कैथोड
कैथोड को हम एक इलेक्ट्रोड के रूप में जानते हैं जो ध्रुवीकृत विद्युत उपकरण की तरह एक पारंपरिक धारा को छोड़ता है। 'कैथोड धारा प्रस्थान के लिए स्मरक (निमानिक) सीसीडी का उपयोग करके इस परिभाषा को याद किया जा सकता है। इसमें पारंपरिक धारा उस दिशा को वर्णित करती है जिसकी ओर सकारात्मक आवेश चलते हैं। इलेक्ट्रॉनों में ऋणात्मक विद्युत आवेश पाया जाता है, इसलिए इलेक्ट्रॉनों की गति पारंपरिक धारा प्रवाह के विपरीत होती है। नतीजतन, स्मरक (निमानिक) कैथोड धारा प्रस्थान का अर्थ यह भी है कि इलेक्ट्रॉन बाहरी परिपथ से डिवाइस के कैथोड में प्रवाहित करते हैं।
जिस इलेक्ट्रोड के द्वारा पारंपरिक धारा दूसरे तरीके से डिवाइस में प्रवाहित होती है, उसे एनोड कहा जाता है।
आवेश प्रवाह
सेल या डिवाइस के बाहर कैथोड से एनोड तक पारंपरिक धारा प्रवाहित होती है (इलेक्ट्रॉनों के विपरीत दिशा में चलते हुए), जो की सेल या डिवाइस के प्रकार या परिचालन प्रणाली (ऑपरेटिंग मोड) के ऊपर निर्भर नहीं करता।
एनोड के संबंध में कैथोड ध्रुवता डिवाइस के संचालन के आधार पर सकारात्मक या नकारात्मक हो सकती है। धनात्मक रूप से आवेशित धनायन हमेशा कैथोड की ओर तथा ऋणात्मक आवेशित आयन एनोड की ओर बढ़ते हैं, हालांकि कैथोड ध्रुवीयता डिवाइस के प्रकार पर निर्भर करती है,जो की परिचालन प्रणाली के अनुसार भिन्न भी हो सकती है। यदि कैथोड नकारात्मक रूप से ध्रुवीकृत हो (जैसे कि बैटरी को रिचार्ज करना) या सकारात्मक रूप से ध्रुवीकृत (जैसे कि उपयोग में आने वाली बैटरी) हो, वह इसमें इलेक्ट्रॉनों को अपनी ओर आकर्षित करेगा और साथ ही साथ सकारात्मक रूप से आवेशित किए गए धनायनों को भी आकर्षित करेगा। उपयोग में आने वाली बैटरी या गैल्वेनिक सेल में कैथोड धनात्मक टर्मिनल होता है क्योंकि इस बिंदु पर पारंपरिक धारा उपकरण से बाहर निकलती है। यह बाह्य धारा आंतरिक रूप से इलेक्ट्रोलाइट से सकारात्मक कैथोड में जाने वाले सकारात्मक आयनों द्वारा ले जाया जाता है (रासायनिक ऊर्जा इस "चढ़ाई" गति के लिए जिम्मेदार है)। यह बाह्य रूप से इलेक्ट्रॉनों द्वारा बैटरी के अंदर अनवरत रूप से जाता रहता है तथा बाहर की ओर बहने वाली सकारात्मक धारा का निर्माण करता है। उदाहरण के तौर पर, डेनियल गैल्वेनिक सेल का कॉपर इलेक्ट्रोड धनात्मक टर्मिनल तथा उसका कैथोड ऐसे ही प्रकार है। एक बैटरी जो इलेक्ट्रोलाइटिक सेल का इलेक्ट्रोलिसिस कर रही है या रिचार्ज हो रही है, उसका कैथोड नेगेटिव टर्मिनल के रूप में होता है, जिसके द्वारा धारा डिवाइस से बाहर की ओर निकलती है और बैटरी / सेल को आवेशित कर बाहरी जनरेटर में वापस आ जाती है। उदाहरण के लिए, डेनियल गैल्वेनिक सेल में वर्तमान दिशा को उलटने से यह इलेक्ट्रोलाइटिक सेल [1] में परिवर्तित हो जाता है जहां कॉपर इलेक्ट्रोड सकारात्मक टर्मिनल तथा एनोड की तरह भी कार्य करता है। डायोड में, कैथोड प्रतीकात्मक रूप से तीर के नुकीले सिरे पर ऋणात्मक टर्मिनल देता है, यहाँ डिवाइस से धारा प्रवाहित होती है। नोट- डायोड के लिए इलेक्ट्रोड का नामकरण हमेशा आगे की धारा की दिशा पर निर्भर करता है (तीर, जिसमें करंट "सबसे आसानी से" बहता है), यहां तक कि जेनर डायोड या सौर सेल जैसे प्रकारों में धारा का झुकाव विपरीत धारा की ओर रहता है। वैक्यूम ट्यूब (कैथोड-रे ट्यूब) में यह नकारात्मक टर्मिनल उत्तपन करता है जहां इलेक्ट्रॉन बाहरी सर्किट से डिवाइस में प्रवेश करते हैं और ट्यूब के निकट-वैक्यूम में आगे बढ़ते हैं, जिससे डिवाइस से बाहर निकलने वाली सकारात्मक धारा बनती है।
व्युत्पत्ति
यह शब्द 1834 में ग्रीक κάθοδος (कैथोडोस), 'डिसेंट' या 'वे डाउन' से विलियम व्हीवेल द्वारा गढ़ा गया था, जिनसे माइकल फैराडे ने इलेक्ट्रोलिसिस की हाल ही में खोजे गए एक पेपर को पूरा करने के लिए आवश्यक कुछ नए नामों पर परामर्श किया था। उस पेपर में फैराडे ने समझाया कि जब एक इलेक्ट्रोलाइटिक सेल उन्मुख होता है क्यूंकि वह विद्युत प्रवाह "डीकंपोज़िंग बॉडी" (इलेक्ट्रोलाइट) को "पूर्व से पश्चिम की दिशा में" ले जाए, या, जो स्मरणशक्ति को मजबूत करेगा, जिसमें सूर्य हिलता हुआ प्रतीत होता है", कैथोड वह जगह है जहां से करंट इलेक्ट्रोलाइट छोड़ता है, पश्चिम की ओर "काटा डाउनवर्ड, `ओडोस ए वे; जिस तरह से सूरज डूबता है।[2]'पश्चिम' के उपयोग का अर्थ 'बाहरी ' दिशा (वास्तव में 'बाहर' → 'वेस्ट' → 'सूर्यास्त' → 'डाउन', यानी 'बाहर देखने') अनावश्यक रूप से वंचित दिखाई दे सकता है। ऊपर उद्धृत पहले संदर्भ से संबंधित है, फैराडे ने अधिक सीधा शब्द एक्सोड (द्वार जहां वर्तमान से बाहर निकलता है) का उपयोग किया था। इसे 'वेस्ट इलेक्ट्रोड' (अन्य उम्मीदवार "वेस्टोड", "ओकियोड" और "डायसियोड" थे) के अर्थ में बदलने के लिए उनकी प्रेरणा ने इसे वर्तमान समय के लिए दिशा सम्मेलन में बाद के बदलाव के लिए प्रतिरक्छक बनाना था, जिसकी सटीक प्रकृति उस समय ज्ञात नहीं थी। इस प्रभाव के लिए वह जिस संदर्भ का उपयोग करता था, वह पृथ्वी की चुंबकीय क्षेत्र की दिशा थी, जिसे उस समय अपरिवर्तनीय माना जाता था। उन्होंने मौलिक रूप से सेल के लिए मनमाने ढंग से अभिविन्यास को परिभाषित किया, जिसमें आंतरिक प्रवाह समानांतर तथा एक ही दिशा में एक काल्पनिक मैग्नेटाइजिंग वर्तमान लूप के रूप में अक्षांश की स्थानीय रेखा के चारों ओर प्रदर्शित किया जो पृथ्वी की तरह एक चुंबकीय द्विध्रुवीय क्षेत्र को प्रेरित करेगा। इसने पहले से उल्लेख के अनुसार आंतरिक धारा को पश्चिम में बनाया था, लेकिन बाद की स्थिति में यह बदलाव पश्चिम से पूर्व में हो गया होगा, ताकि वेस्ट इलेक्ट्रोड किसी भी इस्थिति में बाहेर की ओर न होने पाए। इसलिए, एक्सोड अनुचित हो गया होगा, जबकि कैथोड का अर्थ है 'वेस्ट इलेक्ट्रोड' यह वर्तमान में अंतर्निहित वास्तविक घटना की अपरिवर्तित दिशा के संबंध में यह उचित होगा उसके बाद फिर अज्ञात हो जायेगा लेकिन, उन्होंने इस बारे में सोचा और चुंबकीय संदर्भ द्वारा स्पष्ट रूप से परिभाषित किया। रेट्रोस्पेक्ट में नाम का परिवर्तन दुर्भाग्यपूर्ण था, न केवल इसलिए कि ग्रीक मूल अकेले कैथोड के कार्य को अधिक प्रकट नहीं करती हैं, लेकिन इससे भी महत्वपूर्ण बात यह है कि, पृथ्वी की चुंबकीय क्षेत्र दिशा जिस पर कैथोड शब्द आधारित है, वह उलटफेर पर आधारित है। जबकि वर्तमान दिशा स्थिति जो की एक्सोड शब्द आधारित था, उसके पास भविष्य में बदलने का कोई कारण नहीं है।
इलेक्ट्रॉन की खोज के बाद यह याद करने के लिए एक आसान और अधिक तकनीकी रूप से उचित (हालांकि ऐतिहासिक रूप से गलत), व्युत्पत्ति का सुझाव दिया गया है। कैथोड,को हम ग्रीक कैथोडोस द्वारा 'वे डाउन', या 'रास्ता (नीचे की ओर ) या सेल में (अन्य उपकरण) इलेक्ट्रॉनों के लिए परिभाषित किया गया है।
रसायन विज्ञान में
रसायन विज्ञान में, कैथोड एक इलेक्ट्रोकेमिकल सेल का इलेक्ट्रोड है जिस पर कमी होती है। कैथोड नकारात्मक हो सकता है जैसे कि सेल इलेक्ट्रोलाइटिक होता है (जहां सेल को प्रदान की जाने वाली विद्युत ऊर्जा का उपयोग रासायनिक यौगिकों को विघटित करने के लिए किया जा रहा है) या सकारात्मक के रूप में जब सेल गैल्वेनिक होता है (जहां रासायनिक प्रतिक्रियाओं का उपयोग विद्युत ऊर्जा उत्पन्न करने के लिए किया जाता है)। कैथोड इलेक्ट्रॉनों को सकारात्मक रूप से चार्ज किए गए उद्धरणों की आपूर्ति करता है जो इसे इलेक्ट्रोलाइट से प्रवाहित करते हैं (भले ही सेल गैल्वेनिक हो, अर्थात जब कैथोड सकारात्मक होता है और इसलिए सकारात्मक रूप से चार्ज किए गए उद्धरणों को पीछे हटाने की उम्मीद की जाएगी, यह इलेक्ट्रोड संभावित सापेक्ष सापेक्ष के कारण होता है। इलेक्ट्रोलाइट समाधान एक गैल्वेनिक सेल में एनोड और कैथोड धातु/इलेक्ट्रोलाइट सिस्टम के लिए अलग है)।
इलेक्ट्रोकेमिस्ट्री में कैथोडिक धारा, कैथोड इंटरफ़ेस से एक प्रजाति के रूप में में कैथोड इंटरफ़ेस से इलेक्ट्रॉनों का प्रवाह होता है। एनोडिक धारा इलेक्ट्रॉनों का प्रवाह होता है जो एनोड से विलयन के प्रकार की ओरअग्रसित होता है।
इलेक्ट्रोलाइटिक सेल
एक इलेक्ट्रोलाइटिक सेल में, कैथोड वह जगह है जहां सेल को चलाने के लिए नकारात्मक ध्रुवीयता लागू होती है।कैथोड में अपचयन होने के कारण के धातु आयनों से हाइड्रोजन गैस या शुद्ध धातु प्राप्त होतें हैं। जब हम दो रेडॉक्स एजेंटों की सापेक्ष उनकी क्षमता कम होने पर बात करते हैं तो, अधिक ह्रास करने वाली प्रजातियों को उत्पन्न करने वाले अभिकर्मक के संबंध में उन्हें अधिक कैथोडिक कहा जाता है।
गैल्वेनिक सेल
एक गैल्वेनिक सेल में, कैथोड में वह जगह है जहां सकारात्मक ध्रुव परिपथ को पूरा करने की अनुमति देने के लिए जुड़ा होता है: जैसा कि गैल्वेनिक सेल का एनोड इलेक्ट्रॉनों को बंद कर देता है, वे परिपथ से कैथोड के माध्यम से सेल में लौटते हैं।
इलेक्ट्रोप्लेटिंग मेटल कैथोड (इलेक्ट्रोलिसिस)
जब धातु आयनों को आयनिक विलयन द्वारा कम किया जाता है, तो वे कैथोड पर एक शुद्ध धातु की सतह बनाते हैं। शुद्ध धातु के साथ चढ़ाई जाने वाली वस्तु इलेक्ट्रोलाइटिक विलयन में कैथोड का हिस्सा बन जाते हैं।
इलेक्ट्रॉनिक्स में
वैक्यूम ट्यूब
एक वैक्यूम ट्यूब या इलेक्ट्रॉनिक वैक्यूम सिस्टम में, कैथोड एक धातु की सतह है जो खाली जगह में मुक्त इलेक्ट्रॉनों का उत्सर्जन करता है। चूंकि इलेक्ट्रॉनों को धातु परमाणुओं के सकारात्मक नाभिक के लिए आकर्षित किया जाता है, इसलिए वे आम तौर पर धातु के अंदर रहते हैं और इसे छोड़ने के लिए ऊर्जा की आवश्यकता होती है;इसे धातु का कार्य फलन कहा जाता है।[3] कैथोड को कई तंत्रों द्वारा इलेक्ट्रॉनों का उत्सर्जन करने के लिए प्रेरित किया जाता है:[3]* थर्मियोनिक उत्सर्जन: कैथोड को गर्म किया जा सकता है। धातु परमाणुओं की बढ़ी हुई थर्मल गति सतह से इलेक्ट्रॉनों को बाहर निकालती है, इस प्रभाव को थर्मियोनिक उत्सर्जन कहा जाता है। इस तकनीक का उपयोग अधिकांश वैक्यूम ट्यूबों में किया जाता है।
- फील्ड इलेक्ट्रॉन उत्सर्जन: कैथोड के पास एक उच्च सकारात्मक वोल्टेज के साथ एक इलेक्ट्रोड रखकर एक मजबूत विद्युत क्षेत्र को सतह पर लागू किया जा सकता है।सकारात्मक रूप से चार्ज किए गए इलेक्ट्रोड इलेक्ट्रॉनों को आकर्षित करते हैं, जिससे कुछ इलेक्ट्रॉनों कैथोड की सतह छोड़ देते है।[3] इस प्रक्रिया का उपयोग ठंडे कैथोड कुछ माइक्रोस्कोपिक इलेक्ट्रॉन में करते है,[4][5][6] और माइक्रोइलेक्ट्रॉनिक निर्माण में भी होता है[5]* द्वितीयक उत्सर्जन: पर्याप्त ऊर्जा के साथ कैथोड की सतह से टकराने वाला इलेक्ट्रॉन, परमाणु या अणु सतह से बाहर इलेक्ट्रॉनों को दस्तक दे सकता है। इन इलेक्ट्रॉनों को द्वितीयक इलेक्ट्रॉन कहा जाता है। इस तंत्र का उपयोग गैस-डिस्चार्ज लैंप जैसे नियॉन लैंप में किया जाता है।
- फोटोइलेक्ट्रिक उत्सर्जन: इलेक्ट्रॉनों को कुछ धातुओं के इलेक्ट्रोड से भी उत्सर्जित किया जा सकता है, यह तब होता है जब थ्रेशोल्ड आवृत्ति से अधिक आवृत्ति का प्रकाश उस पर गिरता है। इस प्रभाव को फोटोइलेक्ट्रिक उत्सर्जन कहा जाता है, और उत्पादित इलेक्ट्रॉनों को फोटोइलेक्ट्रॉन कहा जाता है।[3]इस प्रभाव का उपयोग फोटोट्यूब और इमेज इंटेंसिफ़ायर ट्यूब में किया जाता है।
कैथोड को दो प्रकारों में विभाजित किया जा सकता है:
हॉट कैथोड
एक हॉट कैथोड वह कैथोड है जिसे थर्मियोनिक उत्सर्जन द्वारा इलेक्ट्रॉनों का उत्पादन करने के लिए एक फिलामेंट द्वारा गर्म किया जाता है।[3][7] फिलामेंट एक दुर्दम्य धातु का एक पतला तार है जैसे कि टंगस्टन ने इसके माध्यम से गुजरने वाले विद्युत प्रवाह को लाल गर्म किया। 1960 के दशक में ट्रांजिस्टर के आगमन से पहले, लगभग सभी इलेक्ट्रॉनिक उपकरणों ने हॉट-कैथोड वैक्यूम ट्यूबों का उपयोग किया था।आज हॉट कैथोड का उपयोग रेडियो ट्रांसमीटर और माइक्रोवेव ओवन में वैक्यूम ट्यूब में किया जाता है, जो कि पुराने कैथोड-रे ट्यूब (सीआरटी) प्रकार के टेलीविजन और कंप्यूटर मॉनिटर में इलेक्ट्रॉन बीम का उत्पादन करने के लिए, एक्स-रे जनरेटर, इलेक्ट्रॉन माइक्रोस्कोप और फ्लोरोसेंट ट्यूबों में होता है।
दो प्रकार के गर्म कैथोड होते हैं:[3]*प्रत्यक्ष रूप से गर्म कैथोड गर्म कैथोड:इस प्रकार में, फिलामेंट स्वयं कैथोड है और सीधे इलेक्ट्रॉनों का उत्सर्जन करता है। प्रत्यक्ष रूप से गर्म कैथोड का उपयोग पहले वैक्यूम ट्यूबों में किया गया था, लेकिन आज वे केवल फ्लोरोसेंट ट्यूबों में उपयोग किए जाते हैं, कुछ बड़े ट्रांसमिटिंग वैक्यूम ट्यूब, और सभी एक्स-रे ट्यूब में उपयोग किए जाते हैं।
- अप्रत्यक्ष रूप से गर्म कैथोड: इस प्रकार में, फिलामेंट कैथोड नहीं होते है, बल्कि यह कैथोड को गर्म करते है जो इलेक्ट्रॉनों का उत्सर्जन करता है।आज अधिकांश उपकरणों में अप्रत्यक्ष रूप से गर्म कैथोड का उपयोग किया जाता है।उदाहरण के लिए, अधिकांश वैक्यूम ट्यूबों में कैथोड तथा इसके अंदर फिलामेंट के साथ एक निकल ट्यूब होती है, और फिलामेंट की गर्मी ट्यूब की बाहरी सतह को इलेक्ट्रॉनों का उत्सर्जन करने का कारण बनती है।[7] अप्रत्यक्ष रूप से गर्म कैथोड के फिलामेंट को आमतौर पर हीटर कहा जाता है। अप्रत्यक्ष रूप से गर्म कैथोड का उपयोग करने का मुख्य कारण फिलामेंट में विद्युत क्षमता से वैक्यूम ट्यूब के बाकी हिस्सों को अलग करना है। कई वैक्यूम ट्यूब फिलामेंट को गर्म करने के लिए वैकल्पिक वर्तमान माध्यम का उपयोग करते हैं। एक ट्यूब जिसमें फिलामेंट स्वयं कैथोड होता है, वह फिलामेंट की सतह से वैकल्पिक विद्युत क्षेत्र के इलेक्ट्रॉनों के टकराहट को प्रभावित करेगा और ट्यूब आउटपुट में गुंगुनाहट (हम)को उत्तपन करेगा। यह एक इलेक्ट्रॉनिक उपकरण में सभी ट्यूबों में फिलामेंट्स को एक साथ बांधने और एक ही वर्तमान स्रोत से आपूर्ति करने की अनुमति देता है, भले ही वे जिस कैथोड को गर्म करते हैं वह अलग-अलग क्षमता पर हो सकता है।
इलेक्ट्रॉन उत्सर्जन में सुधार करने के लिए, कैथोड को रासायनिक तरीके उपचारित किया जाता है, आमतौर पर यह कम कार्य फलन वाले धातुओं के यौगिक पर लागु होता है। उपचारित कैथोड्स में समान कैथोड धारा की आपूर्ति करने के लिए कम सतह क्षेत्र, कम तापमान और कम शक्ति की आवश्यकता होती है। शुरुआती ट्यूबों (जिसे उज्ज्वल उत्सर्जक कहा जाता है) में उपयोग किए जाने वाले अनुपचारित टंगस्टन फिलामेंट्स को 1400° C (~ 2500 ° F), सफेद-गर्म तथा उपयोग के लिए पर्याप्त थर्मियोनिक उत्सर्जन का उत्पादन करने के लिए गर्म किया जाता था, जबकि आधुनिक लेपित कैथोड्स दिए गए तापमान पर कहीं अधिक इलेक्ट्रॉन का उत्पादन करते है। उन्हें केवल 425–600 °C पर गर्म किया जाता है। [3][8][9] दो मुख्य प्रकार के उपचारित कैथोड होते हैं:[3][7]
- लेपित कैथोड - इनमे कैथोड, क्षारीय धातु ऑक्साइड की कोटिंग द्वार कवर किया गया है,जो की अक्सर बेरियम और स्ट्रोंटियम ऑक्साइड होता है। इनका उपयोग कम-शक्ति वाली ट्यूबों में किया जाता है।
- थोरियेटेड टंगस्टन-उच्च-शक्ति वाली ट्यूबों में, आयन बमबारी एक लेपित कैथोड पर कोटिंग को नष्ट कर सकती है। इन ट्यूबों में प्रत्यक्ष रूप से गर्म कैथोड में टंगस्टन से बना एक फिलामेंट होता है जिसमें थोड़ी मात्रा में थोरियम का उपयोग किया जाता है। सतह पर थोरियम की परत जो कैथोड के कार्य फलन को क्षीण करती है तथा यह धातु के आंतरिक भाग से थोरियम के प्रसार द्वारा लगातार भर्ती जाती है।[10]
कोल्ड कैथोड
यह कैथोड फिलामेंट द्वारा गर्म नहीं किया जाता है। ये फील्ड इलेक्ट्रॉन उत्सर्जन द्वारा इलेक्ट्रॉनों का उत्सर्जन कर सकते हैं, और माध्यमिक उत्सर्जन द्वारा गैस से भरे ट्यूबों में भी यह प्रक्रिया पायी जाती है। उदाहरण के तौर पर नीयन रोशनी, कोल्ड-कैथोड फ्लोरोसेंट लैंप (सीसीएफएल) में इलेक्ट्रोड हैं, जिनका उपयोग लैपटॉप, थाराट्रॉन ट्यूब और क्रुक ट्यूब में बैकलाइट के रूप में किया जाता है। यहाँ पर यह जरूरी नहीं कि कमरे के तापमान पर काम करें;कुछ उपकरणों में कैथोड को इलेक्ट्रॉन धारा द्वारा गर्म किया जाता है, जो इसके माध्यम से एक तापमान पर बहता है जिस पर थर्मोनिक उत्सर्जन होता है। उदाहरण के लिए, कुछ फ्लोरोसेंट ट्यूबों में ट्यूब के माध्यम से वर्तमान को शुरू करने के लिए इलेक्ट्रोड पर एक क्षणिक उच्च वोल्टेज लागू किया जाता है; डिस्चार्ज को बनाए रखने के लिए इलेक्ट्रॉनों को उत्सर्जित करने के लिए वर्तमान द्वारा इलेक्ट्रोड शुरू करने के बाद इलेक्ट्रोड को पर्याप्त गर्म किया जाता है।
कोल्ड कैथोड फोटोइलेक्ट्रिक उत्सर्जन द्वारा इलेक्ट्रॉनों का उत्सर्जन भी कर सकते हैं। इन्हें अक्सर फोटोकैथोड्स कहा जाता है और इसका उपयोग वैज्ञानिक उपकरणों में उपयोग किए जाने वाले फोटोट्यूब में किया जाता है और रात की दृष्टि गॉगल्स में उपयोग किए जाने वाले छवि इंटेंसिफ़ायर ट्यूबों में उपयोग किया जाता है।
डायोड्स
एक अर्धचालक डायोड में, कैथोड डोपिंग के कारण मुक्त इलेक्ट्रॉनों के उच्च घनत्व के साथ पीएन जंक्शन की एन -डॉप्ड परत है, और निश्चित सकारात्मक आवेशों का एक समान घनत्व है, जो कि डोपेंट हैं जो थर्मली आयनित हैं। एनोड में, कॉनवर्स लागू होता है: इसमें मुक्त छेद का एक उच्च घनत्व है और परिणामस्वरूप नकारात्मक डोपेंट तय किए गए हैं, जो एक इलेक्ट्रॉन पर कब्जा कर लिया है (इसलिए छेद की उत्पत्ति)।
जब पी और एन-डोप की गई परतें एक-दूसरे के निकट बनाई जाती हैं, तो प्रसार यह सुनिश्चित करता है कि इलेक्ट्रॉन उच्च से निम्न घनत्व वाले क्षेत्रों में प्रवाहित होते हैं: अर्थात, एन से पी साइड तक। वे जंक्शन के पास तय सकारात्मक रूप से चार्ज किए गए डोपेंट को पीछे छोड़ देते हैं। इसी तरह, छेद पी से एन तक फैलते हैं जो जंक्शन के पास निश्चित नकारात्मक आयनित डोपेंट को पीछे छोड़ते हैं। निश्चित सकारात्मक और नकारात्मक चार्ज की इन परतों को सामूहिक रूप से कमी परत के रूप में जाना जाता है क्योंकि वे मुक्त इलेक्ट्रॉनों और छेदों से कम हो जाते हैं। जंक्शन पर कमी की परत डायोड के सुधार गुणों के मूल में है। यह परिणामी आंतरिक क्षेत्र और इसी संभावित बाधा के कारण होता है जो रिवर्स एप्लाइड बायस में वर्तमान प्रवाह को रोकता है जो आंतरिक कमी परत क्षेत्र को बढ़ाता है। इसके विपरीत, वे इसे आगे लागू किए गए पूर्वाग्रह में अनुमति देते हैं जहां लागू पूर्वाग्रह संभावित बाधा में निर्मित को कम करता है।
इलेक्ट्रॉनों जो कैथोड से पी-डोप की गई परत, या एनोड में फैलते हैं, जो अल्पसंख्यक वाहक कहा जाता है और बहुसंख्यक वाहक के साथ वहां पुन: संयोजन करते हैं, जो कि छेद हैं, जो कि पी-टाइप अल्पसंख्यक हैं। वाहक जीवनकाल। इसी तरह, एन-डोप की गई परत में फैलने वाले छेद अल्पसंख्यक वाहक बन जाते हैं और इलेक्ट्रॉनों के साथ पुनर्संयोजन करते हैं। संतुलन में, बिना किसी लागू पूर्वाग्रह के, संतुलन की परत के विपरीत दिशाओं में इलेक्ट्रॉनों और छेदों के थर्मल रूप से सहायता प्राप्त प्रसार के साथ, कैथोड से एनोड और पुनर्संयोजन के लिए इलेक्ट्रॉनों के साथ एक शून्य शुद्ध धारा सुनिश्चित करें, और एनोड से कैथोड से लेकर जंक्शन या विघटन की परत के लिए प्रवाह और पुनर्संयोजन।
यह भी देखें
- बैटरी
- कैथोड पूर्वाग्रह
- कैथोडिक प्रतिरक्षण
- इलेक्ट्रोलिसिस
- इलेक्ट्रोलाइटिक सेल
- गैस से भरी ट्यूब
- ऑक्सीकरण न्यूनीकरण
- पाली (3,4-एथिलीनडाइऑक्सीथियोफीन) | पेडोट
- वेक्यूम - ट्यूब
संदर्भ
- ↑ [1] Archived 4 June 2011 at the Wayback Machine, Daniell cell can be reversed to, technically, produce an electrolytic cell.
- ↑ Faraday, Michael (1849). Experimental Researches In Electricity. Vol. 1. London: The University of London.
- ↑ Jump up to: 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Avadhanulu, M.N.; P.G. Kshirsagar (1992). A Textbook Of Engineering Physics For B.E., B.Sc. S. Chand. pp. 345–348. ISBN 978-8121908177. Archived from the original on 2 January 2014.
- ↑ "Field emission". Encyclopædia Britannica online. Encyclopædia Britannica, Inc. 2014. Archived from the original on 2 December 2013. Retrieved 15 March 2014.
- ↑ Jump up to: 5.0 5.1 Poole, Charles P. Jr. (2004). Encyclopedic Dictionary of Condensed Matter Physics, Vol. 1. Academic Press. p. 468. ISBN 978-0080545233. Archived from the original on 24 December 2017.
- ↑ Flesch, Peter G. (2007). Light and Light Sources: High-Intensity Discharge Lamps. Springer. pp. 102–103. ISBN 978-3540326854. Archived from the original on 24 December 2017.
- ↑ Jump up to: 7.0 7.1 7.2 Ferris, Clifford "Electron tube fundamentals" in Whitaker, Jerry C. (2013). The Electronics Handbook, 2nd Ed. CRC Press. pp. 354–356. ISBN 978-1420036664. Archived from the original on 2 January 2014.
- ↑ Poole, Ian (2012). "Vacuum tube electrodes". Vacuum Tube Theory Basics Tutorial. Radio-Electronics.com, Adrio Communications. Archived from the original on 4 November 2013. Retrieved 3 October 2013.
- ↑ Jones, Martin Hartley (1995). A Practical Introduction to Electronic Circuits. UK: Cambridge Univ. Press. p. 49. ISBN 978-0521478793. Archived from the original on 2 January 2014.
- ↑ Sisodia, M. L. (2006). Microwave Active Devices Vacuum and Solid State. New Age International. p. 2.5. ISBN 978-8122414479. Archived from the original on 2 January 2014.