अल्फा कण

From Vigyanwiki
Alpha particle
Alpha Decay.svg
रचना2 protons, 2 neutrons
सांख्यिकीBosonic
प्रतीकα, α2+, He2+
द्रव्यमान

 GeV/c2
इलेक्ट्रिक   चार्ज+2 प्रारंभिक शुल्क

अल्फा कण, जिन्हें अल्फा किरणें या अल्फा विकिरण भी कहा जाता है, दो प्रोटॉन और दो न्यूट्रॉन से मिलकर एक हीलियम-4 परमाणु नाभिक के समान एक कण में बंधे होते हैं। सामान्यतः वे अल्फा क्षय की प्रक्रिया में उत्पादित होते हैं, परंतु यह अन्य नियमों से भी उत्पादित किए जा सकते हैं। अल्फा कणों का नाम ग्रीक वर्णमाला के पहले अक्षर α के नाम पर रखा गया है।

अल्फा कण का प्रतीक α या α2+ है। क्योंकि वे हीलियम नाभिक के समान हैं, उन्हें कभी-कभी He2+
या 4
2
He2+
के रूप में भी लिखा जाता है, एक हीलियम आयन को +2 आवेश के साथ इंगित किया जाता है।.एक बार जब आयन अपने वातावरण से इलेक्ट्रॉन प्राप्त कर लेता है, तो अल्फा कण एक सामान्य विद्युत रूप से तटस्थ हीलियम परमाणु 4
2
He
हो जाता है। तथा अल्फा कणों का वास्तविक घुमाव शून्य होता है।

मानक अल्फा रेडियोधर्मी क्षय में उनके उत्पादन के तंत्र के कारण, अल्फा कणों में सामान्यतः लगभग 5 एमईवी की गतिज ऊर्जा होती है, और प्रकाश की गति के 4% के आसपास वेग होता है। (अल्फा क्षय में इन आंकड़ों की सीमाओं के लिए नीचे चर्चा देखें।) वे कण विकिरण का एक अत्यधिक आयनकारी रूप हैं, और जब रेडियोधर्मी अल्फा क्षय से उत्पन्न होते हैं, तो कम प्रवेश की गहराई होती है, तथा कुछ सेंटीमीटर हवा, या त्वचा द्वारा बंद होती है।

यद्यपि, त्रिगुट विखंडन से तथाकथित लंबी दूरी के अल्फा कण तीन गुना ऊर्जावान होते हैं, और तीन गुना दूर तक प्रवेश करते हैं। हीलियम नाभिक जो ब्रह्मांडीय किरणों का 10-12% बनाते हैं, वे भी सामान्यतः परमाणु क्षय प्रक्रियाओं द्वारा उत्पादित के सापेक्ष में बहुत अधिक ऊर्जा वाले होते हैं, और इस प्रकार अत्यधिक मर्मज्ञ हो सकते हैं और मानव शरीर को पार करने में सक्षम होते हैं और कई मीटर घने ठोस परिरक्षण पर निर्भर करते हैं। कुछ सीमा तक, यह कण त्वरकों द्वारा उत्पादित बहुत उच्च-ऊर्जा हीलियम नाभिक के बारे में भी सच है।


नाम

कुछ विज्ञान लेखक दोगुने आयनीकृत हिलियम नाभिको (He2+
) और अल्फा कणों को एक दूसरे के समानार्थक शब्द के रूप में उपयोग करते हैं। नामपद्धति अच्छी तरह से परिभाषित नहीं है, और इस प्रकार सभी उच्च-वेग वाले हीलियम नाभिकों को सभी लेखकों द्वारा अल्फा कण नहीं माना जाता है। जैसा कि बीटा और गामा कण / किरणों की तरह, कण के लिए उपयोग किया जाने वाला नाम उसके उत्पादन प्रक्रिया और ऊर्जा के बारे में कुछ हल्के से संकेत लेकिन ये कठोरता से से लागू नहीं होते हैं।,।[2] इसलिए, जब स्टेलर हेलियम नाभिकों की प्रतिक्रियाओं (जैसे अल्फा प्रक्रियाएं) का उल्लेख करते समय और जब वे ब्रह्मांडीय किरणों के घटक के रूप में पाए जाते हैं,फिर अल्फा कणों को एक शब्द के रूप में शिथिल रूप से इस्तेमाल किया जा सकता है। और तब भी जब वे ब्रह्मांडीय किरणों के घटकों के रूप में होते हैं। अल्फा क्षय में उत्पादित अल्फा के सापेक्ष में अल्फा का एक उच्च ऊर्जा संस्करण परमाणु विखंडन का एक सामान्य उत्पाद है जिसे टर्नरी विखंडन कहा जाता है। यद्यपि, साइक्लोट्रॉन,सिंक्रोटॉन,और इसी तरह कण त्वरक द्वारा उत्पादित हीलियम नाभिक को अल्फा कणों के रूप में संदर्भित किए जाने की संभावना कम है।

अल्फा कणों के स्रोत

अल्फा क्षय

एक भौतिक विज्ञानी क्लाउड कक्ष में पोलोनियम स्रोत के क्षय से अल्फा कणों को देखता है
एक आइसोप्रोपेनॉल क्लाउड चैंबर में अल्फा विकिरण का पता चला (एक कृत्रिम स्रोत रेडॉन-220 के इंजेक्शन के बाद)।

अल्फा कणों का सबसे ज्यादा जाना माना स्रोत, भारी (> 106 u परमाणु भार) परमाणुओं के अल्फा असंतुलन से होता है। जब एक परमाणु अल्फा असंतुलन में एक अल्फा कण उत्सर्जित करता है, तो चार न्यूक्लियनों के हानि के कारण परमाणु का अणु संख्या चार कम हो जाता है। परमाणु की परमाणु संख्या दो से कम हो जाती है, दो प्रोटॉन के हानि के परिणामस्वरूप - परमाणु एक नया तत्व बन जाता है। यूरेनियम का थोरियम में अपघटन , और रेडियम का रेडॉन में अपघटन यूरेनियम का थोरियम में अपघटन , और रेडियम का रेडॉन में अपघटन अल्फा क्षय द्वारा इस प्रकार के परमाणु रूपांतरण के उदाहरण,हैं।

अल्फा कण सभी बड़े विकिरणीय नाभिको जैसे यूरेनियम, थोरियम, ऐक्टिनियम और रेडियम के साथ-साथ परायूरेनियम तत्वों द्वारा सामान्यतः उत्पन्न किए जाते हैं। अन्य प्रकार के क्षय के विपरीत, एक प्रक्रिया के रूप में अल्फा क्षय में एक न्यूनतम आकार का परमाणु नाभिक होना चाहिए जो इसका समर्थन कर सके। अब तक के सबसे छोटे नाभिक जो अल्फा उत्सर्जन के लिए सक्षम पाए गए हैं, बेरिलियम-8 और टेल्यूरियम (तत्व 52) के सबसे हल्के न्यूक्लाइड हैं, जिनकी द्रव्यमान संख्या 104 और 109 के मध्य है। अल्फा अपक्षय कभी-कभी नाभिक को उत्तेजित अवस्था में छोड़ देता है गामा किरण का उत्सर्जन तब अतिरिक्त ऊर्जा को हटा देता है।

अल्फा क्षय में उत्पादन की क्रियाविधि

बीटा विकिरण के विपरीत, अल्फा विकिरण के लिए मौलिक परमाणु-परमाणु प्रभाव विद्यमान होते हैं, जो विद्युत औरचुम्बकीय बल के मध्य एक संतुलन होता है। अल्फा क्षय का परिणाम कूलम्ब के नियम से होता है[1]अल्फा कण और शेष नाभिक के मध्य, जिनमें दोनों का एक सकारात्मक विद्युत आवेश होता है, परंतु जिसे परमाणु बल द्वारा नियंत्रित रखा जाता है। पारम्परिक भौतिकी में, , अल्फा कणों के पास नाभिकीय केंद्र में मजबूत बल के गुब्बारे से बाहर निकलने के लिए पर्याप्त ऊर्जा नहीं होती है (इस गुब्बारे में बाहर निकलने के लिए पारमाणविक बल को पार करना होता है, जो एक तरफ से बाहर निकलते हुए विद्युत बल के दबाव की वजह से दूसरी तरफ से रोक लगाता है।

यद्यपि, क्वांटम टनलिंग प्रभाव अल्फा कणों को पार करने की अनुमति देता है भले ही उनमें पर्याप्त ऊर्जा नाभिकीय बल को पार करने के लिए न हो। यह पदार्थ की तरंग निस्पंदन प्रकृति द्वारा संभव होता है, जो अल्फा कण को एक ऐसे क्षेत्र में समय व्यतीत करने की अनुमति देता है जो परमाणु से इतना दूर होता है कि द्वीपांतर के विद्युतीय बल के द्वारा आकर्षण बल पूरी तरह से खत्म हो जाता है। इस बिंदु से प्रारंभ होकर अल्फा कण पार कर सकते हैं।

त्रिगुट विखंडन

परमाणु प्रक्रिया से निकलने वाले विशेष रूप से ऊर्जावान अल्फा कण, त्रिगुट विखंडन की अपेक्षाकृत दुर्लभ परमाणु विखंडन प्रक्रिया में उत्पन्न होते हैं। इस प्रक्रिया में, घटना से सामान्य दो के अतिरिक्त तीन आवेशित कण उत्पन्न होते हैं, आवेशित कणों में सबसे छोटा एक अल्फा कण होता है। इस तरह के अल्फा कणों को लंबी दूरी के अल्फा कहा जाता है क्योंकि उनकी 16 मेव की विशिष्ट ऊर्जा पर, वे अल्फा क्षय द्वारा उत्पादित की तुलना में कहीं अधिक उच्च ऊर्जा पर होते हैं। टर्नरी विखंडन न्यूट्रॉन-प्रेरित विखंडन परमाणु रिएक्टर में होने वाली परमाणु प्रतिक्रिया दोनों में होता है, और तब भी जबविखंडनीय और विखंडनीय एक्टिनाइड नाभकीय रेडियोधर्मी क्षय के रूप में सहज विखंडन से गुजरते हैं। प्रेरित और सहज विखंडन दोनों में, भारी नाभिकों में उपलब्ध उच्च ऊर्जा का परिणाम अल्फा क्षय के सापेक्ष मे उच्च ऊर्जा के लंबी दूरी के अल्फा में होता है।

त्वरक

साइक्लोट्रॉन, सिंक्रोट्रॉन और अन्य कण त्वरक प्रतिदीवेगकर्ताओं द्वारा ऊर्जावान हिलियम नाभिको का उत्पादन किया जा सकता है। परंतु इन्हें सामान्यतया "अल्फा कण" के रूप में नहीं संदर्भित किया जाता है।

सौर कोर प्रतिक्रियाएं

हीलियम नाभिक सितारों में परमाणु प्रतिक्रियाओं में भाग ले सकता है, और कभी-कभी और ऐतिहासिक रूप से इन्हें अल्फा प्रतिक्रियाओं के रूप में संदर्भित किया जाता है (उदाहरण के लिए ट्रिपल-अल्फा प्रक्रिया देखें)।

ब्रह्मांडीय किरणें

इसके अतिरिक्त, अत्यधिक उच्च ऊर्जा हीलियम नाभिक, जिसे कभी-कभी अल्फा कण कहा जाता है, ब्रह्मांडीय किरणों का लगभग 10 से 12% भाग बनाता है। ब्रह्मांडीय किरणों के उत्पादन के तंत्र विवादों का विषय बना हुआ है।

ऊर्जा और अवशोषण

A scatter chart showing 15 examples of some radioactive nuclides with their main emitted alpha particle energies plotted against their atomic number. ऊर्जा की सीमा लगभग 2 से 12 मेव तक है। परमाणु संख्या की सीमा लगभग 50 से 110 है।अल्फा क्षय में उत्सर्जित अल्फा कण की ऊर्जा उत्सर्जन प्रक्रिया के लिए अर्ध-जीवन पर सामान्य रूप से निर्भर करती है, आधे जीवन में परिमाण अंतर के कई आदेशों के साथ 50% से कम ऊर्जा परिवर्तन के साथ जुड़ा हुआ है, जिसे गीजर-नटल द्वारा दिखाया गया विधि है। ।

उत्सर्जित अल्फा कणों की ऊर्जा भिन्न होती है, उच्च ऊर्जा वाले अल्फा कण बड़े नाभिकों से उत्सर्जित होते हैं, परंतु अल्फा कणों में 3 और 7 मेगा-इलेक्ट्रॉन-वोल्ट के मध्य की ऊर्जा होती है, जो कि अत्यधिक लंबे और अत्यंत छोटे अर्ध-जीवन के अनुरूप होती है। क्रमशः अल्फा उत्सर्जक न्यूक्लाइड ऊर्जा और अनुपात प्रायः अलग होते हैं, और अल्फा-कण स्पेक्ट्रोस्कोपी के रूप में विशिष्ट न्यूक्लाइड की पहचान करने के लिए उपयोग किए जा सकते हैं।

5 MeV की विशिष्ट गतिज ऊर्जा के साथ; उत्सर्जित अल्फा कणों की गति 15,000 किमी/सेकंड है, जो प्रकाश की गति का 5% है। यह ऊर्जा एक कण के लिए पर्याप्त मात्रा में ऊर्जा है, परंतु उनके उच्च द्रव्यमान का अर्थ है कि अल्फा कणों की गति किसी भी अन्य सामान्य प्रकार के विकिरण की तुलना में कम होती है, उदाहरण, बीटा कण β कण, न्यूट्रॉन विकिरण [4]उनके आवेश और बड़े द्रव्यमान के कारण, अल्फा कण सरलता से पदार्थ द्वारा अवशोषित हो जाते हैं, और वे हवा में मात्र कुछ सेंटीमीटर की यात्रा कर सकते हैं। उन्हें टिशू पेपर या मानव त्वचा की बाहरी परतों द्वारा अवशोषित किया जा सकता है। वे सामान्यतः लगभग 40 माइक्रोमीटर त्वचा में प्रवेश करते हैं, जो कुछ सेलों के बराबर गहराई तक होता है।

जैविक प्रभाव

अवशोषण की छोटी सीमा और त्वचा की बाहरी परतों में प्रवेश करने में असमर्थता के कारण, अल्फा कण सामान्य रूप से जीवन के लिए खतरनाक नहीं होते हैं, जब तक कि स्रोत को अंतर्ग्रहण या साँस नहीं लिया जाता है।[5] इस उच्च द्रव्यमान और स्थिर अवशोषण के कारण, यदि अल्फा-उत्सर्जक रेडियो न्यूक्लाइड्स शरीर में प्रवेश करते हैं अल्फा विकिरण आयनीकरण विकिरण का सबसे विनाशकारी रूप है। यह सबसे प्रबल आयनकारी है, और पर्याप्त मात्रा में बड़ी मात्रा में विकिरण विषाक्तता के किसी भी या सभी लक्षणों का कारण बन सकता है। यह अनुमान लगाया गया है कि गामा या बीटा विकिरण की समतुल्य मात्रा के सापेक्ष में अल्फा कणों सेक्रोमोसाम की क्षति कहीं भी 10 से 1000 गुना अधिक है, औसत 20 गुना पर सेट किया गया है। प्लूटोनियम और यूरेनियम से अल्फा विकिरण के लिए आंतरिक रूप से सामने आने वाले यूरोपीय परमाणु श्रमिकों के एक अध्ययन में पाया गया कि जब सापेक्ष जैविक प्रभावशीलता 20 मानी जाती है, तो अल्फा विकिरण की कार्सिनोजेनिक क्षमता की खुराक के लिए रिपोर्ट की गई के अनुरूप प्रतीत होती है। बाहरी गामा विकिरण यानी श्वास द्वारा लिए गए अल्फा-कणों की एक दी गई आहार गामा विकिरण की 20 गुना अधिक आहार के समान जोखिम प्रस्तुत करती है।[6] शक्तिशाली अल्फा उत्सर्जक पोलोनियम -210 (एक मिलीग्राम 210Po प्रति सेकंड 4.215 ग्राम रेडियम-226 के बराबर अल्फा कण उत्सर्जित करता है| 226Ra को फेफड़ों के कैंसर और तम्बाकू से संबंधित मूत्राशय के कैंसर और स्वास्थ्य तम्बाकू के रेडियोधर्मी घटकों में भूमिका निभाने का संदेह है।[7] 210Po का उपयोग 2006 में रूसी विपक्षी और पूर्व-एफएसबी अधिकारी अलेक्जेंडर वी. लिटविनेंको की हत्या करने के लिए किया गया था।

जब अल्फा कण उत्सर्जक आइसोटोप निगले जाते हैं, तो वे अपने आधे जीवन या क्षय दर की तुलना में कहीं अधिक खतरनाक होते हैं,जब अल्फा किरण उत्सर्जित करने वाले आइसोटोप खाये जाते हैं, तो उन्हें उनके अपघटन दर द्वारा सुझाए जाने से भी अधिक खतरनाक माना जाता है, क्योंकि अल्फा किरण का संबंधित जैविक प्रभाव उत्पादन करने के लिए उच्च होता है। अल्फा विकिरण औसतन लगभग 20 गुना अधिक खतरनाक है, और साँस द्वारा लिए गए अल्फा उत्सर्जकों के प्रयोगों में, बीटा उत्सर्जक या गामा उत्सर्जक रेडियोआइसोटोप की समकक्ष गतिविधि के सापेक्ष में 1000 गुना अधिक खतरनाक है।

खोज और उपयोग का इतिहास

अल्फा विकिरण में हीलियम -4 नाभिक होता है और कागज की एक शीट द्वारा आसानी से रोक दिया जाता है। बीटा विकिरण, इलेक्ट्रॉनों से मिलकर, एक एल्यूमीनियम प्लेट द्वारा रोका जाता है। गामा विकिरण अंततः अवशोषित हो जाता है क्योंकि यह घने पदार्थ में प्रवेश करता है। अपने घनत्व के कारण गामा विकिरण को अवशोषित करने में सीसा अच्छा होता है।
एक अल्फा कण एक चुंबकीय क्षेत्र द्वारा विक्षेपित होता है
धातु की पतली शीट पर अल्फा कणों का बिखरना

1899 में, भौतिक विज्ञानी अर्नेस्ट रदरफोर्ड (मॉन्ट्रियल, कनाडा में मैकगिल विश्वविद्यालय में कार्य कर रहे) और पॉल विलार्ड (पेरिस में कार्य कर रहे) ने विकिरण को तीन प्रकारों में अलग किया: अंततः रदरफोर्ड द्वारा अल्फा, बीटा और गामा नाम दिया गया, जो वस्तुओं के प्रवेश और विक्षेपण पर आधारित था। चुंबकीय क्षेत्र।[8] अल्फा किरणों को रदरफोर्ड द्वारा परिभाषित किया गया था, जो सामान्य वस्तुओं की सबसे कम भेदन वाली होती हैं।

रदरफोर्ड के कार्य में एक अल्फा कण के द्रव्यमान और उसके आवेश के अनुपात का माप भी सम्मिलित था, जिसने उन्हें इस परिकल्पना की ओर अग्रसर किया कि अल्फा कण दोगुने आवेशित हीलियम आयन थे, बाद में नंगे हीलियम नाभिक के रूप में दिखाए गए।[9] 1907 में, अर्नेस्ट रदरफोर्ड और थॉमस रॉयड्स ने अंततः सिद्ध कर दिया कि अल्फा कण वास्तव में हीलियम आयन थे।[10] ऐसा करने के लिए उन्होंने अल्फा कणों को एक खाली ट्यूब की एक बहुत पतली कांच की दीवार में प्रवेश किया, इस प्रकार ट्यूब के अंदर बड़ी संख्या में परिकल्पित हीलियम आयनों को अधिकृत किया। फिर उन्होंने ट्यूब के अंदर एक विद्युत की चिंगारी उत्पन्न की। उत्पन्न गैस के स्पेक्ट्रम के अध्ययन के बाद पाया गया कि यह हेलियम है और अल्फा किरण वास्तव में संभवित हेलियम आयन थे। क्योंकि अल्फा किरण प्राकृतिक रूप से पाए जाते हैं, लेकिन उनमें पारमाणविक प्रतिक्रिया में भाग लेने के लिए पर्याप्त ऊर्जा हो सकती है, इसलिए उनके अध्ययन से नाभिकीय भौतिकी के बारे में बहुत सी प्रारंभिक जानकारी हुई। रेडियम ब्रोमाइड द्वारा उत्पन्न अल्फा किरणों का उपयोग करके रदियोमेट्रिक पदार्थ के अध्ययन में, रदरफोर्ड ने सुझाव दिया कि जे. जे. थॉमसन के प्लम पुडिंग प्रारूप की आधारभूत त्रुटि थी। हांस गाइगर और अर्नेस्ट मार्सडेन द्वारा रदरफोर्ड के गोल्ड फ़ॉइल प्रयोग में, बहुत पतली सोने की तिकोनीय कागजात में एक संकीर्ण अल्फा किरण बीम स्थापित की गई थी। जो बहुत पतली (कुछ सौ परमाणु मोटी) सोने की पन्नी से गुजर रहा था। जिंक सल्फाइड स्क्रीन द्वारा अल्फा कणों का पता लगाया गया था, जो अल्फा कण टक्कर पर प्रकाश की चमक का उत्सर्जन करता है। रदरफोर्ड ने परिकल्पना की कि, परमाणु के प्लम पुडिंग प्रारूप को सही मानते हुए, सकारात्मक रूप से आवेश किए गए यदि सभी अनुमानित फैलाव सकारात्मकआवेश द्वारा अल्फा कणमात्र थोड़े से विक्षेपित होते है,तथा यह पाया गया कि कुछ अल्फा कणों को अपेक्षा से अधिक बड़े कोणों पर विक्षेपित किया गया था, और कुछ ने लगभग सीधे वापस बाउंस भी किया। यद्यपि, अधिकांश अल्फा कण अपेक्षा के अनुसार ,यह निर्धारित किया गया था कि एटम के सकारात्मक आवेश केंद्र में एक छोटे से क्षेत्र में संकुचित होता है, जिससे सकारात्मक आवेश इतना घना होता है कि किसी भी सकारात्मक आयल्फा कणों को अवरोही कर देने में सक्षम होता है, जो बाद में नाभिकीय के नाम से जाना जाता है।

इस खोज से पहले, यह ज्ञात नहीं था कि अल्फा कण स्वयं परमाणु नाभिक थे, न ही प्रोटॉन या न्यूट्रॉन के अस्तित्व के बारे में पता था।इस खोज के बाद, जे.जे. थॉमसन के "बेरी का पुडिंग"प्रारूप को छोड़ दिया गया और रथरफोर्ड का प्रयोग बोहरप्रारूप और बाद में परम्परागत तरंग-यांत्रिकीय एवं आधुनिक विमान-यांत्रिकीप्रारूप तक पहुँचाया।

रेडियोधर्मी क्षय के माध्यम से उत्सर्जित विशिष्ट अल्फा कण के लिए हवा में ऊर्जा-हानि (ब्रैग वक्र )।
विशेष रूप से अल्फा कणों के लिए बनाए गए अपने स्पार्क कक्ष के साथ परमाणु भौतिक विज्ञानी वोल्फहार्ट विलिम्ज़िक द्वारा प्राप्त एक अल्फा कण का निशान।

1917 में, रदरफोर्ड ने एल्फा किरणों का उपयोग करके एक दिशानिर्देशित नाभिकीय परिवर्तन का अनुप्रयोग किया, जिसे बाद में उन्होंने एक तत्व से दूसरे तत्व के नाभिकीय परिवर्तन के रूप में प्रतिपादित किया। प्राकृतिक रेडियोधर्मी क्षय के परिणामस्वरूप 1901 से तत्वों का एक से दूसरे में रूपांतरण समझा गया था, परंतु जब रदरफोर्ड ने अल्फा क्षय से अल्फा कणों को हवा में प्रक्षेपित किया, तो उन्होंने पाया कि इससे एक नए प्रकार का विकिरण उत्पन्न होता है जो हाइड्रोजन नाभिक रदरफोर्ड नाम प्रमाणित हुआ। ये प्रोटॉन)। आगे के प्रयोग ने दिखाया कि प्रोटॉन हवा के नाइट्रोजन घटक से आ रहे हैं, और प्रतिक्रिया प्रतिक्रिया में नाइट्रोजन का ऑक्सीजन में रूपांतरण होने के लिए प्रतिक्रिया का अनुमान लगाया गया था।

14एन + α → 17O + प्रोटॉन

यह पहली खोजी गई परमाणु प्रतिक्रिया थी।

उपरोक्त चित्रों के आधार पर: ब्रैग द्वारा ऊर्जा-हानि तरंग के अनुसार, स्पष्ट रूप से देखा जा सकता है कि अल्फा कण निश्चित रूप से ट्रेस के अंत में अधिक ऊर्जा खो देता है।[11]


प्रतिरोधी-अल्फा कण

2011 में, अमेरिकी ऊर्जा विभाग के ब्रुकहैवन राष्ट्रीय प्रयोगशाला में सापेक्षवादी भारी आयन कोलाइडर का उपयोग करते हुए अंतर्राष्ट्रीय स्टार सहयोग के सदस्यों ने हीलियम नाभिक के प्रतिकण पार्टनर का पता लगाया, जिसे प्रतिरोधी-अल्फा के रूप में भी जाना जाता है।[12] जिसके प्रयोग में सोने के आयनों को लगभग प्रकाश की गति से चलने और सिर पर टकराने के लिए प्रतिकण का उत्पादन करने के लिए प्रयोग किया गया था।[13]


अनुप्रयोग

  • कुछ स्मोक डिटेक्टरों में अल्फा एमिटर अमेरिकियम-241 की कम मात्रा होती है। एल्फा कणों से छोटी एक अन्तराल के अंदर हवा का आयन हो जाता है। उस आयनित हवा के माध्यम से एक छोटी सी धारा दी जाती है। अग्नि से उत्पन्न धुएं के कण जो हवा अन्तराल में प्रवेश करते हैं, वे धारा के विस्तार को कम कर देते हैं, जिससे अलार्म बजता है।सूंघने या निगलने पर आइसोटोप बेहद घातक होता है, परंतु यदि स्रोत को सील रखा जाए तो खतरा कम से कम होता है। कई नगर पालिकाओं ने पुराने स्मोक डिटेक्टरों को इकट्ठा करने और निपटाने के लिए कार्यक्रमों की स्थापना की है, ताकि उन्हें सामान्य अपशिष्ट धारा से बाहर रखा जा सके।
  • अल्फा क्षय अंतरिक्ष जांच और कृत्रिम पेसमेकर के लिए उपयोग किए जाने वाले रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर के लिए एक सुरक्षित शक्ति स्रोत प्रदान कर सकता है। अल्फा क्षय रेडियोधर्मी क्षय के अन्य रूपों के सापेक्ष में कहीं अधिक आसानी से परिरक्षित है। प्लूटोनियम -238,अल्फा कणों का एक स्रोत है, जिसे अवांछित विकिरण से बचाने के लिए मात्र 2.5 मिमी सीसे के कवच की आवश्यकता होती है।
  • एंटीस्टेटिक डिवाइस सामान्यतः हवा को आयनित करने के लिए पोलोनियम -210, एक अल्फा एमिटर का उपयोग करते हैं, जिससे स्थिर चिपटना अधिक तेज़ी से फैलती है।
  • शोधकर्ता वर्तमान में फोडा की ओर छोटी मात्रा में निर्देशित करके शरीर के अंदर रेडियोन्यूक्लाइड्स उत्सर्जित करने वाले अल्फा की हानिकारक प्रकृति का उपयोग करने का प्रयास कर रहे हैं।

कैंसर के इलाज के लिए अल्फा कण

अल्फा-एमिटिंग रेडिओन्युक्लिआइड का उपयोग वर्तमान में कैंसर के ट्यूमर को खत्म करने के लिए तीन अलग-अलग विधियों से किया जा रहा है: विशिष्ट ऊतकों (रेडियम-223) को लक्षित एक अगलनीय रेडियोधर्मी उपचार के रूप में, विकिरण के स्रोत के रूप में सीधे ठोस ट्यूमर (रेडियम-224) में डाला जाता है, और ट्यूमर-लक्षित अणु से जुड़ाव, जैसे ट्यूमर से जुड़े एंटीजन के प्रति एंटीबॉडीके रूप मे किया जा रहा हैं

रेडियम - 223

  • रेडियम-223 एक अल्फ़ा उत्सर्जक है जो स्वाभाविक रूप से हड्डी की ओर आकर्षित होता है क्योंकि यह कैल्शियम मिमेटिक है। रेडियम-223 को कैंसर रोगी की नसों में डाला जा सकता है, जिसके बाद यह हड्डी के उन हिस्सों में चला जाता है जहां मेटास्टेसाइज्ड ट्यूमर की उपस्थिति के कारण कोशिकाओं का तेजी से उत्पाद होता है।
  • एक बार हड्डी के भीतर, रा-223 अल्फा विकिरण उत्सर्जित करता है जो 100-माइक्रोन दूरी के भीतर ट्यूमर कोशिकाओं को नष्ट कर सकता है। एक दवा जिसका रासायनिक नाम रेडियम-223 डाइक्लोराइड है और व्यापार का नामऑक्सफिगो ® है, 2013 से प्रोस्टेट कैंसर के इलाज के लिए उपयोग किया जा रहा है जो हड्डी में मेटास्टेसाइज हो गया है।[14]
  • परिसंचरण में डाले गए रेडियोन्यूक्लाइड्स उन साइटों तक पहुंचने में सक्षम हैं जो रक्त वाहिकाओं के लिए सुलभ हैं। हालांकि, इसका मतलब यह है कि एक बड़े ट्यूमर का आंतरिक भाग जो संवहनीकृत नहीं है, रेडियोधर्मिता द्वारा प्रभावी रूप से समाप्त नहीं किया जा सकता है।

रेडियम-224

  • रेडियम-224 एक रेडियोधर्मी परमाणु है जिसका उपयोग एक नए विकसित कैंसर उपचार उपकरण में अल्फा विकिरण के स्रोत के रूप में किया जाता है जिसे डीएआरटी डिफ्यूजिंग अल्फा उत्सर्जक विकिरण चिकित्सा कहा जाता है, जिसका व्यापार नाम अल्फा डीएआरटी है।
  • अल्फा डीएआरटी के बीज रेडियम-224 परमाणुओं से संसेचित स्टेनलेस स्टील से बने बेलनाकार नली होती हैं। प्रत्येक रेडियम-224 परमाणु क्षय प्रक्रिया से होकरप्रवेश करता है जिससे 6 विघटन उत्पादक परमाणु बनते हैं। इस प्रक्रिया के समय 4 अल्फा कण उत्सर्जित होते हैं। 100 माइक्रोन तक के एक अल्फा कण की सीमा कई ट्यूमर की चौड़ाई को कवर करने के लिए अपर्याप्त है। यद्यपि, रेडियम-224 के संतति परमाणु ऊतक में 2–3 मिमी तक फैल सकते हैं, इस प्रकार यदि बीजों को उचित रूप से रखा जाता है, तो पूरे ट्यूमर को संभावित रूप से नष्ट करने के लिए पर्याप्त विकिरण के साथ एक घातक क्षेत्र का निर्माण होता है।[15]
  • रेडियम-224 का आधा जीवन 3.6 दिनों में काफी कम है, जो कि अधिक जोखिम के कारण विकिरण क्षति के जोखिम से बचने के साथ-साथ तेजी से नैदानिक ​​प्रभाव उत्पन्न करता है। साथ ही, दुनिया भर में किसी भी स्थान पर कैंसर उपचार केंद्र में बीजों को संभालने और भेजने की अनुमति देने के लिए आधा जीवन अत्यधिक लंबा है।

लक्षित अल्फा थेरेपी

  • ठोस ट्यूमर के लिए लक्षित अल्फा थेरेपी में एक ट्यूमर-लक्षित अणु जैसे एक एंटीबॉडी के लिए एक अल्फा-कण उत्सर्जक रेडियोन्यूक्लाइड संलग्न करना सम्मिलित है, जिसे अंतःशिरा प्रशासन द्वारा कैंसर रोगी को दिया जा सकता है।
  • परंपरागत रूप से, ऐसे एंटीबॉडी-रेडियोन्यूक्लाइड संयुग्मों ने बीटा-कण उत्सर्जक रेडियोन्यूक्लाइड्स का उपयोग किया है। उदाहरण के लिए, आयोडीन-131 लंबे समय से थायराइड कैंसर के इलाज के लिए प्रयोग किया जाता रहा है।
  • हाल ही में, मेटास्टैटिक प्रोस्टेट कैंसर के कैंसर उपचार के रूप में अल्फ़ा एमिटर एक्टिनियम-225 का अध्ययनों में परीक्षण किया गया है। Ac-225 प्रोस्टेट-विशिष्ट-झिल्ली-प्रतिजन (PSMA) से जुड़ा हुआ है और नैदानिक ​​उपयोग के लिए व्यावहारिक है क्योंकि इसका लगभग 10 दिनों का छोटा आधा जीवन है, और बिस्मथ-209 के क्षय पथ में 4 अल्फा उत्सर्जन उत्पन्न करता है।

अल्फा विकिरण और घूंट त्रुटियाँ

कंप्यूटर प्रौद्योगिकी में, डायनेमिक रैंडम एक्सेस मेमोरी अस्पष्ट त्रुटि को 1978 में इंटेल के डायनेमिक रैंडम एक्सेस मेमोरी चिप्स में अल्फा कणों से जोड़ा गया था। इस खोज से सेमीकंडक्टर सामग्री की पैकेजिंग में रेडियोधर्मी तत्वों पर सख्त नियंत्रण हुआ, और समस्या को काफी हद तक हल माना जाता है।[16]कंप्यूटर प्रौद्योगिकी में, 1978 में इंटेल के डायनेमिक रैंडम एक्सेस मेमोरी चिप में एल्फा कणों से "सॉफ्ट त्रुटियाँ" संबंधित थीं। इस खोज ने सेमीकंडक्टर सामग्री के पैकेजिंग में रेडियोएक्टिव तत्वों के कठोर नियंत्रण की आवश्यकता को प्रकट किया, और यह समस्या ज्यादातर हल माना जाता है।







यह भी देखें

संदर्भ

  1. Jump up to: 1.0 1.1 Krane, Kenneth S. (1988). Introductory Nuclear Physics. John Wiley & Sons. pp. 246–269. ISBN 978-0-471-80553-3.
  2. Darling, David. "Alpha particle". Encyclopedia of Science. Archived from the original on 14 December 2010. Retrieved 7 December 2010.
  3. Firestone, Richard B. (1999). आइसोटोप की तालिका. Coral M. Baglin (8th ed., 1999 update with CD-ROM ed.). New York: Wiley. ISBN 0-471-35633-6. OCLC 43118182.
  4. N.B. Since gamma rays are electromagnetic (light) they move at the speed of light (c). Beta particles often move at a large fraction of c, and exceed 60% c whenever their energy is > 64 keV, which it commonly is. Neutron velocity from nuclear reactions ranges from about 6% c for fission to as much as 17% c for fusion.
  5. Christensen, D. M.; Iddins, C. J.; Sugarman, S. L. (2014). "Ionizing radiation injuries and illnesses". Emergency Medicine Clinics of North America. 32 (1): 245–65. doi:10.1016/j.emc.2013.10.002. PMID 24275177.
  6. Grellier, James; et al. (2017). "Risk of lung cancer mortality in nuclear workers from internal exposure to alpha particle-emitting radionuclides". Epidemiology. 28 (5): 675–684. doi:10.1097/EDE.0000000000000684. PMC 5540354. PMID 28520643.
  7. Radford, Edward P.; Hunt, Vilma R. (1964). "Polonium-210: A Volatile Radioelement in Cigarettes". Science. 143 (3603): 247–249. Bibcode:1964Sci...143..247R. doi:10.1126/science.143.3603.247. PMID 14078362. S2CID 23455633.
  8. Rutherford distinguished and named α and β rays on page 116 of: E. Rutherford (1899) "Uranium radiation and the electrical conduction produced by it," Philosophical Magazine, Series 5, vol. 47, no. 284, pages 109–163. Rutherford named γ rays on page 177 of: E. Rutherford (1903) "The magnetic and electric deviation of the easily absorbed rays from radium," Philosophical Magazine, Series 6, vol. 5, no. 26, pages 177–187.
  9. Hellemans, Alexander; Bunch, Bryan (1988). The Timetables of Science. Simon & Schuster. p. 411. ISBN 0671621300.
  10. E. Rutherford and T. Royds (1908) "Spectrum of the radium emanation," Philosophical Magazine, Series 6, vol. 16, pages 313–317.
  11. Magazine "nuclear energy" (III/18 (203) special edition, Volume 10, Issue 2 /1967.
  12. Agakishiev, H.; et al. (STAR collaboration) (2011). "Observation of the antimatter helium-4 nucleus". Nature. 473 (7347): 353–6. arXiv:1103.3312. Bibcode:2011Natur.473..353S. doi:10.1038/nature10079. PMID 21516103. S2CID 118484566.. See also "Erratum". Nature. 475 (7356): 412. 2011. arXiv:1103.3312. doi:10.1038/nature10264. S2CID 4359058.
  13. "Antihelium-4: Physicists nab new record for heaviest antimatter". PhysOrg. 24 April 2011. Retrieved 15 November 2011.
  14. Parker, C; Nilsson, S; Heinrich, D (18 July 2013). "अल्फा एमिटर रेडियम -223 और मेटास्टैटिक प्रोस्टेट कैंसर में जीवित रहना". New England Journal of Medicine. 369 (3): 213–23. doi:10.1056/NEJMoa1213755. PMID 23863050.
  15. Arazi, L; Cooks, T; Schmidt, M; Keisari, Y; Kelson, I (21 August 2007). "रीकॉइलिंग शॉर्ट-लाइव अल्फा एमिटर के अंतरालीय रिलीज द्वारा ठोस ट्यूमर का उपचार". Phys Med Biol. 52 (16): 5025–42. Bibcode:2007PMB....52.5025A. doi:10.1088/0031-9155/52/16/021. PMID 17671351. S2CID 1585204.
  16. May, T. C.; Woods, M. H. (1979). "गतिशील यादों में अल्फा-कण-प्रेरित नरम त्रुटियां". IEEE Transactions on Electron Devices. 26 (1): 2–9. Bibcode:1979ITED...26....2M. doi:10.1109/T-ED.1979.19370. S2CID 43748644.


आगे की पढाई


इस पेज में लापता आंतरिक लिंक की सूची

  • लंबी दूरी अल्फा
  • ब्रह्मांड किरण
  • प्रवेश की गहराई
  • आयनीकरण विकिरण
  • वायु
  • नामपद्धति
  • गामा किरणें
  • बादल कक्ष
  • जन अंक
  • राडोण
  • मौलिक बातचीत
  • संभावित कुआँ
  • बिजली का आवेश
  • चीरने योग्य
  • कोशिका विज्ञान)
  • ब्लैडर कैंसर
  • फेफड़े का कैंसर
  • रूसी संघ की संघीय सुरक्षा सेवा
  • प्रमुख
  • अंतरिक्ष यान
  • हेलियन (रसायन विज्ञान)

बाहरी कड़ियाँ

Media related to अल्फा कण at Wikimedia Commons

श्रेणी: हीलियम अल्फा अल्फा श्रेणी: स्पिन 0 के साथ उपपरमाण्विक कण