित अंशांकन कारक होगा, या उपयोगकर्ता की साइट पर राष्ट्रीय मानकों के लिए हस्तांतरण मानक कक्ष के विरुद्ध तुलना द्वारा निर्धारित कारक होगा। .[4][10]


आवेदन के उपयोग पर मार्गदर्शन

यूनाइटेड किंगडम में स्वास्थ्य और सुरक्षा कार्यकारी ने संबंधित आवेदन के लिए सही विकिरण माप उपकरण का चयन करने के लिए उपयोगकर्ता मार्गदर्शिका प्रस्तावित की है।[11] यह सभी विकिरण उपकरण प्रौद्योगिकियों को सम्मिलित करता है, और आयन कक्ष उपकरणों के उपयोग के लिए उपयोगी तुलनात्मक मार्गदर्शिका है।

यह भी देखें

टिप्पणियाँ


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Knoll, Glenn F (1999). Radiation detection and measurement (3rd ed.). New York: Wiley. ISBN 978-0-471-07338-3.
  2. 2.0 2.1 2.2 2.3 Steinmeyer, Paul R. (2003). "Ion Chambers: Everything You've Wanted to Know (But Were Afraid to Ask)" (PDF). RSO Magazine. 8 (5). Archived from the original (PDF) on 2012-09-15. Retrieved 2013-08-18.
  3. Seco, Joao; Clasie, Ben; Partridge, Mike (21 October 2014). "Review on the characteristics of radiation detectors for dosimetry and imaging". Physics in Medicine and Biology. 59 (20): R303–R347. Bibcode:2014PMB....59R.303S. doi:10.1088/0031-9155/59/20/R303. PMID 25229250.
  4. 4.0 4.1 Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive (21 March 2014). "Advances in kilovoltage x-ray beam dosimetry". Physics in Medicine and Biology. 59 (6): R183–R231. Bibcode:2014PMB....59R.183H. doi:10.1088/0031-9155/59/6/R183. PMID 24584183. S2CID 18082594.
  5. LND, Inc. ion chamber specification sheets
  6. Taylor, D.; Sharpe, J. (April 1951). "Nuclear particle and radiation detectors. Part 1: Ion chambers and ion-chamber instruments". Proceedings of the IEE - Part II: Power Engineering. 98 (62): 174–190. doi:10.1049/pi-2.1951.0058.
  7. Cote, Arthur; Bugbee, Percy (1988). "Ionization smoke detectors". Principles of fire protection. Quincy, MA: National Fire Protection Association. p. 249. ISBN 0-87765-345-3.
  8. Hill, R; Mo, Z; Haque, M; Baldock, C (2009). "An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams". Medical Physics. 36 (9Part1): 3971–3981. Bibcode:2009MedPh..36.3971H. doi:10.1118/1.3183820. PMID 19810470.
  9. Mo, L.; Reinhard, M.I.; Davies, J.B.; Alexiev, D.; Baldock, C. (April 2006). "Calibration of the Capintec CRC-712M dose calibrator for 18F". Applied Radiation and Isotopes. 64 (4): 485–489. doi:10.1016/j.apradiso.2005.09.006. PMID 16293417.
  10. Seco, Joao; Clasie, Ben; Partridge, Mike (Oct 2014). "Review on the characteristics of radiation detectors for dosimetry and imaging". Physics in Medicine and Biology. 59 (20): R303–R347. Bibcode:2014PMB....59R.303S. doi:10.1088/0031-9155/59/20/R303. PMID 25229250. S2CID 4393848.
  11. "Selection, use and maintenance of portable monitoring instruments" (PDF). Health & Safety Executive. 2001. Archived from the original (PDF) on 8 January 2018.