संयुक्त समष्टि: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Topological space that is connected}} {{Other uses|Connection (disambiguation)}} {{Use American English|date = March 2019}} {{multiple image <!-- Essential...")
 
No edit summary
 
(44 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Topological space that is connected}}
{{Short description|Topological space that is connected}}
{{Other uses|Connection (disambiguation)}}
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, '''संयुक्त समष्टि''' टोपोलॉजिकल समष्टि है जिसे दो या दो से अधिक असंयुक्त अरिक्त विवृत उप-समुच्चय के संघ के रूप में प्रदर्शित नहीं किया जा सकता है। कनेक्टेडनेस मुख्य टोपोलॉजिकल गुण है जिसका उपयोग टोपोलॉजिकल रिक्त समष्टि को पृथक करने के लिए किया जाता है।
{{Use American English|date = March 2019}}
{{multiple image
<!-- Essential parameters -->
| align    = right<!-- left/right/center -->
| direction = vertical<!-- horizontal/vertical -->
| width    = 200<!-- Digits only; no "px" suffix, please -->


<!-- Image 1 -->
टोपोलॉजिकल स्पेस <math>X</math> का उपसमुच्चय संयुक्त समुच्चय है, <math>X</math> के उपसमष्टि के रूप में देखे जाने पर यह संयुक्त समष्टि है।
| image1    = Simply connected, connected, and non-connected spaces.svg<!-- Filename only; no "File:" or "Image:" prefix, please -->
| width1    =
| alt1      =
| caption1  = From top to bottom: red space ''A'', pink space ''B'', yellow space ''C'' and orange space ''D'' are all '''connected spaces''', whereas green space ''E'' (made of [[subset]]s E<sub>1</sub>, E<sub>2</sub>, E<sub>3</sub>, and E<sub>4</sub>) is '''disconnected'''. Furthermore, ''A'' and ''B'' are also [[Simply connected space|simply connected]] ([[Genus (mathematics)|genus]] 0), while ''C'' and ''D'' are not: ''C'' has genus 1 and ''D'' has genus 4.


<!-- Image 2 -->
कुछ संबंधित किन्तु दृढ़ स्थितियाँ पथ से जुड़ी हुई हैं, बस जुड़ी हुई हैं, और <math>n</math>-कनेक्टेड हैं। अन्य संबंधित धारणा समष्टिय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का यह अनुसरण करती है।
| image2    =
| width2    =
| alt2      =
| caption2  =
 
<!-- up to |image10 is accepted -->
 
<!-- Extra parameters -->
| header            = Connected and disconnected subspaces of '''R'''²
| header_align      = <!-- left/right/center -->
| header_background =
| footer            =
| footer_align      = <!-- left/right/center -->
| footer_background =
| background color  =
}}
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, एक कनेक्टेड स्पेस एक [[टोपोलॉजिकल स्पेस]] है जिसे दो या दो से अधिक [[अलग करना सेट]] [[खाली सेट]]|नॉन-एम्प्टी [[खुला (टोपोलॉजी)]] के यूनियन (सेट थ्योरी) के रूप में प्रदर्शित नहीं किया जा सकता है। जुड़ाव एक प्रमुख [[टोपोलॉजिकल गुण]]ों में से एक है जिसका उपयोग टोपोलॉजिकल स्पेस को अलग करने के लिए किया जाता है।
 
टोपोलॉजिकल स्पेस का एक सबसेट <math>X</math> एक है{{visible anchor|connected set}}यदि यह [[सबस्पेस टोपोलॉजी]] के रूप में देखे जाने पर एक जुड़ा हुआ स्थान है <math>X</math>.
 
कुछ संबंधित लेकिन मजबूत स्थितियाँ हैं #पथ जुड़ाव, सरल रूप से जुड़ा हुआ स्थान और एन-जुड़ा हुआ स्थान<math>n</math>-जुड़े हुए। एक अन्य संबंधित धारणा स्थानीय रूप से जुड़ी हुई जगह है, जो न तो जुड़ाव से जुड़ी है और न ही इसका अनुसरण करती है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
एक टोपोलॉजिकल स्पेस <math>X</math> बताया गया{{visible anchor|disconnected}}अगर यह दो अलग-अलग गैर-खाली खुले सेटों का मिलन है। अन्यथा, <math>X</math> जुड़ा बताया जा रहा है। एक टोपोलॉजिकल स्पेस के एक [[सबसेट]] को कनेक्टेड कहा जाता है अगर यह इसके सबस्पेस टोपोलॉजी के तहत जुड़ा हुआ है। कुछ लेखक खाली सेट (इसकी अनूठी टोपोलॉजी के साथ) को एक कनेक्टेड स्पेस के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।
टोपोलॉजिकल समष्टि  <math>X</math> को {{visible anchor|विभक्त }} करता है यदि दो अरिक्त विवृत समूहों का संयुग्मित है।अन्यथा, <math>X</math> जुड़ा है तब टोपोलॉजिकल समष्टि, उप-समष्टि टोपोलॉजी के अंतर्गत संयुग्मित है। कुछ लेखक रिक्त समूह को जुड़े हुए समष्टि के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।
 
एक टोपोलॉजिकल स्पेस के लिए <math>X</math> निम्नलिखित शर्तें समतुल्य हैं:


#<math>X</math> जुड़ा हुआ है, यानी इसे दो अलग-अलग गैर-खाली खुले सेटों में विभाजित नहीं किया जा सकता है।
टोपोलॉजिकल समष्टि <math>X</math> के लिए निम्नलिखित कारण हैं:
# का एकमात्र उपसमुच्चय <math>X</math> जो खुले और बंद दोनों प्रकार के होते हैं ([[क्लोपेन सेट]]) होते हैं <math>X</math> और खाली सेट।
# का एकमात्र उपसमुच्चय <math>X</math> खाली [[सीमा (टोपोलॉजी)]] के साथ हैं <math>X</math> और खाली सेट।
#<math>X</math> दो गैर-खाली [[अलग सेट]]ों के संघ के रूप में नहीं लिखा जा सकता है (सेट जिसके लिए प्रत्येक दूसरे के बंद होने से अलग है)।
#सभी सतत कार्य#टोपोलॉजिकल स्पेस के बीच निरंतर कार्य से कार्य करता है <math>X</math> प्रति <math>\{ 0, 1 \}</math> स्थिर हैं, कहाँ <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है।


ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (कोई विभाजन नहीं होने के संदर्भ में <math>X</math> दो अलग-अलग सेटों में) पहली बार (स्वतंत्र रूप से) 20वीं शताब्दी की शुरुआत में एन. देखना <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref> ब्योरा हेतु।
#<math>X</math> संयुग्मित है, इसे दो भिन्न -भिन्न अरिक्त विवृत समूहों में विभाजित नहीं किया जा सकता है।
# <math>X</math> उप-समुच्चय विवृत और बंद ([[क्लोपेन सेट|क्लोपेन समूह]]) दोनों प्रकार के होते हैं <math>X</math> रिक्त समूह हैं।
# रिक्त [[सीमा (टोपोलॉजी)|सीमा]] में उप-समुच्चय और रिक्त समूह भी <math>X</math> हैं।
#<math>X</math> को अरिक्त [[अलग सेट|भिन्न समूहों]] के संघ के रूप में नहीं लिखा जा सकता हैI
#<math>X</math> से <math>\{ 0, 1 \}</math> तक सभी निरंतर कार्य स्थिर हैं, जहां <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु समष्टि है| <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref>  
ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (दो भिन्न -भिन्न समूहों में <math>X</math> के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें |


=== जुड़े हुए घटक ===
=== जुड़े हुए घटक ===


कुछ बिंदु दिया <math>x</math> एक टोपोलॉजिकल स्पेस में <math>X,</math> जुड़े हुए उपसमुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में शामिल है <math>x</math> एक बार फिर से जुड़ा हुआ उपसमुच्चय होगा।
टोपोलॉजिकल समष्टि  <math>X,</math> में कुछ बिंदु  <math>x</math> दिए गए हैं,  जुड़े हुए उप-समुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में <math>x</math> सम्मलित है| <math>X</math> बिंदु में <math>x</math> के जुड़े हुए घटक <math>X</math> सभी उप-समूहों का संघ है जिसमें <math>x;</math> सम्मलित है| सबसे बड़ा अद्वितीय (के संबंध में <math>\subseteq</math>) <math>X</math> का उप-समुच्चयों जिसमे <math>x.</math> सम्मिलित है | अरिक्त टोपोलॉजिकल समष्टि के [[अधिकतम तत्व|अधिकतम तत्वों]] को उपसमुच्चय (समावेशी द्वारा आदेशित <math>\subseteq</math>) के समष्टि को घटक कहा जाता है। किसी भी टोपोलॉजिकल समष्टि के घटक <math>X</math> का विभाजन भिन्न, अरिक्त और संपूर्ण समष्टि संयुग्मित है। प्रत्येक घटक मूल समष्टि का [[बंद उपसमुच्चय|बंद उप-समुच्चय]] है। इसी प्रकार, इस स्थिति में संख्या परिमित है, प्रत्येक घटक भी खुला उप-समुच्चय है। चूंकि, यदि संख्या अनंत है, तो यह स्थिति नहीं हो सकती हैI उदाहरण के लिए, [[परिमेय संख्या|परिमेय संख्याओं]] के समुच्चय से जुड़े घटक बिंदु समुच्चय ([[सिंगलटन (गणित)|सिंगलटन]] ) हैं, जो विवृत नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ <math>q_1<q_2</math> विभिन्न घटकों में हैं। अपरिमेय संख्या <math>q_1 < r < q_2,</math> लीजिए और फिर <math>A = \{q \in \Q : q < r\}</math> तथा <math>B = \{q \in \Q : q > r\}.</math> का <math>(A,B)</math> का वियोग हैI <math>\Q,</math> तथा <math>q_1 \in A, q_2 \in B</math>. इस प्रकार प्रत्येक घटक बिंदु समुच्चय है।
एक बिंदु का जुड़ा हुआ घटक <math>x</math> में <math>X</math> के सभी जुड़े उपसमूहों का संघ है <math>X</math> जिसमें शामिल है <math>x;</math> यह अद्वितीय सबसे बड़ा है (के संबंध में <math>\subseteq</math>) का जुड़ा सबसेट <math>X</math> उसमें सम्मिलित है <math>x.</math> [[अधिकतम तत्व]] जुड़ा हुआ सबसेट (सबसेट द्वारा क्रमबद्ध <math>\subseteq</math>) एक गैर-खाली टोपोलॉजिकल स्पेस को स्पेस के कनेक्टेड कंपोनेंट्स कहा जाता है।
किसी भी टोपोलॉजिकल स्पेस के घटक <math>X</math> के एक सेट का एक विभाजन बनाएँ<math>X</math>: वे असंयुक्त समुच्चय हैं, अरिक्त हैं और उनका मिलन संपूर्ण स्थान है।
प्रत्येक घटक मूल स्थान का एक [[बंद उपसमुच्चय]] है। यह इस प्रकार है कि, उस मामले में जहां उनकी संख्या परिमित है, प्रत्येक घटक भी एक खुला उपसमुच्चय है। हालाँकि, यदि उनकी संख्या अनंत है, तो यह स्थिति नहीं हो सकती है; उदाहरण के लिए, [[परिमेय संख्या]]ओं के समुच्चय के जुड़े घटक एक-बिंदु समुच्चय ([[सिंगलटन (गणित)]]) हैं, जो खुले नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ <math>q_1<q_2</math> विभिन्न घटकों में हैं। एक अपरिमेय संख्या लीजिए <math>q_1 < r < q_2,</math> और फिर सेट करें <math>A = \{q \in \Q : q < r\}</math> तथा <math>B = \{q \in \Q : q > r\}.</math> फिर <math>(A,B)</math> का वियोग है <math>\Q,</math> तथा <math>q_1 \in A, q_2 \in B</math>. इस प्रकार प्रत्येक घटक एक-बिंदु सेट है।


होने देना <math>\Gamma_x</math> का जुड़ा हुआ घटक हो <math>x</math> एक टोपोलॉजिकल स्पेस में <math>X,</math> तथा <math>\Gamma_x'</math> युक्त सभी [[clopen]] सेटों का प्रतिच्छेदन हो <math>x</math> (स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है। का अर्ध-घटक <math>x.</math>) फिर <math>\Gamma_x \subset \Gamma'_x</math> जहां समानता रखती है <math>X</math> कॉम्पैक्ट हौसडॉर्फ या स्थानीय रूप से जुड़ा हुआ है।
मान लीजिए कि <math>x</math> का टोपोलॉजिकल समष्टि <math>X,</math> से जुड़ा हुआ है। [[clopen|क्लोपेन]] भी समुच्चय का प्रतिच्छेदन है(जिसे  <math>x.</math> का अर्ध-घटक कहा जाता है)I अर्थात <math>\Gamma_x \subset \Gamma'_x</math> में समानता होती है यदि <math>X</math> कॉम्पैक्ट हौसडॉर्फ या समष्टिीय रूप से जुड़ा हुआ है। <ref>{{Cite web|url=https://math.stackexchange.com/questions/1314013/components-of-the-set-of-rational-numbers|title=सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक}}</ref>
<ref>{{Cite web|url=https://math.stackexchange.com/questions/1314013/components-of-the-set-of-rational-numbers|title=सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक}}</ref>


 
=== पृथक किए गए रिक्त समष्टि ===
=== डिस्कनेक्ट किए गए रिक्त स्थान ===
समष्टि जिसमें सभी घटक बिंदु उप-समुच्चय से पूरी तरह विभक्त हो जाते हैं। इस संपत्ति से संबंधित, समष्टि <math>X</math> को  {{visible anchor|पूरी तरह }}से विभक्त किया जाता है यदि, <math>x</math> और <math>y</math>, <math>X</math> के दो भिन्न -भिन्न तत्वों में, भिन्न -भिन्न [[खुले सेट|विवृत समुच्चय]] में सम्मलित हैं | <math>U</math> ऐसा युक्त है कि जिसमें  <math>x</math> , <math>y</math> तथा <math>V</math> का संघ हैI अर्थात <math>X</math>, <math>U</math> तथा <math>V</math> का संयुग्मित हैI स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न समष्टि से विभक्त हो गया है, लेकिन विभक्त होने का कारण नहीं स्पष्ट है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें <math>\Q</math>, और शून्य को छोड़कर सभी बिंदु पर उन्हें पहचानें। परिणामी समष्टि, [[भागफल टोपोलॉजी|विभाजित संसमष्टििक]] के साथ, पूरी तरह से विभक्त हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, यह प्रदर्शित होता है कि समष्टि पूर्ण रूप से विभक्त नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ समष्टि भी नहीं है, और पूर्ण रूप से विभक्त होने की स्थिति से अधिक शक्तिशाली है।
एक स्थान जिसमें सभी घटक एक-बिंदु सेट होते हैं, को पूरी तरह से डिस्कनेक्ट किया गया स्थान कहा जाता है{{visible anchor|totally disconnected}}. इस संपत्ति से संबंधित, एक स्थान <math>X</math> कहा जाता है{{visible anchor|totally separated}}अगर, किसी भी दो अलग-अलग तत्वों के लिए <math>x</math> तथा <math>y</math> का <math>X</math>, वहाँ [[खुले सेट]] मौजूद हैं <math>U</math> युक्त <math>x</math> तथा <math>V</math> युक्त <math>y</math> ऐसा है कि <math>X</math> का संघ है <math>U</math> तथा <math>V</math>. स्पष्ट रूप से, कोई भी पूरी तरह से अलग स्थान पूरी तरह से डिस्कनेक्ट हो गया है, लेकिन बातचीत पकड़ में नहीं आती है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें <math>\Q</math>, और शून्य को छोड़कर हर बिंदु पर उन्हें पहचानें। परिणामी स्थान, [[भागफल टोपोलॉजी]] के साथ, पूरी तरह से डिस्कनेक्ट हो गया है। हालांकि, शून्य की दो प्रतियों पर विचार करने से, कोई यह देखता है कि अंतरिक्ष पूरी तरह से अलग नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ स्थान भी नहीं है, और पूरी तरह से अलग होने की स्थिति हॉसडॉर्फ होने की स्थिति से अधिक मजबूत है।


== उदाहरण ==
== उदाहरण ==


* बंद अंतराल <math>[0, 2)</math> [[यूक्लिडियन अंतरिक्ष]] उप-अंतरिक्ष टोपोलॉजी में जुड़ा हुआ है; हालांकि, उदाहरण के लिए, इसे संघ के रूप में लिखा जा सकता है <math>[0, 1)</math> तथा <math>[1, 2),</math> के चुने हुए टोपोलॉजी में दूसरा सेट खुला नहीं है <math>[0, 2).</math>
* मानक उप-समष्टि टोपोलॉजी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में  <math>[0, 2]</math> बंद अंतराल में जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे <math>[0, 1]</math> तथा <math>[1, 2]</math> संघ के रूप में लिखा जा सकता हैI <math>[0, 2]</math> चुने हुए दूसरे विवृत समुच्चय टोपोलॉजी में से नहीं है I
* का संघ <math>[0, 1)</math> तथा <math>(1, 2]</math> डिस्कनेक्ट किया गया है; ये दोनों अंतराल मानक टोपोलॉजिकल स्पेस में खुले हैं <math>[0, 1) \cup (1, 2].</math>
* <math>[0, 1]</math> तथा <math>[1, 2]</math> का संघ विभक्त हो गया है; इसके दोनों मानक टोपोलॉजिकल समष्टि अंतराल विवृत हैं <math>[0, 1) \cup (1, 2].</math>
* <math>(0, 1) \cup \{ 3 \}</math> डिस्कनेक्ट किया गया है।
* <math>(0, 1) \cup \{ 3 \}</math> विभक्त किया गया है।
* का एक [[उत्तल सेट]] <math>\R^n</math> जुड़ा हुआ है; यह वास्तव में [[बस जुड़ा हुआ सेट]] है।
* <math>\R^n</math> का [[उत्तल सेट|उत्तल उप-समुच्चय]] [[बस जुड़ा हुआ सेट|जुड़ा हुआ]]हुआ है।
* एक यूक्लिडियन स्थान मूल को छोड़कर, <math>(0, 0),</math> जुड़ा हुआ है, लेकिन सिर्फ जुड़ा नहीं है। मूल के बिना त्रि-आयामी यूक्लिडियन अंतरिक्ष जुड़ा हुआ है, और यहां तक ​​​​कि बस जुड़ा हुआ है। इसके विपरीत, मूल के बिना एक आयामी यूक्लिडियन स्थान जुड़ा नहीं है।
* यूक्लिडियन समष्टि मूल को छोड़कर, <math>(0, 0)</math> जुड़ा हुआ है, मूल के बिना त्रि-आयामी यूक्लिडियन समष्टि जुड़ा हुआ है, इसके विपरीत, मूल के बिना आयामी यूक्लिडियन समष्टि जुड़ा नहीं है।
* एक सीधी रेखा के साथ एक यूक्लिडियन विमान जुड़ा नहीं है क्योंकि इसमें दो अर्ध-विमान होते हैं।
* सीधी रेखा के कारण यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
* <math>\R</math>सामान्य टोपोलॉजी के साथ [[वास्तविक संख्या]]ओं का स्थान जुड़ा हुआ है।
* <math>\R</math> सामान्य टोपोलॉजी के साथ [[वास्तविक संख्या|वास्तविक संख्याओं]] के समष्टि से जुड़ा है।
* [[निचली सीमा टोपोलॉजी]] डिस्कनेक्ट हो गई है।<ref>{{cite book|title=सामान्य टोपोलॉजी|author=Stephen Willard|publisher=Dover|year=1970|page=191|isbn=0-486-43479-6}}</ref> *यदि एक भी बिंदु से हटा दिया जाए <math>\mathbb{R}</math>, शेष काट दिया गया है। हालाँकि, यदि अंकों की एक गणनीय अनंतता को भी हटा दिया जाता है <math>\R^n</math>, कहाँ पे <math>n \geq 2,</math> शेष जुड़ा हुआ है। यदि <math>n\geq 3</math>, फिर <math>\R^n</math> गिने-चुने बिंदुओं को हटाने के बाद भी बस जुड़ा रहता है।
* [[निचली सीमा टोपोलॉजी]] विभक्त हो गई है।<ref>{{cite book|title=सामान्य टोपोलॉजी|author=Stephen Willard|publisher=Dover|year=1970|page=191|isbn=0-486-43479-6}}</ref>  
* कोई [[टोपोलॉजिकल वेक्टर स्पेस]], उदा। कोई भी [[हिल्बर्ट अंतरिक्ष]] या [[बनच स्थान]], कनेक्टेड फील्ड पर (जैसे <math>\R</math> या <math>\Complex</math>), बस जुड़ा हुआ है।
*यदि <math>\mathbb{R}</math> से बिंदु विभक्त कर दिया जाए , तथा शेष भाग काट दिया जाता है चूंकि, यदि <math>\R^n</math> , जहां  <math>n \geq 2,</math> शेष जुड़ा हुआ है। यदि <math>n\geq 3</math>, फिर <math>\R^n</math> बिंदुओं से विभक्त होने के बाद भी जुड़ा रहता हैI
* कम से कम दो तत्वों के साथ हर [[असतत सामयिक स्थान]] डिस्कनेक्ट हो गया है, वास्तव में ऐसा स्पेस पूरी तरह [[पूरी तरह से डिस्कनेक्ट किया गया स्थान]] है। सबसे सरल उदाहरण [[असतत दो-बिंदु स्थान]] है।<ref>{{cite book|title=टोपोलॉजी और आधुनिक विश्लेषण का परिचय|author=George F. Simmons|author-link=George F. Simmons|publisher=McGraw Hill Book Company|year=1968|page=144|isbn=0-89874-551-9}}</ref>
* उदाहरण के लिए, [[टोपोलॉजिकल वेक्टर स्पेस|संसमष्टििक वेक्टर समष्टि]],से कोई भी [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट समष्टि]] या [[बनच स्थान|बनच समष्टि]] (जैसे <math>\R</math> या <math>\Complex</math>) जुड़े हुए क्षेत्र है।
* दूसरी ओर, एक परिमित सेट जुड़ा हो सकता है। उदाहरण के लिए, [[असतत मूल्यांकन अंगूठी]] के स्पेक्ट्रम में दो बिंदु होते हैं और जुड़े होते हैं। यह सिएरपिन्स्की अंतरिक्ष का एक उदाहरण है।
* कम से कम दो तत्वों के साथ प्रत्येक [[असतत सामयिक स्थान|असतत सामयिक समष्टि]] [[पूरी तरह से डिस्कनेक्ट किया गया स्थान|विभक्त हो गया है।]] सबसे सरल उदाहरण [[असतत दो-बिंदु स्थान|असतत दो-बिंदु समष्टि]] है।<ref>{{cite book|title=टोपोलॉजी और आधुनिक विश्लेषण का परिचय|author=George F. Simmons|author-link=George F. Simmons|publisher=McGraw Hill Book Company|year=1968|page=144|isbn=0-89874-551-9}}</ref>
* [[कैंटर सेट]] पूरी तरह से डिस्कनेक्ट हो गया है; चूंकि सेट में बेशुमार रूप से कई बिंदु होते हैं, इसमें बेशुमार रूप से कई घटक होते हैं।
* दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, [[असतत मूल्यांकन अंगूठी|असतत मूल्यांकन छल्ला]] के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की समष्टि का उदाहरण है।
* यदि कोई स्थान <math>X</math> एक जुड़े हुए स्थान के लिए [[होमोटॉपी]] है, फिर <math>X</math> स्वयं जुड़ा हुआ है।
* [[कैंटर सेट|कैंटर समुच्चय]] पूरी तरह से विभक्त हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु और घटक होते हैं।
* टोपोलॉजिस्ट का साइन कर्व एक सेट का एक उदाहरण है जो जुड़ा हुआ है लेकिन न तो पथ से जुड़ा है और न ही स्थानीय रूप से जुड़ा हुआ है।
* यदि कोई समष्टि <math>X</math> के बराबर [[होमोटॉपी]] है, तो <math>X</math> स्वयं जुड़ा हुआ है।
* [[सामान्य रैखिक समूह]] <math>\operatorname{GL}(n, \R)</math> (अर्थात् समूह <math>n</math>-द्वारा-<math>n</math> वास्तविक, व्युत्क्रमणीय मैट्रिसेस) में दो जुड़े घटक होते हैं: एक सकारात्मक निर्धारक के मैट्रिसेस के साथ और दूसरा नकारात्मक निर्धारक के साथ। विशेष रूप से, यह जुड़ा नहीं है। इसके विपरीत, <math>\operatorname{GL}(n, \Complex)</math> जुड़ा हुआ है। अधिक आम तौर पर, एक जटिल हिल्बर्ट स्पेस पर इन्वर्टिबल बाउंडेड ऑपरेटरों का सेट जुड़ा हुआ है।
* टोपोलॉजिस्ट की ज्या वक्र समुच्चय का उदाहरण है जो न तो पथ से जुड़ा है और न ही समष्टिीय रूप से जुड़ा हुआ है।
* कम्यूटेटिव [[स्थानीय अंगूठी]] और इंटीग्रल डोमेन के स्पेक्ट्रा जुड़े हुए हैं। अधिक सामान्यतः, निम्नलिखित समकक्ष हैं<ref>[[Charles Weibel]], [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory]</ref>
* [[सामान्य रैखिक समूह]] <math>\operatorname{GL}(n, \R)</math> (अर्थात् समूह <math>n</math>-द्वारा-<math>n</math> वास्तविक, व्युत्क्रमणीय आव्यूह) में दो जुड़े घटक होते हैं: सकारात्मक निर्धारक और दूसरा नकारात्मक निर्धारक। इसके विपरीत, <math>\operatorname{GL}(n, \Complex)</math> जुड़ा हुआ है। अधिक सामान्यतः पर, जटिल हिल्बर्ट समष्टि पर उल्टा घिरे संचालनों का समुच्चय जुड़ा है।
*# क्रमविनिमेय वलय का स्पेक्ट्रम <math>\R</math> जुड़ा हुआ है
* विनिमेय [[स्थानीय अंगूठी|समष्टिीय छल्लों]] और अभिन्न कार्यक्षेत्र के स्पेक्ट्रा से जुड़े हुए हैं। निम्नलिखित कारण हैं<ref>[[Charles Weibel]], [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory]</ref>
*# हर [[सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल]] खत्म <math>\R</math> निरंतर रैंक है।
*# क्रमविनिमेय वलय का स्पेक्ट्रम <math>\R</math> से जुड़ा हुआ है
*# <math>\R</math> कोई बेवकूफ नहीं है <math>\ne 0, 1</math> (अर्थात।, <math>\R</math> गैर-तुच्छ तरीके से दो रिंगों का उत्पाद नहीं है)।
*# <math>\R</math> पर प्रत्येक [[सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल|सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल]] की निरंतर श्रेणी होती है।
*# <math>\R</math> कोई क्रम नहीं है <math>\ne 0, 1</math> (अर्थात, <math>\R</math> गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।


एक अंतरिक्ष का एक उदाहरण जो जुड़ा नहीं है, एक विमान है जिसमें से एक अनंत रेखा हटा दी गई है। डिस्कनेक्ट किए गए रिक्त स्थान के अन्य उदाहरण (अर्थात, रिक्त स्थान जो जुड़े नहीं हैं) में एक एनलस (गणित) को हटाए गए विमान के साथ-साथ दो अलग-अलग बंद [[डिस्क (गणित)]] का संघ शामिल है, जहां इस अनुच्छेद के सभी उदाहरण सबस्पेस ( टोपोलॉजी) द्वि-आयामी यूक्लिडियन अंतरिक्ष से प्रेरित है।
एक समतल जिसमें से अनंत रेखा निषेध कर दी गई है। विभक्त किए गए रिक्त समष्टि के अन्य उदाहरण (अर्थात, रिक्त समष्टि जो जुड़े नहीं हैं) जो समतल को वलय के साथ विभक्त कर दिया गया है, साथ ही साथ दो भिन्न-भिन्न बंद [[डिस्क (गणित)]] का संघ भी सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-समष्टि टोपोलॉजी को धारण करते हैं।


== पथ जुड़ाव ==<!-- This section is linked from [[Covering space]] and [[path-connected]] -->
== पथ जुड़ाव ==
[[File:Path-connected space.svg|thumb|R² का यह उपस्थान पथ से जुड़ा हुआ है, क्योंकि अंतरिक्ष में किन्हीं दो बिंदुओं के बीच एक पथ खींचा जा सकता है।]]{{visible anchor|path-connected space}}जुड़ाव की एक मजबूत धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। एक बिंदु से एक [[पथ (टोपोलॉजी)]]<math>x</math> एक स्तर तक <math>y</math> एक टोपोलॉजिकल स्पेस में <math>X</math> एक सतत कार्य है <math>f</math> [[इकाई अंतराल]] से <math>[0,1]</math> प्रति <math>X</math> साथ <math>f(0)=x</math> तथा <math>f(1)=y</math>. {{visible anchor|path-component}}का <math>X</math> का समतुल्य वर्ग है <math>X</math> समतुल्य संबंध के तहत जो बनाता है <math>x</math> के बराबर <math>y</math> अगर वहाँ से कोई रास्ता है <math>x</math> प्रति <math>y</math>. अंतरिक्ष <math>X</math> कहा जाता है कि पथ से जुड़ा हुआ है (या पथ से जुड़ा हुआ है या <math>\mathbf{0}</math>-कनेक्टेड) ​​अगर बिल्कुल एक पथ-घटक है, यानी यदि कोई दो बिंदुओं में शामिल होने वाला मार्ग है <math>X</math>. फिर से, कई लेखक खाली स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, हालांकि, खाली स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; खाली सेट पर एक अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।
[[File:Path-connected space.svg|thumb|R² का यह उप-समष्टि पथ से जुड़ा हुआ है, क्योंकि समतल में दो बिंदुओं के बीच पथ खींचा जा सकता है।]]{{visible anchor|पथ से जुड़ा समष्टि
}} जुड़ाव की शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। [[पथ (टोपोलॉजी)|(टोपोलॉजी) पथ]] समष्टि में बिंदु <math>x</math> से <math>y</math> तक का पथ <math>X</math> एक निरंतर फलन है| <math>f</math> [[इकाई अंतराल]] से <math>[0,1]</math> से प्रति <math>X</math> साथ <math>f(0)=x</math> तथा <math>f(1)=y</math>. <math>X</math> का {{visible anchor|पथ-घटक
}} तुल्यता संबंध के अंतर्गत <math>X</math> का तुल्यता वर्ग है जो <math>x</math> को <math>y</math> के समतुल्य बनाता है यदि <math>x</math> प्रति <math>y</math>. स्थान  <math>X</math> को पथ जुड़ाव कहा जाता है यदि कुल पथ घटक है कोई दो बिंदुओं <math>X</math> में सम्मलित होने वाला मार्ग है| तत्पश्चात, कई लेखक रिक्त स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, रिक्त स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; रिक्त समुच्चय पर अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।


हर पथ से जुड़ा स्थान जुड़ा हुआ है। इसका विलोम हमेशा सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा (टोपोलॉजी) शामिल है <math>L^*</math> और टोपोलॉजिस्ट का साइन कर्व।
प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम सदैव सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा <math>L^*</math>और टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|


[[वास्तविक रेखा]] के उपसमुच्चय <math>\R</math> जुड़े हुए हैं [[अगर और केवल अगर]] वे पथ से जुड़े हुए हैं; ये उपसमुच्चय का [[अंतराल (गणित)]] हैं <math>R</math>.
[[वास्तविक रेखा]] के उप-समुच्चय <math>\R</math> जुड़े हुए हैं [[यदि केवल]] वे पथ से जुड़े हुए हैं; ये उप-समुच्चय <math>R</math> के [[अंतराल (गणित)]] हैंI
साथ ही, के खुले उपसमुच्चय <math>\R^n</math> या <math>\C^n</math> जुड़े हुए हैं अगर और केवल अगर वे पथ से जुड़े हुए हैं।
साथ ही,<math>\R^n</math> या <math>\C^n</math> के उप-समुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं।
इसके अतिरिक्त, [[परिमित सामयिक स्थान]]ों के लिए जुड़ाव और पथ-जुड़ाव समान हैं।
इसके अतिरिक्त, [[परिमित सामयिक समष्टि]] के लिए जुड़ाव और पथ-जुड़ाव समान हैं।


== चाप जुड़ाव == <!-- Connected_space#Arc_connectedness redirects to this subsection -->
== चाप जुड़ाव == <!-- समष्टि जुड़ाव चाप _जुड़ाव इस उपखंड पर रीडायरेक्ट करता है -->
एक स्थान <math>X</math> आर्क-कनेक्टेड या आर्कवाइज कनेक्टेड कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से अलग]]-अलग बिंदुओं को एक पाथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम आर्क-कनेक्टेड सबसेट है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।
समष्टि को <math>X</math> चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से भिन्न ]]-भिन्न बिंदुओं को पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम चाप-जुड़ाव उप-समुच्य है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का तुल्यता वर्ग कि क्या दो बिंदुओं को चाप से जोड़ा जा सकता है या ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।


प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, आर्क से भी जुड़ा हुआ है; अधिक आम तौर पर यह एक कमजोर हौसडॉर्फ स्पेस के लिए सही है<math>\Delta</math>-हॉसडॉर्फ अंतरिक्ष, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।
प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह कमजोर हौसडॉर्फ स्थान के लिए सही है<math>\Delta</math>-हॉसडॉर्फ स्थान, जो ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद हैI ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।


पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन आर्क से जुड़े रिक्त स्थान के लिए नहीं हैं:
पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर सरलता से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:


* आर्क-कनेक्टेड स्पेस की निरंतर छवि आर्क-कनेक्टेड नहीं हो सकती है: उदाहरण के लिए, आर्क-कनेक्टेड स्पेस से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से अलग-अलग बिंदुओं के साथ एक कोशेंट मैप बहुत छोटा होने के कारण आर्क-कनेक्ट नहीं किया जा सकता है। कार्डिनैलिटी।
चाप -जुड़ाव स्थान की निरंतर छवि चाप-जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ लब्धि चित्र बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* आर्क-कनेक्टेड प्रोडक्ट स्पेस आर्क-कनेक्टेड स्पेस का प्रोडक्ट नहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* चाप -जुड़ाव स्थान का उत्पाद नहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> एक चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
*यदि चाप से जुड़े उपसमुच्चय में एक गैर-खाली चौराहा है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।
*यदि चाप से जुड़े उप-समुच्चय में अरिक्त अंतःखण्ड है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका संघ चाप से जुड़ा नहीं है।


== स्थानीय जुड़ाव ==<!-- This section is linked from [[Covering space]] -->
स्थानीय जुड़ाव <!-- उसका खंड [[ढका हुआ स्थान]] --> से जुड़ा हुआ है


{{main|Locally connected space}}
{{main|स्थानीय रूप से जुड़ा हुआ स्थान}}
एक टोपोलॉजिकल स्पेस को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> अगर हर पड़ोस <math>x</math> एक जुड़ा हुआ खुला पड़ोस शामिल है। यह स्थानीय रूप से जुड़ा हुआ है अगर इसमें जुड़े हुए सेटों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि एक स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है अगर और केवल अगर हर खुले सेट के हर घटक <math>X</math> खुला है।
टोपोलॉजिकल स्थान को बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> प्रत्येक निकटम <math>x</math> जुड़ा हुआ खुला निकटम सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक <math>X</math> खुला है।


इसी प्रकार एक टोपोलॉजिकल स्पेस को कहा जाता है{{visible anchor|locally path-connected}}अगर इसमें पथ से जुड़े सेट का आधार है।
इसी प्रकार टोपोलॉजिकल स्थान को कहा जाता हैI{{visible anchor|स्थानीय रूप से पथ से जुड़ा हुआ
स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उपसमुच्चय जुड़ा हुआ है अगर और केवल अगर यह पथ से जुड़ा हुआ है।
}}यदि इसमें पथ से जुड़े समुच्य का आधार है।
यह पहले के बयान को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक आम तौर पर, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
स्थानीय रूप से पथ से जुड़े स्थान का खुला उप-समुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है।
[[File:Topologists (warsaw) sine curve.png|thumb|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़ा हुआ मतलब जुड़ा नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो अलग-अलग सेट अंतरालों का मिलन है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.
यह पहले के वर्णन को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
[[फाइल: टोपोलॉजिस्ट (वारसॉ) ज्या वक्र .पीएनजी|थंब|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का संघ है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.


एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की साइन वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \left\{ \left(x, \sin\left(\tfrac{1}{x}\right)\right) : x \in (0, 1] \right\}</math>में शामिल करके [[यूक्लिडियन टोपोलॉजी]] [[प्रेरित टोपोलॉजी]] के साथ <math>\R^2</math>.
जुड़े हुए स्थान का शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \left\{ \left(x, \sin\left(\tfrac{1}{x}\right)\right) : x \in (0, 1] \right\}</math>, with the [[Euclidean topology]] [[Induced topology|induced]] by inclusion in <math>\R^2</math>.


== सेट संचालन ==
[[File:Union et intersection d'ensembles.svg|thumb|जुड़े हुए सेटों के संघों और चौराहों के उदाहरण]]जुड़े हुए सेटों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।


जुड़े हुए सेटों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.
समुच्य संचालन
[[फ़ाइल: संघ और अंतःखण्ड पहनावा.svg|छल्ला |जुड़े हुए उप-समुच्यों के संघों और अंतःखण्ड के उदाहरण]] जुड़े हुए उपसमुच्यों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।


प्रत्येक दीर्घवृत्त एक जुड़ा हुआ सेट है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो अलग-अलग खुले सेटों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.
जुड़े हुए उप-समुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.


इसका मतलब यह है कि, अगर संघ <math>X</math> डिस्कनेक्ट किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ अलग-अलग हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई मामलों में, जुड़े हुए सेटों का एक संघ {{em|is}} अनिवार्य रूप से जुड़ा हुआ है। विशेष रूप से:
प्रत्येक दीर्घवृत्त जुड़ा हुआ उप-समुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उप-समुच्यों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.


# यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो जाहिर है कि उन्हें अलग-अलग यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए सेटों का मिलन जुड़ा हुआ है।
इसका अर्थ यह है कि, यदि संघ <math>X</math> विभक्त किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उप-समुच्यों का एक संघ {{em|है}} विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।
# यदि सेट के प्रत्येक जोड़े का चौराहा खाली नहीं है (<math>\forall i,j: X_i \cap X_j \neq \emptyset</math>) तो फिर उन्हें अलग-अलग यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।
# यदि सेट को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यानी पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
# यदि सेट जोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो अगर <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |last=Brandsma |title=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|work=[[Stack Exchange]] |date=February 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
कनेक्टेड सेट का सेट अंतर जरूरी नहीं है। हालांकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले सेटों के मिलन के रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यानी <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).


{{math proof|title=Proof<ref>{{cite web |author=Marek |title=How to prove this result about connectedness? |date=February 13, 2013 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/302094 }}</ref>|proof=
यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।
By contradiction, suppose <math>Y \cup X_{1}</math> is not connected. So it can be written as the union of two disjoint open sets, e.g. <math>Y \cup X_{1}=Z_{1} \cup Z_{2}</math>. Because <math>Y</math> is connected, it must be entirely contained in one of these components, say <math>Z_1</math>, and thus <math>Z_2</math> is contained in <math>X_1</math>. Now we know that:
# यदि उपसमुच्य के प्रत्येक जोड़े का चौराहा खाली नहीं है (<math>\forall i,j: X_i \cap X_j \neq \emptyset</math>) तो फिर उन्हें भिन्न -भिन्न यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।
यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
# यदि समुच्यजोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो यदि <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |अंतिम = ब्रैंडस्मा|शीर्षक=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|काम=[[ढेरअदला बदली]] |तिथि = फरवरी 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
समुच्य का जुड़ाव का समुच्य अंतर अनिवार्य नहीं है। चूंकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> विभक्त किया गया है (और इस प्रकार दो खुले समुच्यों के संघके रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).
 
{{math proof|title=प्रमाण<ref>{{cite web |लेखक = मरेक |शीर्षक=जुड़ेपन के बारे में इस परिणाम को कैसे सिद्ध करें? |तिथि =13 फरवरी 2013 |काम=[[स्टैक एक्सचेंज]]|
url=https://math.stackexchange.com/q/302094 }}</ref>|proof=
विरोधाभास से, मान लीजिए <math>Y \cup X_{1}</math> जुड़ा नहीं है। अतः इसे दो असंयुक्त खुले समुच्चयों के संघ के रूप में लिखा जा सकता है, उदा. <math>Y \cup X_{1}=Z_{1} \cup Z_{2}</math>. चूंकि <math>Y</math>जुड़ा हुआ है, यह इन घटकों में पूरी तरह से समाहित होना चाहिए, कहते हैं
<math>Z_1</math>, and thus <math>Z_2</math>में निहित है<math>X_1</math>.अब हम जानते हैं कि:
<math display="block">X=\left(Y \cup X_{1}\right) \cup X_{2}=\left(Z_{1} \cup Z_{2}\right) \cup X_{2}=\left(Z_{1} \cup X_{2}\right) \cup\left(Z_{2} \cap X_{1}\right)</math>
<math display="block">X=\left(Y \cup X_{1}\right) \cup X_{2}=\left(Z_{1} \cup Z_{2}\right) \cup X_{2}=\left(Z_{1} \cup X_{2}\right) \cup\left(Z_{2} \cap X_{1}\right)</math>
The two sets in the last union are disjoint and open in <math>X</math>, so there is a separation of <math>X</math>, contradicting the fact that <math>X</math> is connected.
पिछले संघ में दो समुच्य भिन्न हैं और अंदर खुले हैं
<math>X</math>, इसलिए पृथक्करण है<math>X</math>, इस तथ्य के विपरीत कि
<math>X</math>जुड़ा हुआ है।
}}
}}


[[File:Connectedness-of-set-difference.png|thumb|दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है]]
[[File:Connectedness-of-set-difference.png|thumb|दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है]]


== प्रमेय <!--'Main theorem of connectedness' redirects here-->==
== प्रमेय <!--'Main theorem of connectedness' redirects here-->==
Line 165: Line 145:
लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। [[चक्र ग्राफ]] | 5-चक्र ग्राफ (और कोई भी <math>n</math>-साइकिल के साथ <math>n>3</math> विषम) ऐसा ही एक उदाहरण है।
लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। [[चक्र ग्राफ]] | 5-चक्र ग्राफ (और कोई भी <math>n</math>-साइकिल के साथ <math>n>3</math> विषम) ऐसा ही एक उदाहरण है।


नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं {{harv|Muscat|Buhagiar|2006}}. टोपोलॉजिकल स्पेस और ग्राफ़ कनेक्टिव स्पेस के विशेष मामले हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।
नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं {{harv|मस्कट|बुहगिअर |2006}}टोपोलॉजिकल स्थान और ग्राफ़ संयोजी स्थान की विशेष स्थिति हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।


हालांकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में वर्टिकल का इलाज करके, प्रत्येक ग्राफ को कैनोनिक रूप से एक टोपोलॉजिकल स्पेस में बनाया जा सकता है (टोपोलॉजिकल ग्राफ थ्योरी # ग्राफ़ को टोपोलॉजिकल स्पेस के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) अगर और केवल अगर यह एक टोपोलॉजिकल स्पेस के रूप में जुड़ा हुआ है।
चूंकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में खड़े रूप में इलाज़ करके, प्रत्येक ग्राफ को कैनोनिक रूप से टोपोलॉजिकल स्थान में बनाया जा सकता है (टोपोलॉजिकल ग्राफ सिद्धांत ग्राफ़ को टोपोलॉजिकल स्थान के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) यदि केवल यह टोपोलॉजिकल स्थान के रूप में जुड़ा हुआ है।


== जुड़ाव के मजबूत रूप ==
जुड़ाव के शक्तिशाली रूप  
टोपोलॉजिकल स्पेस के लिए जुड़ाव के मजबूत रूप हैं, उदाहरण के लिए:
टोपोलॉजिकल स्थान के लिए जुड़ाव के शक्तिशाली रूप हैं, उदाहरण के लिए:
* यदि टोपोलॉजिकल स्पेस में दो अलग-अलग गैर-खाली खुले सेट मौजूद नहीं हैं <math>X</math>, <math>X</math> जुड़ा होना चाहिए, और इस प्रकार [[हाइपरकनेक्टेड स्पेस]] भी जुड़े हुए हैं।
* यदि टोपोलॉजिकल स्थान में दो भिन्न -भिन्न अरिक्त खुले समुच्य सम्मलित नहीं हैं <math>X</math>, <math>X</math> जुड़ा होना चाहिए, और इस प्रकार [[अति जुड़े हुए स्थान]] भी जुड़े हुए हैं।
* चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल कनेक्टिविटी की परिभाषा से हटा दिया जाता है, तो एक साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
* चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल जुड़ाव की परिभाषा से हटा दिया जाता है, तो साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
* फिर भी कनेक्टिविटी के मजबूत संस्करणों में एक अनुबंधित स्थान की धारणा शामिल है। हर सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।
* फिर भी जुड़ाव के शक्तिशाली संस्करणों में अनुबंधित स्थान की धारणा सम्मलित है। सभी सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।


सामान्य तौर पर, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान मौजूद हैं जो पथ से जुड़े नहीं हैं। [[कंघी की जगह]] ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट का साइन कर्व है।
सामान्य, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान सम्मलित हैं जो पथ से जुड़े नहीं हैं। [[कंघी की जगह]] ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट की ज्या वक्र है।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Mathematics}}
{{Portal|गणित
}}
* [[जुड़ा हुआ घटक (ग्राफ सिद्धांत)]]
* [[जुड़ा हुआ घटक (ग्राफ सिद्धांत)]]
*कनेक्टिविटी लोकस
*कनेक्टिविटी ठिकाना
*अत्यंत डिस्कनेक्टेड स्पेस
*अत्यंत डिस्कनेक्टेड स्थान
* स्थानीय रूप से जुड़ा हुआ स्थान
* स्थानीय रूप से जुड़ा हुआ स्थान
*एन-कनेक्टेड|एन-कनेक्टेड
*एन-कनेक्टेड|एन-कनेक्टेड
Line 191: Line 172:




==इस पेज में लापता आंतरिक लिंक की सूची==
*संघ (सेट सिद्धांत)
*अंक शास्त्र
*बस जुड़ा हुआ स्थान
*स्थानीय रूप से जुड़ा हुआ स्थान
*फ्रिगियस रिज्ज़
*फेलिक्स हॉसडॉर्फ
*एक सेट का विभाजन
*अलग करना सेट
*हॉसडॉर्फ स्पेस
*बेकार
*वलय (गणित)
*सबस्पेस (टोपोलॉजी)
*तुल्यता वर्ग
*तुल्यता संबंध
*लंबी लाइन (टोपोलॉजी)
*दो मूल वाली रेखा
*संघ अलग करना
*अंतर सेट करें
*ग्राफ (असतत गणित)
*सिकुड़ने योग्य स्थान
*अत्यधिक डिस्कनेक्ट किया गया स्थान
*जुड़ाव स्थान
==अग्रिम पठन==
==अग्रिम पठन==
{{refbegin}}
{{refbegin}}{{cite book |author=Munkres, James R. |author-link=James Munkres |title=Topology, Second Edition |publisher=Prentice Hall |year=2000 |isbn=0-13-181629-2}}
* {{cite book | author= Munkres, James R. | author-link=James Munkres | title=Topology, Second Edition | publisher=Prentice Hall | year=2000 | isbn=0-13-181629-2}}
* {{MathWorld|urlname=ConnectedSet|title=Connected Set}}
* {{MathWorld|urlname=ConnectedSet|title=Connected Set}}
* {{eom|title=Connected space|author=V. I. Malykhin}}
* {{eom|title=Connected space|author=V. I. Malykhin}}
* {{Cite journal|url=http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf|last1=Muscat|first1=J|last2=Buhagiar|first2=D|title=Connective Spaces|journal=Mem. Fac. Sci. Eng. Shimane Univ., Series B: Math. Sc.|volume=39|year=2006|pages=1–13|access-date=2010-05-17|archive-url=https://web.archive.org/web/20160304053949/http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf|archive-date=2016-03-04|url-status=dead}}.
* {{Cite journal |url=http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf |last1=Muscat |first1=J |last2=Buhagiar |first2=D |title=Connective Spaces |journal=Mem. Fac. Sci. Eng. Shimane Univ., Series B: Math. Sc. |volume=39 |year=2006 |pages=1–13 |access-date=2010-05-17 |archive-url=https://web.archive.org/web/20160304053949/http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf |archive-date=2016-03-04 |url-status=dead}}.
{{refend}}
{{refend}}


{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Connected Space}}[[Category: सामान्य टोपोलॉजी]]
{{DEFAULTSORT:Connected Space}}
[[Category: स्थलाकृतिक स्थानों के गुण]]
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Connected Space]]
[[Category:Created On 27/11/2022]]
[[Category:CS1 errors|Connected Space]]
[[Category:Created On 27/11/2022|Connected Space]]
[[Category:Harv and Sfn no-target errors|Connected Space]]
[[Category:Lua-based templates|Connected Space]]
[[Category:Machine Translated Page|Connected Space]]
[[Category:Pages with broken file links|Connected Space]]
[[Category:Pages with empty portal template|Connected Space]]
[[Category:Pages with script errors|Connected Space]]
[[Category:Portal templates with redlinked portals|Connected Space]]
[[Category:Short description with empty Wikidata description|Connected Space]]
[[Category:Templates Vigyan Ready|Connected Space]]
[[Category:Templates that add a tracking category|Connected Space]]
[[Category:Templates that generate short descriptions|Connected Space]]
[[Category:Templates using TemplateData|Connected Space]]
[[Category:सामान्य टोपोलॉजी|Connected Space]]
[[Category:स्थलाकृतिक स्थानों के गुण|Connected Space]]

Latest revision as of 12:39, 27 October 2023

टोपोलॉजी और गणित की संबंधित शाखाओं में, संयुक्त समष्टि टोपोलॉजिकल समष्टि है जिसे दो या दो से अधिक असंयुक्त अरिक्त विवृत उप-समुच्चय के संघ के रूप में प्रदर्शित नहीं किया जा सकता है। कनेक्टेडनेस मुख्य टोपोलॉजिकल गुण है जिसका उपयोग टोपोलॉजिकल रिक्त समष्टि को पृथक करने के लिए किया जाता है।

टोपोलॉजिकल स्पेस का उपसमुच्चय संयुक्त समुच्चय है, के उपसमष्टि के रूप में देखे जाने पर यह संयुक्त समष्टि है।

कुछ संबंधित किन्तु दृढ़ स्थितियाँ पथ से जुड़ी हुई हैं, बस जुड़ी हुई हैं, और -कनेक्टेड हैं। अन्य संबंधित धारणा समष्टिय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का यह अनुसरण करती है।

औपचारिक परिभाषा

टोपोलॉजिकल समष्टि को विभक्त करता है यदि दो अरिक्त विवृत समूहों का संयुग्मित है।अन्यथा, जुड़ा है तब टोपोलॉजिकल समष्टि, उप-समष्टि टोपोलॉजी के अंतर्गत संयुग्मित है। कुछ लेखक रिक्त समूह को जुड़े हुए समष्टि के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।

टोपोलॉजिकल समष्टि के लिए निम्नलिखित कारण हैं:

  1. संयुग्मित है, इसे दो भिन्न -भिन्न अरिक्त विवृत समूहों में विभाजित नहीं किया जा सकता है।
  2. उप-समुच्चय विवृत और बंद (क्लोपेन समूह) दोनों प्रकार के होते हैं रिक्त समूह हैं।
  3. रिक्त सीमा में उप-समुच्चय और रिक्त समूह भी हैं।
  4. को अरिक्त भिन्न समूहों के संघ के रूप में नहीं लिखा जा सकता हैI
  5. से तक सभी निरंतर कार्य स्थिर हैं, जहां असतत टोपोलॉजी से संपन्न दो-बिंदु समष्टि है| [1]

ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (दो भिन्न -भिन्न समूहों में के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें |

जुड़े हुए घटक

टोपोलॉजिकल समष्टि में कुछ बिंदु दिए गए हैं, जुड़े हुए उप-समुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में सम्मलित है| बिंदु में के जुड़े हुए घटक सभी उप-समूहों का संघ है जिसमें सम्मलित है| सबसे बड़ा अद्वितीय (के संबंध में ) का उप-समुच्चयों जिसमे सम्मिलित है | अरिक्त टोपोलॉजिकल समष्टि के अधिकतम तत्वों को उपसमुच्चय (समावेशी द्वारा आदेशित ) के समष्टि को घटक कहा जाता है। किसी भी टोपोलॉजिकल समष्टि के घटक का विभाजन भिन्न, अरिक्त और संपूर्ण समष्टि संयुग्मित है। प्रत्येक घटक मूल समष्टि का बंद उप-समुच्चय है। इसी प्रकार, इस स्थिति में संख्या परिमित है, प्रत्येक घटक भी खुला उप-समुच्चय है। चूंकि, यदि संख्या अनंत है, तो यह स्थिति नहीं हो सकती हैI उदाहरण के लिए, परिमेय संख्याओं के समुच्चय से जुड़े घटक बिंदु समुच्चय (सिंगलटन ) हैं, जो विवृत नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ विभिन्न घटकों में हैं। अपरिमेय संख्या लीजिए और फिर तथा का का वियोग हैI तथा . इस प्रकार प्रत्येक घटक बिंदु समुच्चय है।

मान लीजिए कि का टोपोलॉजिकल समष्टि से जुड़ा हुआ है। क्लोपेन भी समुच्चय का प्रतिच्छेदन है(जिसे का अर्ध-घटक कहा जाता है)I अर्थात में समानता होती है यदि कॉम्पैक्ट हौसडॉर्फ या समष्टिीय रूप से जुड़ा हुआ है। [2]

पृथक किए गए रिक्त समष्टि

समष्टि जिसमें सभी घटक बिंदु उप-समुच्चय से पूरी तरह विभक्त हो जाते हैं। इस संपत्ति से संबंधित, समष्टि को पूरी तरह से विभक्त किया जाता है यदि, और , के दो भिन्न -भिन्न तत्वों में, भिन्न -भिन्न विवृत समुच्चय में सम्मलित हैं | ऐसा युक्त है कि जिसमें , तथा का संघ हैI अर्थात , तथा का संयुग्मित हैI स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न समष्टि से विभक्त हो गया है, लेकिन विभक्त होने का कारण नहीं स्पष्ट है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें , और शून्य को छोड़कर सभी बिंदु पर उन्हें पहचानें। परिणामी समष्टि, विभाजित संसमष्टििक के साथ, पूरी तरह से विभक्त हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, यह प्रदर्शित होता है कि समष्टि पूर्ण रूप से विभक्त नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ समष्टि भी नहीं है, और पूर्ण रूप से विभक्त होने की स्थिति से अधिक शक्तिशाली है।

उदाहरण

  • मानक उप-समष्टि टोपोलॉजी यूक्लिडियन समष्टि में बंद अंतराल में जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे तथा संघ के रूप में लिखा जा सकता हैI चुने हुए दूसरे विवृत समुच्चय टोपोलॉजी में से नहीं है I
  • तथा का संघ विभक्त हो गया है; इसके दोनों मानक टोपोलॉजिकल समष्टि अंतराल विवृत हैं
  • विभक्त किया गया है।
  • का उत्तल उप-समुच्चय जुड़ा हुआहुआ है।
  • यूक्लिडियन समष्टि मूल को छोड़कर, जुड़ा हुआ है, मूल के बिना त्रि-आयामी यूक्लिडियन समष्टि जुड़ा हुआ है, इसके विपरीत, मूल के बिना आयामी यूक्लिडियन समष्टि जुड़ा नहीं है।
  • सीधी रेखा के कारण यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
  • सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं के समष्टि से जुड़ा है।
  • निचली सीमा टोपोलॉजी विभक्त हो गई है।[3]
  • यदि से बिंदु विभक्त कर दिया जाए , तथा शेष भाग काट दिया जाता है चूंकि, यदि , जहां शेष जुड़ा हुआ है। यदि , फिर बिंदुओं से विभक्त होने के बाद भी जुड़ा रहता हैI
  • उदाहरण के लिए, संसमष्टििक वेक्टर समष्टि,से कोई भी हिल्बर्ट समष्टि या बनच समष्टि (जैसे या ) जुड़े हुए क्षेत्र है।
  • कम से कम दो तत्वों के साथ प्रत्येक असतत सामयिक समष्टि विभक्त हो गया है। सबसे सरल उदाहरण असतत दो-बिंदु समष्टि है।[4]
  • दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, असतत मूल्यांकन छल्ला के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की समष्टि का उदाहरण है।
  • कैंटर समुच्चय पूरी तरह से विभक्त हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु और घटक होते हैं।
  • यदि कोई समष्टि के बराबर होमोटॉपी है, तो स्वयं जुड़ा हुआ है।
  • टोपोलॉजिस्ट की ज्या वक्र समुच्चय का उदाहरण है जो न तो पथ से जुड़ा है और न ही समष्टिीय रूप से जुड़ा हुआ है।
  • सामान्य रैखिक समूह (अर्थात् समूह -द्वारा- वास्तविक, व्युत्क्रमणीय आव्यूह) में दो जुड़े घटक होते हैं: सकारात्मक निर्धारक और दूसरा नकारात्मक निर्धारक। इसके विपरीत, जुड़ा हुआ है। अधिक सामान्यतः पर, जटिल हिल्बर्ट समष्टि पर उल्टा घिरे संचालनों का समुच्चय जुड़ा है।
  • विनिमेय समष्टिीय छल्लों और अभिन्न कार्यक्षेत्र के स्पेक्ट्रा से जुड़े हुए हैं। निम्नलिखित कारण हैं[5]
    1. क्रमविनिमेय वलय का स्पेक्ट्रम से जुड़ा हुआ है
    2. पर प्रत्येक सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल की निरंतर श्रेणी होती है।
    3. कोई क्रम नहीं है (अर्थात, गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।

एक समतल जिसमें से अनंत रेखा निषेध कर दी गई है। विभक्त किए गए रिक्त समष्टि के अन्य उदाहरण (अर्थात, रिक्त समष्टि जो जुड़े नहीं हैं) जो समतल को वलय के साथ विभक्त कर दिया गया है, साथ ही साथ दो भिन्न-भिन्न बंद डिस्क (गणित) का संघ भी सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-समष्टि टोपोलॉजी को धारण करते हैं।

पथ जुड़ाव

R² का यह उप-समष्टि पथ से जुड़ा हुआ है, क्योंकि समतल में दो बिंदुओं के बीच पथ खींचा जा सकता है।
पथ से जुड़ा समष्टि

जुड़ाव की शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। (टोपोलॉजी) पथ समष्टि में बिंदु से तक का पथ एक निरंतर फलन है| इकाई अंतराल से से प्रति साथ तथा . का पथ-घटक तुल्यता संबंध के अंतर्गत का तुल्यता वर्ग है जो को के समतुल्य बनाता है यदि प्रति . स्थान   को पथ जुड़ाव कहा जाता है यदि कुल पथ घटक है कोई दो बिंदुओं में सम्मलित होने वाला मार्ग है| तत्पश्चात, कई लेखक रिक्त स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, रिक्त स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; रिक्त समुच्चय पर अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।

प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम सदैव सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा और टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|

वास्तविक रेखा के उप-समुच्चय जुड़े हुए हैं यदि केवल वे पथ से जुड़े हुए हैं; ये उप-समुच्चय के अंतराल (गणित) हैंI साथ ही, या के उप-समुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं। इसके अतिरिक्त, परिमित सामयिक समष्टि के लिए जुड़ाव और पथ-जुड़ाव समान हैं।

चाप जुड़ाव

समष्टि को चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं को पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो टोपोलॉजिकल एम्बेडिंग है . का चाप-घटक का अधिकतम चाप-जुड़ाव उप-समुच्य है ; या समतुल्य रूप से समतुल्य संबंध का तुल्यता वर्ग कि क्या दो बिंदुओं को चाप से जोड़ा जा सकता है या ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।

प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह कमजोर हौसडॉर्फ स्थान के लिए सही है-हॉसडॉर्फ स्थान, जो ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद हैI ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।

पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर सरलता से स्थानांतरित नहीं होता है। होने देना दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:

चाप -जुड़ाव स्थान की निरंतर छवि चाप-जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ लब्धि चित्र बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।

  • चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, दो अतिव्यापी चाप-घटक हैं।
  • चाप -जुड़ाव स्थान का उत्पाद नहीं हो सकता है। उदाहरण के लिए, चाप से जुड़ा है, लेकिन नहीं है।
  • किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, चाप-घटक है, लेकिन दो चाप-घटक हैं।
  • यदि चाप से जुड़े उप-समुच्चय में अरिक्त अंतःखण्ड है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक प्रतिच्छेद करते हैं, लेकिन उनका संघ चाप से जुड़ा नहीं है।

स्थानीय जुड़ाव से जुड़ा हुआ है

टोपोलॉजिकल स्थान को बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है प्रत्येक निकटम जुड़ा हुआ खुला निकटम सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का आधार (टोपोलॉजी) है। यह दिखाया जा सकता है कि स्थान स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक खुला है।

इसी प्रकार टोपोलॉजिकल स्थान को कहा जाता हैIस्थानीय रूप से पथ से जुड़ा हुआ यदि इसमें पथ से जुड़े समुच्य का आधार है। स्थानीय रूप से पथ से जुड़े स्थान का खुला उप-समुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है। यह पहले के वर्णन को सामान्यीकृत करता है तथा , जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी टोपोलॉजिकल मैनिफोल्ड स्थानीय रूप से पथ से जुड़ा होता है। थंब|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं हैस्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का संघ है , जैसे कि .

जुड़े हुए स्थान का शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है , with the Euclidean topology induced by inclusion in .


समुच्य संचालन छल्ला |जुड़े हुए उप-समुच्यों के संघों और अंतःखण्ड के उदाहरण जुड़े हुए उपसमुच्यों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।

जुड़े हुए उप-समुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है .

प्रत्येक दीर्घवृत्त जुड़ा हुआ उप-समुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उप-समुच्यों में विभाजित किया जा सकता है तथा .

इसका अर्थ यह है कि, यदि संघ विभक्त किया गया है, तो संग्रह दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उप-समुच्यों का एक संघ है विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।

यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।

  1. यदि उपसमुच्य के प्रत्येक जोड़े का चौराहा खाली नहीं है () तो फिर उन्हें भिन्न -भिन्न यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।

यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और , फिर से उनका संघ जुड़ा होना चाहिए।

  1. यदि समुच्यजोड़ीदार-असंबद्ध हैं और भागफल स्थान (टोपोलॉजी) जुड़ा हुआ है, तो X जुड़ा होना चाहिए। नहीं तो यदि का वियोग है X फिर भागफल स्थान का पृथक्करण है (चूंकि असंयुक्त हैं और भागफल स्थान में खुले हैं)।[6]

समुच्य का जुड़ाव का समुच्य अंतर अनिवार्य नहीं है। चूंकि, यदि और उनका अंतर विभक्त किया गया है (और इस प्रकार दो खुले समुच्यों के संघके रूप में लिखा जा सकता है तथा ), फिर संघ ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि सभी के लिए जुड़ा हुआ है ).

प्रमाण[7]

विरोधाभास से, मान लीजिए जुड़ा नहीं है। अतः इसे दो असंयुक्त खुले समुच्चयों के संघ के रूप में लिखा जा सकता है, उदा. . चूंकि जुड़ा हुआ है, यह इन घटकों में पूरी तरह से समाहित होना चाहिए, कहते हैं , and thus में निहित है.अब हम जानते हैं कि:

पिछले संघ में दो समुच्य भिन्न हैं और अंदर खुले हैं , इसलिए पृथक्करण है, इस तथ्य के विपरीत कि जुड़ा हुआ है।

दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है





प्रमेय

  • संबद्धता का मुख्य प्रमेय: होने देना तथा टोपोलॉजिकल स्पेस बनें और दें एक सतत कार्य हो। यदि है (पथ-) छवि से जुड़ा हुआ है (पथ-) जुड़ा हुआ है। इस परिणाम को मध्यवर्ती मूल्य प्रमेय का सामान्यीकरण माना जा सकता है।
  • हर पथ से जुड़ा स्थान जुड़ा हुआ है।
  • हर स्थानीय पथ से जुड़ा स्थान स्थानीय रूप से जुड़ा हुआ है।
  • स्थानीय रूप से पाथ-कनेक्टेड स्पेस पाथ-कनेक्टेड है अगर और केवल अगर यह जुड़ा हुआ है।
  • जुड़े हुए सबसेट का क्लोजर (टोपोलॉजी) जुड़ा हुआ है। इसके अलावा, जुड़े हुए सबसेट और उसके बंद होने के बीच कोई भी सबसेट जुड़ा हुआ है।
  • जुड़े हुए घटक हमेशा बंद सेट होते हैं (लेकिन सामान्य तौर पर खुले नहीं होते हैं)
  • स्थानीय रूप से जुड़े हुए स्थान के जुड़े घटक भी खुले हैं।
  • एक स्थान के जुड़े घटक पथ से जुड़े घटकों के असंयुक्त संघ हैं (जो सामान्य रूप से न तो खुले हैं और न ही बंद हैं)।
  • कनेक्टेड (स्थानीय रूप से जुड़ा हुआ, पथ-जुड़ा हुआ, स्थानीय रूप से पथ-जुड़ा हुआ) स्थान का प्रत्येक भाग स्थान (टोपोलॉजी) जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से जुड़ा हुआ है, पथ-जुड़ा हुआ है, स्थानीय रूप से जुड़ा हुआ है)।
  • कनेक्टेड (प्रतिक्रिया पथ से जुड़े) रिक्त स्थान के एक परिवार का प्रत्येक उत्पाद टोपोलॉजी जुड़ा हुआ है (उत्तर पथ से जुड़ा हुआ है)।
  • स्थानीय रूप से जुड़े (प्रतिक्रिया स्थानीय रूप से पथ से जुड़े) स्थान का प्रत्येक खुला उपसमुच्चय स्थानीय रूप से जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से पथ से जुड़ा हुआ है)।
  • प्रत्येक विविध स्थानीय रूप से पाथ-कनेक्टेड है।
  • चाप-वार जुड़ा हुआ स्थान पथ से जुड़ा हुआ है, लेकिन पथ-वार जुड़ा हुआ स्थान चाप-वार जुड़ा नहीं हो सकता है
  • चाप-वार जुड़े सेट की निरंतर छवि चाप-वार जुड़ी हुई है।

रेखांकन

ग्राफ़ (असतत गणित) में पथ से जुड़े उपसमुच्चय होते हैं, अर्थात् वे उपसमुच्चय जिनके लिए बिंदुओं के प्रत्येक युग्म में उनके साथ जुड़ने वाले किनारों का मार्ग होता है। लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। चक्र ग्राफ | 5-चक्र ग्राफ (और कोई भी -साइकिल के साथ विषम) ऐसा ही एक उदाहरण है।

नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं (मस्कट & बुहगिअर 2006)टोपोलॉजिकल स्थान और ग्राफ़ संयोजी स्थान की विशेष स्थिति हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।

चूंकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में खड़े रूप में इलाज़ करके, प्रत्येक ग्राफ को कैनोनिक रूप से टोपोलॉजिकल स्थान में बनाया जा सकता है (टोपोलॉजिकल ग्राफ सिद्धांत ग्राफ़ को टोपोलॉजिकल स्थान के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) यदि केवल यह टोपोलॉजिकल स्थान के रूप में जुड़ा हुआ है।

जुड़ाव के शक्तिशाली रूप टोपोलॉजिकल स्थान के लिए जुड़ाव के शक्तिशाली रूप हैं, उदाहरण के लिए:

  • यदि टोपोलॉजिकल स्थान में दो भिन्न -भिन्न अरिक्त खुले समुच्य सम्मलित नहीं हैं , जुड़ा होना चाहिए, और इस प्रकार अति जुड़े हुए स्थान भी जुड़े हुए हैं।
  • चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल जुड़ाव की परिभाषा से हटा दिया जाता है, तो साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
  • फिर भी जुड़ाव के शक्तिशाली संस्करणों में अनुबंधित स्थान की धारणा सम्मलित है। सभी सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।

सामान्य, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान सम्मलित हैं जो पथ से जुड़े नहीं हैं। कंघी की जगह ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट की ज्या वक्र है।

यह भी देखें

संदर्भ

  1. Wilder, R.L. (1978). ""कनेक्टेड" की सामयिक अवधारणा का विकास". American Mathematical Monthly. 85 (9): 720–726. doi:10.2307/2321676. JSTOR 2321676.
  2. "सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक".
  3. Stephen Willard (1970). सामान्य टोपोलॉजी. Dover. p. 191. ISBN 0-486-43479-6.
  4. George F. Simmons (1968). टोपोलॉजी और आधुनिक विश्लेषण का परिचय. McGraw Hill Book Company. p. 144. ISBN 0-89874-551-9.
  5. Charles Weibel, The K-book: An introduction to algebraic K-theory
  6. https://math.stackexchange.com/q/302118. {{cite web}}: |first= missing |last= (help); Missing or empty |title= (help); Unknown parameter |अंतिम= ignored (help); Unknown parameter |काम= ignored (help); Unknown parameter |तिथि= ignored (help); Unknown parameter |शीर्षक= ignored (help)
  7. https://math.stackexchange.com/q/302094. {{cite web}}: Missing or empty |title= (help); Unknown parameter |काम= ignored (help); Unknown parameter |तिथि= ignored (help); Unknown parameter |लेखक= ignored (help); Unknown parameter |शीर्षक= ignored (help)


अग्रिम पठन

Munkres, James R. (2000). Topology, Second Edition. Prentice Hall. ISBN 0-13-181629-2.