अभिगृहीत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Statement that is taken to be true}}
{{short description|Statement that is taken to be true}}
{{distinguish|axion|axon}}
एक '''अभिगृहीत''', अभिधारणा, या पूर्वधारणा एक ऐसा [[कथन (तर्क)|कथन]] है जिसे आगे के विवेचना और विवेचनाओं के लिए एक [[आधार]] या प्रारंभिक बिंदु के रूप में कार्य करने के लिए [[सत्य]] माना जाता है। यह शब्द प्राचीन ग्रीक शब्द {{wikt-lang|grc|एक्सिओमा}} से आया है जिसका अर्थ है 'वह जो योग्य या उपयुक्त समझा जाता है' या 'वह जो स्वयं को स्पष्ट मानता है'।<ref>Cf. axiom, n., etymology. ''Oxford English Dictionary'', accessed 2012-04-28.</ref><ref>Oxford American College Dictionary: "n. a statement or proposition that is regarded as being established, accepted, or self-evidently true. ORIGIN: late 15th cent.: ultimately from Greek axiōma 'what is thought fitting,' from axios 'worthy.' [http://www.highbeam.com/doc/1O997-axiom.html HighBeam]{{dead link|date=February 2019|bot=medic}}{{cbignore|bot=medic}} {{subscription}}</ref> अध्ययन के विभिन्न क्षेत्रों के संदर्भ में उपयोग किए जाने पर शब्द की परिभाषा में सूक्ष्म अंतर होता है। जैसा कि [[क्लासिक दर्शन]] में परिभाषित किया गया है, एक स्वयंसिद्ध कथन एक ऐसा कथन है जो इतना स्व-प्रमाण या अच्छी तरह से स्थापित है कि इसे विवाद या प्रश्न के बिना स्वीकार किया जाता है।<ref>"A proposition that commends itself to general acceptance; a well-established or universally conceded principle; a maxim, rule, law" axiom, n., definition 1a. ''Oxford English Dictionary'' Online, accessed 2012-04-28. Cf. Aristotle, ''[[Posterior Analytics]]'' I.2.72a18-b4.</ref><!-- प्राप्त होने तक छिपा हुआ —it is better known and more firmly believed than the conclusion.{{उद्धरण वांछित|तारीख=मई 2012}}--> जैसा कि आधुनिक [[तर्क]] में प्रयोग किया जाता है, एक स्वयंसिद्ध विवेचना के लिए एक आधार या प्रारंभिक बिंदु है।<ref>"A proposition (whether true or false)" axiom, n., definition 2. ''Oxford English Dictionary'' Online, accessed 2012-04-28.</ref>जैसा कि गणित में प्रयोग किया जाता है, स्वयंसिद्ध शब्द का उपयोग दो संबंधित लेकिन भिन्न -भिन्न अर्थों में किया जाता है: "तार्किक स्वयंसिद्ध" और "गैर-तार्किक स्वयंसिद्ध"। तार्किक स्वयंसिद्ध सामान्य ऐसे कथन होते हैं जिन्हें उनके द्वारा परिभाषित तर्क की प्रणाली के भीतर सत्य माना जाता है और प्रायः प्रतीकात्मक रूप में दिखाया जाता है (जैसे, (''A'' और ''B'' ) का तात्पर्य ''A'' ), जबकि गैर-तार्किक स्वयंसिद्धों (जैसे, ''a'' + ''b'' = ''b'' + ''a'') वास्तव में एक विशिष्ट गणितीय सिद्धांत (जैसे [[अंकगणित]]) के डोमेन के तत्वों के बारे में वास्तविक अभिकथन हैं।
{{redirect-several|dab=नहीं|अभिगृहीत (बहुविकल्पी)|स्वयंसिद्ध(बहुविकल्पी)|अभिधारणा (बीजगणितीय ज्यामिति)}}
{{Use dmy dates|date=December 2020}}एक अभिगृहीत, अभिधारणा, या पूर्वधारणा एक ऐसा कथन[[कथन (तर्क)]] है जिसे आगे के तर्क और तर्कों के लिए एक [[आधार]] या प्रारंभिक बिंदु के रूप में कार्य करने के लिए [[सत्य]] माना जाता है। यह शब्द प्राचीन ग्रीक शब्द से आया है {{wikt-lang|grc|ἀξίωμα}} ({{grc-transl|ἀξίωμα}}), जिसका अर्थ है 'वह जो योग्य या उपयुक्त समझा जाता है' या 'वह जो स्वयं को स्पष्ट मानता है'।<ref>Cf. axiom, n., etymology. ''Oxford English Dictionary'', accessed 2012-04-28.</ref><ref>Oxford American College Dictionary: "n. a statement or proposition that is regarded as being established, accepted, or self-evidently true. ORIGIN: late 15th cent.: ultimately from Greek axiōma 'what is thought fitting,' from axios 'worthy.' [http://www.highbeam.com/doc/1O997-axiom.html HighBeam]{{dead link|date=February 2019|bot=medic}}{{cbignore|bot=medic}} {{subscription}}</ref>
अध्ययन के विभिन्न क्षेत्रों के संदर्भ में उपयोग किए जाने पर शब्द की परिभाषा में सूक्ष्म अंतर होता है। जैसा कि [[क्लासिक दर्शन]] में परिभाषित किया गया है, एक स्वयंसिद्ध कथन एक ऐसा कथन है जो इतना स्व-प्रमाण या अच्छी तरह से स्थापित है कि इसे विवाद या प्रश्न के बिना स्वीकार किया जाता है।<ref>"A proposition that commends itself to general acceptance; a well-established or universally conceded principle; a maxim, rule, law" axiom, n., definition 1a. ''Oxford English Dictionary'' Online, accessed 2012-04-28. Cf. Aristotle, ''[[Posterior Analytics]]'' I.2.72a18-b4.</ref><!-- HIDDEN UNTIL SOURCED —it is better known and more firmly believed than the conclusion.{{citation needed|date=May 2012}}--> जैसा कि आधुनिक [[तर्क]] में प्रयोग किया जाता है, एक स्वयंसिद्ध तर्क के लिए एक आधार या प्रारंभिक बिंदु है।<ref>"A proposition (whether true or false)" axiom, n., definition 2. ''Oxford English Dictionary'' Online, accessed 2012-04-28.</ref>
जैसा कि गणित में प्रयोग किया जाता है, अभिगृहीत शब्द का प्रयोग दो संबंधित लेकिन विशिष्ट अर्थों में किया जाता है: #तार्किक अभिगृहीत| तार्किक अभिगृहीत और #अतार्किक अभिगृहीत| गैर-तार्किक स्वयंसिद्ध। तार्किक स्वयंसिद्ध आमतौर पर ऐसे कथन होते हैं जिन्हें उनके द्वारा परिभाषित तर्क की प्रणाली के भीतर सत्य माना जाता है और अक्सर प्रतीकात्मक रूप में दिखाया जाता है (उदाहरण के लिए, (और बी) का तात्पर्य ), जबकि गैर-तार्किक स्वयंसिद्धों (जैसे, {{nowrap|1= ''a'' + ''b'' = ''b'' + ''a''}}) वास्तव में एक विशिष्ट गणितीय सिद्धांत (जैसे [[अंकगणित]]) के डोमेन के तत्वों के बारे में ठोस अभिकथन हैं।
 
जब बाद के अर्थ में प्रयोग किया जाता है, स्वयंसिद्ध, अभिधारणा, और धारणा को एक दूसरे के रूप में इस्तेमाल किया जा सकता है। ज्यादातर मामलों में, एक गैर-तार्किक स्वयंसिद्ध केवल एक औपचारिक तार्किक अभिव्यक्ति है जिसका उपयोग गणितीय सिद्धांत बनाने के लिए कटौती में किया जाता है, और प्रकृति में स्व-स्पष्ट हो भी सकता है और नहीं भी हो सकता है (उदाहरण के लिए, [[यूक्लिडियन ज्यामिति]] में [[समानांतर अभिधारणा]])। ज्ञान की एक प्रणाली को स्वयंसिद्ध करने के लिए यह दिखाना है कि इसके दावों को छोटे, अच्छी तरह से समझे जाने वाले वाक्यों (स्वयंसिद्ध) से प्राप्त किया जा सकता है, और आमतौर पर किसी दिए गए गणितीय डोमेन को स्वयंसिद्ध करने के कई तरीके हैं।
 
कोई भी स्वयंसिद्ध एक कथन है जो एक प्रारंभिक बिंदु के रूप में कार्य करता है जिससे अन्य कथन तार्किक रूप से प्राप्त होते हैं। किसी अभिगृहीत के सत्य होने के लिए क्या यह अर्थपूर्ण है (और, यदि ऐसा है, तो इसका क्या अर्थ है) गणित के दर्शनशास्त्र में बहस का विषय है।<ref>See for example {{cite journal|first=Penelope|last=Maddy|journal=Journal of Symbolic Logic|title=Believing the Axioms, I|volume=53|issue=2|date=Jun 1988|pages=481–511|doi=10.2307/2274520|jstor=2274520}} for a [[mathematical realism|realist]] view.</ref>


जब बाद के अर्थ में उपयोग किया जाता है, तो "स्वयंसिद्ध", "अभिधारणा", और "अनुमान" का परस्पर उपयोग किया जा सकता है। इस स्थिति में, एक गैर-तार्किक स्वयंसिद्ध केवल एक औपचारिक तार्किक अभिव्यक्ति है जिसका उपयोग गणितीय सिद्धांत बनाने के लिए कटौती में किया जाता है, और प्रकृति में स्व-स्पष्ट हो भी सकता है और नहीं भी हो सकता है (उदाहरण के लिए, [[यूक्लिडियन ज्यामिति]] में [[समानांतर अभिधारणा]])। ज्ञान की एक प्रणाली को स्वयंसिद्ध करने के लिए यह दिखाना है कि इसके आशय को छोटे, अच्छी तरह से समझे जाने वाले वाक्यों (स्वयंसिद्ध) से प्राप्त किया जा सकता है, और सामान्य पर किसी दिए गए गणितीय डोमेन को स्वयंसिद्ध करने के कई उपयोग हैं।   


कोई भी स्वयंसिद्ध एक कथन है जो एक प्रारंभिक बिंदु के रूप में कार्य करता है जिससे अन्य कथन तार्किक रूप से प्राप्त होते हैं। क्या यह सार्थक है (और, यदि ऐसा है, तो इसका क्या अर्थ है) एक स्वयंसिद्ध के लिए "सत्य" होना गणित के दर्शन में तर्क का विषय है।<ref>See for example {{cite journal|first=Penelope|last=Maddy|journal=Journal of Symbolic Logic|title=Believing the Axioms, I|volume=53|issue=2|date=Jun 1988|pages=481–511|doi=10.2307/2274520|jstor=2274520}} for a [[mathematical realism|realist]] view.</ref>
== व्युत्पत्ति ==
== व्युत्पत्ति ==
स्वयंसिद्ध शब्द [[ग्रीक भाषा]] के शब्द से आया है {{lang|grc|ἀξίωμα}} (एक्सिओमा), क्रिया से एक [[मौखिक संज्ञा]] {{lang|grc|ἀξιόειν}} (एक्सिओइन), जिसका अर्थ योग्य समझा जाना है, लेकिन इसकी आवश्यकता भी है, जो बदले में आता है {{lang|grc|ἄξιος}} (एक्सिओस), जिसका अर्थ है संतुलन में होना, और इसलिए (समान) मूल्य (जैसा), योग्य, उचित होना। [[प्राचीन ग्रीस]] के [[दार्शनिक]]ों के बीच एक स्वयंसिद्ध दावा था जिसे प्रमाण की आवश्यकता के बिना स्वतः स्पष्ट सत्य के रूप में देखा जा सकता था।<ref name=":0">{{Cite web|url=http://www.ptta.pl/pef/haslaen/a/axiom.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.ptta.pl/pef/haslaen/a/axiom.pdf |archive-date=2022-10-09 |url-status=live|title=स्वयंसिद्ध - द यूनिवर्सल एनसाइक्लोपीडिया ऑफ़ फिलॉसफी|website=Polskie Towarzystwo Tomasza z Akwinu}}</ref>
स्वयंसिद्ध शब्द [[ग्रीक भाषा]] के शब्द {{lang|grc|एक्सिओमा}} से आया है क्रिया {{lang|grc|एक्सिओइन}} से एक [[मौखिक संज्ञा]], जिसका अर्थ योग्य समझा जाना है, लेकिन इसकी आवश्यकता भी है, जो बदले में आता है {{lang|grc|एक्सिओस}}, जिसका अर्थ है संतुलन में होना, और इसलिए (समान) मूल्य (जैसा), योग्य, उचित होना। [[प्राचीन ग्रीस]] के [[दार्शनिक|दार्शनिकों]] के बीच एक स्वयंसिद्ध दावा था जिसे प्रमाण की आवश्यकता के बिना स्वतः स्पष्ट सत्य के रूप में देखा जा सकता था।<ref name=":0">{{Cite web|url=http://www.ptta.pl/pef/haslaen/a/axiom.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.ptta.pl/pef/haslaen/a/axiom.pdf |archive-date=2022-10-09 |url-status=live|title=स्वयंसिद्ध - द यूनिवर्सल एनसाइक्लोपीडिया ऑफ़ फिलॉसफी|website=Polskie Towarzystwo Tomasza z Akwinu}}</ref> अभिधारणा शब्द का मूल अर्थ "मांग" है; उदाहरण के लिए, [[यूक्लिड]] मांग करता है कि कोई सहमत हो कि कुछ चीजें की जा सकती हैं (उदाहरण के लिए, किन्हीं दो बिंदुओं को एक सीधी रेखा से जोड़ा जा सकता है) ।<ref>Wolff, P. ''Breakthroughs in Mathematics'', 1963, New York: New American Library, pp&nbsp;47–48</ref> प्राचीन जियोमीटरों ने अभिगृहीतों और अभिधारणाओं के बीच कुछ अंतर बनाए रखा। यूक्लिड की पुस्तकों पर टिप्पणी करते हुए, प्रोक्लस ने टिप्पणी की कि "जेमिनस का मानना ​​था कि इस अभिधारणा को एक अभिधारणा के रूप में नहीं बल्कि एक स्वयंसिद्ध के रूप में वर्गीकृत किया जाना चाहिए, क्योंकि यह, पहले तीन अभिधारणाओं की तरह, कुछ निर्माण की संभावना पर जोर नहीं देता है लेकिन एक अभिधारणा को व्यक्त करता है। आवश्यक संपत्ति।<ref>[[T. L. Heath|Heath, T.]] 1956. The Thirteen Books of Euclid's Elements. New York: Dover. ''p 200''</ref> [[बोथियस]] ने 'पोस्टुलेट' को पेटिटियो के रूप में अनुवादित किया और स्वयंसिद्ध धारणाओं को कम्युनिस कहा लेकिन बाद की पांडुलिपियों में इस प्रयोग को हमेशा कठोरता से नहीं रखा गया।  
अभिधारणा शब्द का मूल अर्थ मांग करना है; उदाहरण के लिए, [[यूक्लिड]] मांग करता है कि कोई सहमत हो कि कुछ चीजें की जा सकती हैं (उदाहरण के लिए, किन्हीं दो बिंदुओं को एक सीधी रेखा से जोड़ा जा सकता है)।<ref>Wolff, P. ''Breakthroughs in Mathematics'', 1963, New York: New American Library, pp&nbsp;47–48</ref>
प्राचीन जियोमीटरों ने अभिगृहीतों और अभिधारणाओं के बीच कुछ अंतर बनाए रखा। यूक्लिड की पुस्तकों पर टिप्पणी करते हुए, [[बंद किया हुआ]] ने टिप्पणी की कि [[एक जुड़वा]] ने माना कि इस [चौथे] अभिधारणा को एक अभिधारणा के रूप में नहीं बल्कि एक स्वयंसिद्ध के रूप में वर्गीकृत किया जाना चाहिए, क्योंकि यह पहले तीन अभिधारणाओं की तरह, कुछ निर्माण की संभावना पर जोर नहीं देता है लेकिन एक आवश्यक व्यक्त करता है संपत्ति।<ref>[[T. L. Heath|Heath, T.]] 1956. The Thirteen Books of Euclid's Elements. New York: Dover. ''p 200''</ref> [[बोथियस]] ने 'पोस्टुलेट' को पेटिटियो के रूप में अनुवादित किया और स्वयंसिद्ध धारणाओं को कम्युनिस कहा लेकिन बाद की पांडुलिपियों में इस प्रयोग को हमेशा सख्ती से नहीं रखा गया।


== ऐतिहासिक विकास ==
== ऐतिहासिक विकास ==


===प्रारंभिक यूनानी ===
===प्रारंभिक यूनानी ===
तार्किक-निगमनात्मक विधि जिसके द्वारा निष्कर्ष (नया ज्ञान) परिसर (पुराने ज्ञान) से ध्वनि तर्कों (न्यायशास्त्र, [[अनुमान के नियम]]) के अनुप्रयोग के माध्यम से प्राचीन यूनानियों द्वारा विकसित किया गया था, और आधुनिक गणित का मूल सिद्धांत बन गया है। [[टॉटोलॉजी (तर्क)]] को बाहर रखा गया है, अगर कुछ भी नहीं माना जाता है तो कुछ भी नहीं निकाला जा सकता है। इस प्रकार अभिगृहीत और अभिगृहीत निगमनात्मक ज्ञान के दिए गए निकाय के अंतर्गत बुनियादी मान्यताएँ हैं। उन्हें बिना प्रदर्शन के स्वीकार कर लिया जाता है। अन्य सभी अभिकथनों (गणित के मामले में [[प्रमेय]]) को इन बुनियादी मान्यताओं की सहायता से सिद्ध किया जाना चाहिए। हालाँकि, गणितीय ज्ञान की व्याख्या प्राचीन काल से आधुनिक काल में बदल गई है, और फलस्वरूप वर्तमान समय के गणितज्ञों के लिए axiom और postulate शब्द [[अरस्तू]] और यूक्लिड की तुलना में थोड़ा अलग अर्थ रखते हैं।<ref name=":0" />
तार्किक-निगमनात्मक विधि जिसके द्वारा निष्कर्ष (नया ज्ञान) परिसर (पुराने ज्ञान) से ध्वनि तर्कों (न्यायशास्त्र, [[अनुमान के नियम]]) के अनुप्रयोग के माध्यम से प्राचीन यूनानियों द्वारा विकसित किया गया था, और आधुनिक गणित का मूल सिद्धांत बन गया है। [[टॉटोलॉजी (तर्क)|टॉटोलॉजी]] को बाहर रखा गया है, यदि कुछ भी नहीं माना जाता है तो कुछ भी नहीं निकाला जा सकता है। इस प्रकार अभिगृहीत और अभिगृहीत निगमनात्मक ज्ञान के दिए गए निकाय के अंतर्गत बुनियादी मान्यताएँ हैं। उन्हें बिना प्रदर्शन के स्वीकार कर लिया जाता है। अन्य सभी अभिकथनों (गणित के स्थिति में [[प्रमेय]]) को इन बुनियादी मान्यताओं की सहायता से सिद्ध किया जाना चाहिए। चूँकि , गणितीय ज्ञान की व्याख्या प्राचीन काल से आधुनिक काल में बदल गई है, और फलस्वरूप वर्तमान समय के गणितज्ञों के लिए अभिगृहीत और स्वयं सिद्ध मान लेना शब्द [[अरस्तू]] और यूक्लिड की तुलना में थोड़ा भिन्न अर्थ रखते हैं।<ref name=":0" />


प्राचीन यूनानियों ने [[ज्यामिति]] को कई [[विज्ञान]]ों में से एक माना और ज्यामिति के प्रमेयों को वैज्ञानिक तथ्यों के समकक्ष रखा। इस प्रकार, उन्होंने त्रुटि से बचने के साधन के रूप में और ज्ञान को संरचित करने और संप्रेषित करने के लिए लॉजिक-डिडक्टिव पद्धति का विकास और उपयोग किया। अरस्तू का पश्च विश्लेषिकी शास्त्रीय दृष्टिकोण का एक निश्चित विवरण है।
प्राचीन यूनानियों ने [[ज्यामिति]] को कई [[विज्ञान|विज्ञानों]] में से एक माना और ज्यामिति के प्रमेयों को वैज्ञानिक तथ्यों के समकक्ष रखा। इस प्रकार, उन्होंने त्रुटि से बचने के साधन के रूप में और ज्ञान को संरचित करने और संप्रेषित करने के लिए तर्क-निगमनात्मक पद्धति का विकास और उपयोग किया। अरस्तू का पश्च विश्लेषिकी शास्त्रीय दृष्टिकोण का एक निश्चित विवरण है।


शास्त्रीय शब्दावली में एक स्वयंसिद्ध, विज्ञान की कई शाखाओं के लिए सामान्य रूप से एक स्पष्ट धारणा को संदर्भित करता है। एक अच्छा उदाहरण यह दावा होगा कि <blockquote>जब एक समान राशि को बराबर से लिया जाता है, तो एक समान राशि प्राप्त होती है।</blockquote>
एक "स्वयंसिद्ध", शास्त्रीय शब्दावली में, विज्ञान की कई शाखाओं के लिए एक स्व-स्पष्ट धारणा को संदर्भित करता है। एक अच्छा उदाहरण यह आशय होगा कि <blockquote>जब समान राशि को बराबर से लिया जाता है, तो समान राशि प्राप्त होती है।</blockquote>


विभिन्न विज्ञानों की नींव में कुछ अतिरिक्त [[परिकल्पना]]एँ थीं जिन्हें बिना प्रमाण के स्वीकार कर लिया गया। इस तरह की परिकल्पना को अभिधारणा कहा जाता था। जबकि अभिगृहीत अनेक विज्ञानों के लिए सामान्य थे, प्रत्येक विशेष विज्ञान के सिद्धांत भिन्न थे। वास्तविक दुनिया के अनुभव के माध्यम से उनकी वैधता स्थापित की जानी थी। अरस्तू ने चेतावनी दी है कि यदि शिक्षार्थी सिद्धांतों की सच्चाई के बारे में संदेह में है तो विज्ञान की सामग्री को सफलतापूर्वक संप्रेषित नहीं किया जा सकता है।<ref>Aristotle, Metaphysics Bk IV, Chapter 3, 1005b "Physics also is a kind of Wisdom, but it is not the first kind. – And the attempts of some of those who discuss the terms on which truth should be accepted, are due to want of training in logic; for they should know these things already when they come to a special study, and not be inquiring into them while they are listening to lectures on it." W.D. Ross translation, in The Basic Works of Aristotle, ed. Richard McKeon, (Random House, New York, 1941)</ref>
विभिन्न विज्ञानों के आधार में कुछ अतिरिक्त [[परिकल्पना|परिकल्पनाएँ]] थीं जिन्हें बिना प्रमाण के स्वीकार कर लिया गया। इस प्रकार की परिकल्पना को अभिधारणा कहा जाता था। जबकि अभिगृहीत अनेक विज्ञानों के लिए सामान्य थे, प्रत्येक विशेष विज्ञान के सिद्धांत भिन्न थे। वास्तविक दुनिया के अनुभव के माध्यम से उनकी वैधता स्थापित की जानी थी। अरस्तू ने चेतावनी दी है कि यदि शिक्षार्थी सिद्धांतों की सच्चाई के बारे में संदेह में है तो विज्ञान की सामग्री को सफलतापूर्वक संप्रेषित नहीं किया जा सकता है।<ref>Aristotle, Metaphysics Bk IV, Chapter 3, 1005b "Physics also is a kind of Wisdom, but it is not the first kind. – And the attempts of some of those who discuss the terms on which truth should be accepted, are due to want of training in logic; for they should know these things already when they come to a special study, and not be inquiring into them while they are listening to lectures on it." W.D. Ross translation, in The Basic Works of Aristotle, ed. Richard McKeon, (Random House, New York, 1941)</ref> यूक्लिड के तत्वों द्वारा शास्त्रीय दृष्टिकोण को अच्छे प्रकार से चित्रित किया गया है {{efn|Although not complete; some of the stated results did not actually follow from the stated postulates and common notions.}} जहां तत्वों की एक सूची दी गई है (हमारे अनुभव से तैयार किए गए सामान्य-संवेदी ज्यामितीय तथ्य), इसके बाद "सामान्य धारणा" (बहुत बुनियादी, स्व-स्पष्ट अभिकथन) की एक सूची है। ) 
शास्त्रीय दृष्टिकोण अच्छी तरह से सचित्र है{{efn|Although not complete; some of the stated results did not actually follow from the stated postulates and common notions.}} यूक्लिड के तत्वों द्वारा, जहां अभिधारणाओं की एक सूची दी गई है (हमारे अनुभव से तैयार किए गए सामान्य-संवेदी ज्यामितीय तथ्य), इसके बाद सामान्य धारणाओं की एक सूची (बहुत ही बुनियादी, स्व-स्पष्ट अभिकथन)


:; अभिधारणाएँ
:; अभिधारणाएँ
:# किसी भी बिंदु से किसी भी बिंदु तक एक [[सीधी रेखा]] खींचना संभव है।
:# किसी भी बिंदु से किसी बिंदु तक एक [[सीधी रेखा]] खींचना संभव है।
:# किसी रेखाखंड को दोनों दिशाओं में लगातार बढ़ाना संभव है।
:# किसी रेखाखंड को दोनों दिशाओं में लगातार बढ़ाना संभव है।
:# किसी भी केंद्र और किसी भी त्रिज्या वाले वृत्त का वर्णन करना संभव है।
:# किसी भी केंद्र और किसी भी त्रिज्या वाले वृत्त का वर्णन करना संभव है।
:# यह सत्य है कि सभी [[सम[[कोण]]]] एक दूसरे के बराबर होते हैं।
:# यह सत्य है कि सभी [[कोण|समकोण]] एक दूसरे के बराबर होते हैं।
:# (समानांतर अभिधारणा ) यह सत्य है कि, यदि कोई सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के [[बहुभुज]] को दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ रेखा-रेखा का चौराहा बन जाता है। जो दो समकोणों से कम कोण होते हैं।
:# (समानांतर अभिधारणा ) यह सत्य है कि, यदि कोई सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के [[बहुभुज]] को दो समकोणों से कम बनाती है, जिससे दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस ओर रेखा का चौराहा बन जाता है। जो दो समकोणों से कम कोण होते हैं।


:; आम धारणाएं:
:; सामान्य धारणाएं:
:#जो वस्तुएँ एक ही वस्तु के बराबर होती हैं वे आपस में भी बराबर होती हैं।
:#जो वस्तुएँ एक ही वस्तु के बराबर होती हैं वे आपस में भी बराबर होती हैं।
:# यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।
:# यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।
Line 43: Line 34:


=== आधुनिक विकास ===
=== आधुनिक विकास ===
पिछले 150 वर्षों में गणित द्वारा सीखा गया एक सबक यह है कि गणितीय अभिकथनों (स्वयंसिद्ध, अभिधारणाएं, प्रस्तावपरक तर्क, प्रमेय) और परिभाषाओं से अर्थ को अलग करना उपयोगी है। किसी भी अध्ययन में [[आदिम धारणा]]ओं, या अपरिभाषित शब्दों या अवधारणाओं की आवश्यकता को स्वीकार करना चाहिए। इस तरह के अमूर्त या औपचारिकता गणितीय ज्ञान को अधिक सामान्य, कई अलग-अलग अर्थों में सक्षम बनाता है, और इसलिए कई संदर्भों में उपयोगी होता है। इस आंदोलन में [[एलेसेंड्रो पडोआ]], [[मारियो पियरी]] और [[जोसेफ पीनो]] अग्रणी थे।
पिछले 150 वर्षों में गणित द्वारा सीखा गया एक परिणाम यह है कि गणितीय अभिकथनों (स्वयंसिद्ध, अभिधारणाएं, प्रस्तावपूर्वक तर्क, प्रमेय) और परिभाषाओं से अर्थ को भिन्न करना उपयोगी है। किसी भी अध्ययन में [[आदिम धारणा|पुरानी  धारणाओं]], या अपरिभाषित शब्दों या अवधारणाओं की आवश्यकता को स्वीकार करना चाहिए। इस प्रकार के अमूर्त या औपचारिकता गणितीय ज्ञान को अधिक सामान्य, कई भिन्न -भिन्न अर्थों में सक्षम बनाता है, और इसलिए कई संदर्भों में उपयोगी होता है। इस आंदोलन में [[एलेसेंड्रो पडोआ]], [[मारियो पियरी]] और [[जोसेफ पीनो]] अग्रणी थे।


संरचनावादी गणित और आगे जाता है, और बिना किसी विशेष अनुप्रयोग को ध्यान में रखे सिद्धांतों और स्वयंसिद्ध (जैसे [[क्षेत्र सिद्धांत (गणित)]], [[समूह (गणित)]], [[टोपोलॉजिकल स्पेस]], [[रैखिक स्थान]]) को विकसित करता है। एक स्वयंसिद्ध और अभिधारणा के बीच का अंतर गायब हो जाता है। यूक्लिड की अभिधारणाएँ लाभप्रद रूप से यह कहकर प्रेरित हैं कि वे ज्यामितीय तथ्यों की एक बड़ी संपदा की ओर ले जाती हैं। इन जटिल तथ्यों की सत्यता आधारभूत परिकल्पनाओं की स्वीकृति पर निर्भर करती है। हालांकि, यूक्लिड की पांचवीं अभिधारणा को बाहर निकालकर, ऐसे सिद्धांत प्राप्त किए जा सकते हैं जिनका व्यापक संदर्भों में अर्थ है (जैसे, [[अतिशयोक्तिपूर्ण ज्यामिति]])। जैसे, किसी को भी अधिक लचीलेपन के साथ लाइन और समानांतर जैसे लेबलों का उपयोग करने के लिए तैयार रहना चाहिए। अतिशयोक्तिपूर्ण ज्यामिति के विकास ने गणितज्ञों को यह सिखाया कि अभिधारणाओं को विशुद्ध रूप से औपचारिक कथनों के रूप में मानना ​​उपयोगी है, न कि अनुभव पर आधारित तथ्यों के रूप में।
संरचनावादी गणित और आगे जाता है, और बिना किसी विशेष अनुप्रयोग को ध्यान में रखे सिद्धांतों और स्वयंसिद्ध (जैसे [[क्षेत्र सिद्धांत (गणित)]], [[समूह (गणित)]], [[टोपोलॉजिकल स्पेस]], [[रैखिक स्थान]]) को विकसित करता है। एक स्वयंसिद्ध और अभिधारणा के बीच का अंतर लुप्त हो जाता है। यूक्लिड की अभिधारणाएँ लाभप्रद रूप से यह कहकर प्रेरित हैं कि वे ज्यामितीय तथ्यों की एक बड़ी संपदा की ओर ले जाती हैं। इन सम्मिश्र तथ्यों की सत्यता आधारभूत परिकल्पनाओं की स्वीकृति पर निर्भर करती है। चूँकि, यूक्लिड की पांचवीं अभिधारणा को बाहर निकालकर, ऐसे सिद्धांत प्राप्त किए जा सकते हैं जिनका व्यापक संदर्भों में अर्थ है (जैसे, [[अतिशयोक्तिपूर्ण ज्यामिति]])। जैसे, किसी को भी अधिक लचीलेपन के साथ लाइन और समानांतर जैसे लेबलों का उपयोग करने के लिए तैयार रहना चाहिए। अतिशयोक्तिपूर्ण ज्यामिति के विकास ने गणितज्ञों को यह सिखाया कि अभिधारणाओं को विशुद्ध रूप से औपचारिक कथनों के रूप में मानना ​​उपयोगी है, न कि अनुभव पर आधारित तथ्यों के रूप में।


जब गणितज्ञ [[क्षेत्र (गणित)]] के स्वयंसिद्धों को नियोजित करते हैं, तो इरादे और भी अधिक अमूर्त होते हैं। क्षेत्र सिद्धांत के प्रस्ताव किसी एक विशेष अनुप्रयोग से संबंधित नहीं हैं; गणितज्ञ अब पूर्ण अमूर्तता में काम करता है। खेतों के कई उदाहरण हैं; फील्ड थ्योरी उन सभी के बारे में सही जानकारी देती है।
जब गणितज्ञ [[क्षेत्र (गणित)|क्षेत्र]] के स्वयंसिद्धों को नियोजित करते हैं, तब संकल्प और भी अधिक अमूर्त होते हैं। क्षेत्र सिद्धांत के प्रस्ताव किसी एक विशेष अनुप्रयोग से संबंधित नहीं हैं; गणितज्ञ अब पूर्ण अमूर्तता में काम करता है। खेतों के कई उदाहरण हैं; क्षेत्र सिद्धांत उन सभी के बारे में सही जानकारी देती है।


यह कहना सही नहीं है कि फील्ड थ्योरी के स्वयंसिद्ध ऐसे प्रस्ताव हैं जिन्हें बिना प्रमाण के सत्य माना जाता है। बल्कि, फील्ड स्वयंसिद्ध बाधाओं का एक समूह है। यदि जोड़ और गुणा की कोई भी प्रणाली इन बाधाओं को संतुष्ट करती है, तो कोई इस प्रणाली के बारे में अतिरिक्त जानकारी को तुरंत जानने की स्थिति में है।
यह कहना सही नहीं है कि क्षेत्र सिद्धांत के स्वयंसिद्ध ऐसे प्रस्ताव हैं जिन्हें बिना प्रमाण के सत्य माना जाता है। बल्कि, क्षेत्र स्वयंसिद्ध बाधाओं का एक समूह है। यदि जोड़ और गुणा की कोई भी प्रणाली इन बाधाओं को संतुष्ट करती है, तो कोई इस प्रणाली के बारे में अतिरिक्त जानकारी को तुरंत जानने की स्थिति में है।


आधुनिक गणित अपनी नींव को इस हद तक औपचारिक रूप देता है कि गणितीय सिद्धांतों को गणितीय वस्तुओं के रूप में माना जा सकता है, और स्वयं गणित को तर्क की एक शाखा के रूप में माना जा सकता है। [[भगवान फ्रीज का शुक्र है]], [[बर्ट्रेंड रसेल]], हेनरी पोंकारे | पोंकारे, [[डेविड हिल्बर्ट]], और कर्ट गोडेल | गोडेल इस विकास के कुछ प्रमुख व्यक्ति हैं।
आधुनिक गणित अपनी नींव को इस सीमा तक औपचारिक रूप देता है कि गणितीय सिद्धांतों को गणितीय वस्तुओं के रूप में माना जा सकता है, और स्वयं गणित को तर्क की एक शाखा के रूप में माना जा सकता है। [[भगवान फ्रीज का शुक्र है|फ्रीज]], [[बर्ट्रेंड रसेल]] , पॉइंकेयर, [[डेविड हिल्बर्ट]] और गोडेल इस विकास के कुछ प्रमुख व्यक्ति हैं।  


आधुनिक गणित में सीखा गया एक और सबक छिपी धारणाओं के लिए कथित सबूतों की सावधानी से जांच करना है।
आधुनिक गणित में सीखा गया एक और प्रमाण छिपी धारणाओं के लिए कथित परिणामो  की सावधानी से जांच करना है।


आधुनिक समझ में, स्वयंसिद्धों का एक सेट औपचारिक रूप से घोषित अभिकथनों का कोई भी [[वर्ग (सेट सिद्धांत)]] है जिससे अन्य औपचारिक रूप से कथित अभिकथनों का पालन होता है - कुछ अच्छी तरह से परिभाषित नियमों के अनुप्रयोग द्वारा। इस दृष्टि से तर्क मात्र एक अन्य औपचारिक प्रणाली बन जाता है। स्वयंसिद्धों का एक सेट सुसंगत होना चाहिए; स्वयंसिद्धों से विरोधाभास प्राप्त करना असंभव होना चाहिए। स्वयंसिद्धों का एक सेट गैर-निरर्थक भी होना चाहिए; एक अभिकथन जिसे अन्य अभिगृहीतों से निकाला जा सकता है, उसे अभिगृहीत नहीं माना जाना चाहिए।
आधुनिक समझ में, स्वयंसिद्धों का एक समूह औपचारिक रूप से घोषित अभिकथनों का कोई भी [[वर्ग (सेट सिद्धांत)]] है जिससे अन्य औपचारिक रूप से कथित अभिकथनों का पालन होता है - कुछ अच्छी तरह से परिभाषित नियमों के अनुप्रयोग द्वारा। इस दृष्टि से तर्क मात्र एक अन्य औपचारिक प्रणाली बन जाता है। स्वयंसिद्धों का एक समूह सुसंगत होना चाहिए; स्वयंसिद्धों से विरोधाभास प्राप्त करना असंभव होना चाहिए। स्वयंसिद्धों का एक समूह गैर-निरर्थक भी होना चाहिए; एक अभिकथन जिसे अन्य अभिगृहीतों से निकाला जा सकता है, उसे अभिगृहीत नहीं माना जाना चाहिए।


यह आधुनिक तर्कशास्त्रियों की प्रारंभिक आशा थी कि गणित की विभिन्न शाखाएँ, शायद गणित की सभी शाखाएँ, बुनियादी स्वयंसिद्धों के एक सुसंगत संग्रह से प्राप्त की जा सकती हैं। औपचारिक कार्यक्रम की प्रारंभिक सफलता हिल्बर्ट की औपचारिकता थी{{efn|Hilbert also made explicit the assumptions that Euclid used in his proofs but did not list in his common notions and postulates.}} यूक्लिडियन ज्यामिति का,<ref>For more, see [[Hilbert's axioms]].</ref> और उन सूक्तियों की संगति का संबंधित प्रदर्शन।
यह आधुनिक तर्कशास्त्रियों की प्रारंभिक आशा थी कि गणित की विभिन्न शाखाएँ, शायद गणित की सभी शाखाएँ, बुनियादी स्वयंसिद्धों के एक सुसंगत संग्रह से प्राप्त की जा सकती हैं। औपचारिक कार्यक्रम की प्रारंभिक सफलता हिल्बर्ट की औपचारिकता थी{{efn|Hilbert also made explicit the assumptions that Euclid used in his proofs but did not list in his common notions and postulates.}} यूक्लिडियन ज्यामिति का,<ref>For more, see [[Hilbert's axioms]].</ref> और उन सूक्तियों की संगति का संबंधित प्रदर्शन।


एक व्यापक संदर्भ में, सभी गणित को जॉर्ज कैंटर | कैंटर के सेट सिद्धांत पर आधारित करने का प्रयास किया गया था। यहां, रसेल के विरोधाभास और भोली सेट सिद्धांत के समान विरोधाभासों के उद्भव ने इस संभावना को बढ़ा दिया कि ऐसी कोई भी प्रणाली असंगत हो सकती है।
एक व्यापक संदर्भ में, सभी गणित को जॉर्ज कैंटर | कैंटर के समूह सिद्धांत पर आधारित करने का प्रयास किया गया था। यहां, रसेल के विरोधाभास और भोली समूह सिद्धांत के समान विरोधाभासों के उद्भव ने इस संभावना को बढ़ा दिया कि ऐसी कोई भी प्रणाली असंगत हो सकती है।


औपचारिकतावादी परियोजना को एक निर्णायक झटका लगा, जब 1931 में गोडेल ने दिखाया कि यह संभव है, पर्याप्त रूप से पर्याप्त स्वयंसिद्धों के बड़े सेट के लिए (पीनो अंकगणित | पियानो के स्वयंसिद्ध, उदाहरण के लिए) एक बयान का निर्माण करने के लिए जिसकी सच्चाई स्वयंसिद्धों के उस सेट से स्वतंत्र है। एक [[परिणाम]] के रूप में, गोडेल ने साबित किया कि पीनो अंकगणित जैसे सिद्धांत की निरंतरता उस सिद्धांत के दायरे में एक अप्रमाणित अभिकथन है।<ref>{{Citation|last=Raatikainen|first=Panu|title=Gödel's Incompleteness Theorems|date=2018|url=https://plato.stanford.edu/archives/fall2018/entries/goedel-incompleteness/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Fall 2018|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-19}}</ref>
औपचारिकतावादी परियोजना को एक निर्णायक झटका लगा, जब 1931 में गोडेल ने दिखाया कि यह संभव है, पर्याप्त रूप से स्वयंसिद्धों के बड़े समूह के लिए (पीनो अंकगणित | पियानो के स्वयंसिद्ध, उदाहरण के लिए) एक चर्चा का निर्माण करने के लिए जिसकी सच्चाई स्वयंसिद्धों के उस समूह से स्वतंत्र है। एक [[परिणाम]] के रूप में, गोडेल ने प्रमाणित किया कि पीनो अंकगणित जैसे सिद्धांत की निरंतरता उस सिद्धांत के मंडल में एक अप्रमाणित अभिकथन है।<ref>{{Citation|last=Raatikainen|first=Panu|title=Gödel's Incompleteness Theorems|date=2018|url=https://plato.stanford.edu/archives/fall2018/entries/goedel-incompleteness/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Fall 2018|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-19}}</ref> पीनो अंकगणित की निरंतरता में विश्वास करना उचित है क्योंकि यह [[प्राकृतिक संख्या|प्राकृतिक  संख्याओं]] की प्रणाली से संतुष्ट है, एक [[अनंत सेट|अनंत समूह]] लेकिन सहज रूप से सुलभ औपचारिक प्रणाली है। चूँकि , वर्तमान में, समूह सिद्धांत के लिए आधुनिक ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की निरंतरता को प्रदर्शित करने का कोई ज्ञात उपयोग नहीं है। इसके अतिरिक्त, [[जबरदस्ती (गणित)|बलपूर्वक]] ([[पॉल कोहेन]]) की तकनीकों का उपयोग करके कोई भी दिखा सकता है कि सातत्य परिकल्पना (कैंटर) ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों से स्वतंत्र है।<ref>{{Citation|last=Koellner|first=Peter|title=The Continuum Hypothesis|date=2019|url=https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Spring 2019|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-19}}</ref> इस प्रकार, अभिगृहीतों के इस अति सामान्य समुच्चय को भी गणित का निश्चित आधार नहीं माना जा सकता है।
पीनो अंकगणित की निरंतरता में विश्वास करना उचित है क्योंकि यह [[प्राकृतिक संख्या]]ओं की प्रणाली से संतुष्ट है, एक [[अनंत सेट]] लेकिन सहज रूप से सुलभ औपचारिक प्रणाली। हालांकि, वर्तमान में, सेट सिद्धांत के लिए आधुनिक ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की निरंतरता को प्रदर्शित करने का कोई ज्ञात तरीका नहीं है। इसके अलावा, [[जबरदस्ती (गणित)]] ([[पॉल कोहेन]]) की तकनीकों का उपयोग करके कोई भी दिखा सकता है कि सातत्य परिकल्पना (कैंटर) ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों से स्वतंत्र है।<ref>{{Citation|last=Koellner|first=Peter|title=The Continuum Hypothesis|date=2019|url=https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Spring 2019|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-10-19}}</ref> इस प्रकार, अभिगृहीतों के इस अति सामान्य समुच्चय को भी गणित का निश्चित आधार नहीं माना जा सकता है।


=== अन्य विज्ञान ===
=== अन्य विज्ञान ===
प्रायोगिक विज्ञान - गणित और तर्क के विपरीत - में सामान्य संस्थापक अभिकथन भी होते हैं जिससे एक निगमनात्मक तर्क का निर्माण किया जा सकता है ताकि उन प्रस्तावों को व्यक्त किया जा सके जो गुणों की भविष्यवाणी करते हैं - या तो अभी भी सामान्य या एक विशिष्ट प्रयोगात्मक संदर्भ के लिए बहुत अधिक विशिष्ट हैं। उदाहरण के लिए, शास्त्रीय यांत्रिकी में न्यूटन के नियम, शास्त्रीय विद्युत चुंबकत्व में मैक्सवेल के समीकरण, सामान्य सापेक्षता में आइंस्टीन के समीकरण, जेनेटिक्स के मेंडल के नियम, डार्विन के [[प्राकृतिक चयन]] कानून, आदि। इन संस्थापक अभिकथनों को आमतौर पर सिद्धांत या सिद्धांत कहा जाता है ताकि गणितीय स्वयंसिद्धों से अलग किया जा सके।
प्रायोगिक विज्ञान - गणित और तर्क के विपरीत - में सामान्य संस्थापक अभिकथन भी होते हैं जिससे एक निगमनात्मक तर्क का निर्माण किया जा सकता है ताकि उन प्रस्तावों को व्यक्त किया जा सके जो गुणों की भविष्यवाणी करते हैं - या तो अभी भी सामान्य या एक विशिष्ट प्रयोगात्मक संदर्भ के लिए बहुत अधिक विशिष्ट हैं। उदाहरण के लिए, शास्त्रीय यांत्रिकी में न्यूटन के नियम, शास्त्रीय विद्युत चुंबकत्व में मैक्सवेल के समीकरण, सामान्य सापेक्षता में आइंस्टीन के समीकरण, जेनेटिक्स के मेंडल के नियम, डार्विन के [[प्राकृतिक चयन]] कानून, आदि। इन संस्थापक अभिकथनों को सामान्यतः सिद्धांत कहा जाता है जिससे गणितीय स्वयंसिद्धों से भिन्न किया जा सके।


तथ्यों की बात करें तो गणित में अभिगृहीतों की भूमिका और प्रयोगात्मक विज्ञानों में अभिधारणाओं की भूमिका अलग-अलग है। गणित में कोई स्वयंसिद्ध को न तो सिद्ध करता है और न ही असिद्ध करता है। गणितीय स्वयंसिद्धों का एक सेट नियमों का एक सेट देता है जो एक वैचारिक क्षेत्र को ठीक करता है, जिसमें प्रमेय तार्किक रूप से अनुसरण करते हैं। इसके विपरीत, प्रायोगिक विज्ञानों में, अभिधारणाओं का एक सेट उन परिणामों को निकालने की अनुमति देगा जो प्रयोगात्मक परिणामों से मेल खाते हैं या मेल नहीं खाते हैं। यदि अभिधारणाएं प्रयोगात्मक भविष्यवाणियों को निकालने की अनुमति नहीं देती हैं, तो वे एक वैज्ञानिक वैचारिक रूपरेखा निर्धारित नहीं करते हैं और उन्हें पूर्ण या अधिक सटीक बनाना पड़ता है। यदि अभिगृहीत प्रायोगिक परिणामों के पूर्वानुमान निकालने की अनुमति देते हैं, तो प्रयोगों के साथ तुलना उस सिद्धांत को मिथ्या सिद्ध करने ([[मिथ्याकरण]]) की अनुमति देती है जिसे अभिधारणा स्थापित करती है। एक सिद्धांत को तब तक मान्य माना जाता है जब तक कि उसे गलत साबित नहीं किया गया हो।
तथ्यों की बात करें तो गणित में अभिगृहीतों की भूमिका और प्रयोगात्मक विज्ञानों में अभिधारणाओं की भूमिका भिन्न-भिन्न है। गणित में कोई स्वयंसिद्ध को न तो सिद्ध करता है और न ही असिद्ध करता है। गणितीय स्वयंसिद्धों का एक समूह नियमों का समूह  देता है जो एक वैचारिक क्षेत्र को ठीक करता है, जिसमें प्रमेय तार्किक रूप से अनुसरण करते हैं। इसके विपरीत, प्रायोगिक विज्ञानों में, अभिधारणाओं का एक समूह उन परिणामों को निकालने की अनुमति देगा जो प्रयोगात्मक परिणामों से मेल खाते हैं या मेल नहीं खाते हैं। यदि अभिधारणाएं प्रयोगात्मक भविष्यवाणियों को निकालने की अनुमति नहीं देती हैं, तो वे एक वैज्ञानिक वैचारिक रूपरेखा निर्धारित नहीं करते हैं और उन्हें पूर्ण या अधिक त्रुटिहीन बनाना पड़ता है। यदि अभिगृहीत प्रायोगिक परिणामों के पूर्वानुमान निकालने की अनुमति देते हैं, तो प्रयोगों के साथ तुलना उस सिद्धांत को मिथ्या सिद्ध करने ([[मिथ्याकरण]]) की अनुमति देती है जिसे अभिधारणा स्थापित करती है। एक सिद्धांत को तब तक मान्य माना जाता है जब तक कि उसे गलत प्रमाणित नहीं किया गया हो।


अब, गणितीय स्वयंसिद्धों और वैज्ञानिक अभिधारणाओं के बीच संक्रमण हमेशा थोड़ा धुंधला होता है, विशेष रूप से भौतिकी में। यह भौतिक सिद्धांतों का समर्थन करने के लिए गणितीय उपकरणों के भारी उपयोग के कारण है। उदाहरण के लिए, न्यूटन के नियमों का परिचय शायद ही कभी एक पूर्वापेक्षा के रूप में स्थापित होता है न तो यूक्लिडियन ज्यामिति या अंतर कलन जो कि वे लागू करते हैं। यह और अधिक स्पष्ट हो गया जब [[अल्बर्ट आइंस्टीन]] ने पहली बार [[विशेष सापेक्षता]] का परिचय दिया जहां अपरिवर्तनीय मात्रा यूक्लिडियन लंबाई से अधिक नहीं है <math>l</math> (के रूप में परिभाषित किया गया है <math>l^2 = x^2 + y^2 + z^2</math>) > लेकिन मिन्कोवस्की अंतरिक्ष-समय अंतराल <math>s</math> (के रूप में परिभाषित किया गया है <math>s^2 = c^2 t^2 - x^2 - y^2 - z^2</math>), और फिर [[सामान्य सापेक्षता]] जहां फ्लैट मिन्कोस्कीयन ज्यामिति को घुमावदार [[कई गुना]] पर [[छद्म-रीमैनियन]] ज्यामिति के साथ बदल दिया गया है।
अब, गणितीय स्वयंसिद्धों और वैज्ञानिक अभिधारणाओं के बीच संक्रमण हमेशा थोड़ा धुंधला होता है, विशेष रूप से भौतिकी में। यह भौतिक सिद्धांतों का समर्थन करने के लिए गणितीय उपकरणों के भारी उपयोग के कारण है। उदाहरण के लिए, न्यूटन के नियमों का परिचय शायद ही कभी एक पूर्वापेक्षा के रूप में स्थापित होता है न तो यूक्लिडियन ज्यामिति या अंतर कलन जो कि वे लागू करते हैं। यह और अधिक स्पष्ट हो गया जब [[अल्बर्ट आइंस्टीन]] ने पहली बार [[विशेष सापेक्षता]] का परिचय दिया जहां अपरिवर्तनीय मात्रा यूक्लिडियन लंबाई <math>l</math> <math>l^2 = x^2 + y^2 + z^2</math> (के रूप में परिभाषित किया गया है ) से अधिक नहीं है लेकिन मिन्कोवस्की अंतरिक्ष-समय अंतराल <math>s</math> <math>s^2 = c^2 t^2 - x^2 - y^2 - z^2</math>(के रूप में परिभाषित किया गया है ), और फिर [[सामान्य सापेक्षता]] जहां फ्लैट मिन्कोस्कीयन ज्यामिति को घुमावदार [[कई गुना]] पर [[छद्म-रीमैनियन]] ज्यामिति के साथ बदल दिया गया है।


क्वांटम भौतिकी में, अभिधारणाओं के दो समुच्चय कुछ समय के लिए सह-अस्तित्व में रहे हैं, जो मिथ्याकरण का एक बहुत अच्छा उदाहरण प्रदान करते हैं। '[[कोपेनहेगन व्याख्या]]' ([[नील्स बोह्र]], [[वर्नर हाइजेनबर्ग]], [[मैक्स बोर्न]]) ने एक पूर्ण गणितीय औपचारिकता के साथ एक परिचालन दृष्टिकोण विकसित किया जिसमें एक वियोज्य हिल्बर्ट अंतरिक्ष में वैक्टरों ('राज्यों') द्वारा क्वांटम प्रणाली का विवरण शामिल है, और रैखिक ऑपरेटरों के रूप में भौतिक मात्राएं शामिल हैं। जो इस हिल्बर्ट अंतरिक्ष में कार्य करता है। यह दृष्टिकोण पूरी तरह से मिथ्या है और इसने अब तक भौतिकी में सबसे सटीक भविष्यवाणियां की हैं। लेकिन इसमें स्वाभाविक रूप से पूछे जाने वाले प्रश्नों के उत्तर की अनुमति नहीं देने का असंतोषजनक पहलू है। इस कारण से, अल्बर्ट आइंस्टीन, इरविन श्रोडिंगर, [[डेविड बोहम]] द्वारा कुछ समय के लिए एक और 'छिपी-चर सिद्धांत' दृष्टिकोण विकसित किया गया था। इसे इसलिए बनाया गया था ताकि क्वांटम उलझाव जैसी परिघटनाओं को नियतात्मक स्पष्टीकरण देने की कोशिश की जा सके। इस दृष्टिकोण ने माना कि कोपेनहेगन स्कूल का विवरण पूरा नहीं था, और यह माना कि कुछ अभी तक अज्ञात चर को सिद्धांत में जोड़ा जाना था ताकि कुछ ऐसे प्रश्नों का उत्तर देने की अनुमति मिल सके जिनका वह उत्तर नहीं देता है (जिनके संस्थापक तत्वों पर EPR के रूप में चर्चा की गई थी) 1935 में विरोधाभास)। इस विचार को गंभीरता से लेते हुए, [[जॉन स्टीवर्ट बेल]] ने 1964 में एक भविष्यवाणी की, जो कोपेनहेगन और छिपे हुए चर मामले में विभिन्न प्रयोगात्मक परिणामों (बेल की असमानताओं) को जन्म देगी। प्रयोग पहली बार 1980 के दशक की शुरुआत में [[एलेन पहलू]] द्वारा आयोजित किया गया था, और परिणाम ने सरल छिपे हुए चर दृष्टिकोण को छोड़ दिया (परिष्कृत छिपे हुए चर अभी भी मौजूद हो सकते हैं लेकिन उनके गुण अभी भी उन समस्याओं से अधिक परेशान करने वाले होंगे जिन्हें वे हल करने का प्रयास करते हैं)। इसका मतलब यह नहीं है कि क्वांटम भौतिकी के वैचारिक ढांचे को अब पूर्ण माना जा सकता है, क्योंकि कुछ खुले प्रश्न अभी भी मौजूद हैं (क्वांटम और शास्त्रीय क्षेत्रों के बीच की सीमा, क्वांटम मापन के दौरान क्या होता है, पूरी तरह से बंद क्वांटम सिस्टम में क्या होता है जैसे ब्रह्मांड के रूप में ही, आदि)।
क्वांटम भौतिकी में, अभिधारणाओं के दो समुच्चय कुछ समय के लिए सह-अस्तित्व में रहे हैं, जो मिथ्याकरण का एक बहुत अच्छा उदाहरण प्रदान करते हैं। '[[कोपेनहेगन व्याख्या]]' ([[नील्स बोह्र]], [[वर्नर हाइजेनबर्ग]], [[मैक्स बोर्न]]) ने एक पूर्ण गणितीय औपचारिकता के साथ एक परिचालन दृष्टिकोण विकसित किया जिसमें एक वियोज्य हिल्बर्ट अंतरिक्ष में वैक्टरों ('राज्यों') द्वारा क्वांटम प्रणाली का विवरण सम्मिलित है, और रैखिक ऑपरेटरों के रूप में भौतिक मात्राएं सम्मिलित हैं। जो इस हिल्बर्ट अंतरिक्ष में कार्य करता है। यह दृष्टिकोण पूरी तरह से मिथ्या है और इसने अब तक भौतिकी में सबसे त्रुटिहीन भविष्यवाणियां की हैं। लेकिन इसमें स्वाभाविक रूप से पूछे जाने वाले प्रश्नों के उत्तर की अनुमति नहीं देने का असंतोषजनक पहलू है। इस कारण से, अल्बर्ट आइंस्टीन, इरविन श्रोडिंगर, [[डेविड बोहम]] द्वारा कुछ समय के लिए एक और 'छिपी-चर सिद्धांत' दृष्टिकोण विकसित किया गया था। इसे इसलिए बनाया गया था जिससे क्वांटम उलझाव जैसी परिघटनाओं को नियतात्मक स्पष्टीकरण देने की कोशिश की जा सके। इस दृष्टिकोण ने माना कि कोपेनहेगन स्कूल का विवरण पूरा नहीं था, और यह माना कि कुछ अभी तक अज्ञात चर को सिद्धांत में जोड़ा जाना था जिससे कुछ ऐसे प्रश्नों का उत्तर देने की अनुमति मिल सके जिनका वह उत्तर नहीं देता है (जिनके संस्थापक तत्वों पर ईपीआर के रूप में चर्चा की गई थी) 1935 में विरोधाभास)। इस विचार को गंभीरता से लेते हुए, [[जॉन स्टीवर्ट बेल]] ने 1964 में एक भविष्यवाणी की, जो कोपेनहेगन और छिपे हुए चर स्थिति में विभिन्न प्रयोगात्मक परिणामों (बेल की असमानताओं) को जन्म देगी। प्रयोग पहली बार 1980 के दशक की शुरुआत में [[एलेन पहलू]] द्वारा आयोजित किया गया था, और परिणाम ने सरल छिपे हुए चर दृष्टिकोण को छोड़ दिया (परिष्कृत छिपे हुए चर अभी भी सम्मलित हो सकते हैं लेकिन उनके गुण अभी भी उन समस्याओं से अधिक परेशान करने वाले होंगे जिन्हें वे समाधान करने का प्रयास करते हैं)। इसका आशय यह नहीं है कि क्वांटम भौतिकी के वैचारिक ढांचे को अब पूर्ण माना जा सकता है, क्योंकि कुछ खुले प्रश्न अभी भी सम्मलित हैं (क्वांटम और शास्त्रीय क्षेत्रों के बीच की सीमा, क्वांटम मापन के दौरान क्या होता है, पूरी तरह से बंद क्वांटम प्रणाली में क्या होता है जैसे ब्रह्मांड के रूप में ही, आदि)।


== [[गणितीय तर्क]] ==
== [[गणितीय तर्क]] ==
गणितीय तर्क के क्षेत्र में, स्वयंसिद्धों की दो धारणाओं के बीच एक स्पष्ट अंतर किया जाता है: तार्किक और गैर-तार्किक (कुछ हद तक क्रमशः स्वयंसिद्धों और अभिधारणाओं के बीच के प्राचीन भेद के समान)।
गणितीय तर्क के क्षेत्र में, स्वयंसिद्धों की दो धारणाओं के बीच एक स्पष्ट अंतर किया जाता है: तार्किक और गैर-तार्किक (कुछ सीमा तक क्रमशः स्वयंसिद्धों और अभिधारणाओं के बीच के प्राचीन भेद के समान है)।


=== तार्किक स्वयंसिद्ध ===
=== तार्किक स्वयंसिद्ध ===
ये एक [[औपचारिक भाषा]] में कुछ [[सूत्र (गणितीय तर्क)]] हैं जो तनातनी (तर्क) हैं, अर्थात, ऐसे सूत्र जो मूल्यों के प्रत्येक [[असाइनमेंट (गणितीय तर्क)]] द्वारा संतोषजनक हैं। आम तौर पर कोई तार्किक सिद्धांत के रूप में कम से कम कुछ न्यूनतम सेट टॉटोलॉजी लेता है जो भाषा में सभी टॉटोलॉजी (तर्क) को साबित करने के लिए पर्याप्त है; [[विधेय तर्क]] के मामले में उससे अधिक तार्किक स्वयंसिद्धों की आवश्यकता होती है, ताकि [[तार्किक सत्य]]ों को सिद्ध किया जा सके जो सख्त अर्थों में पुनरुक्ति नहीं हैं।
ये एक [[औपचारिक भाषा]] में कुछ [[सूत्र (गणितीय तर्क)]] हैं जो तनातनी (तर्क) हैं, अर्थात, ऐसे सूत्र जो मूल्यों के प्रत्येक [[असाइनमेंट (गणितीय तर्क)|कार्य (गणितीय तर्क)]] द्वारा संतोषजनक हैं। सामान्यतः कोई तार्किक सिद्धांत के रूप में कम से कम कुछ न्यूनतम समूह टॉटोलॉजी लेता है जो भाषा में सभी टॉटोलॉजी (तर्क) को सिद्ध करने के लिए पर्याप्त है; [[विधेय तर्क]] के स्थिति में उससे अधिक तार्किक स्वयंसिद्धों की आवश्यकता होती है, जिससे [[तार्किक सत्य|तार्किक सत्यों]] को सिद्ध किया जा सके जो सख्त अर्थों में पुनरुक्ति नहीं हैं।


==== उदाहरण ====
==== उदाहरण ====


===प्रस्तावात्मक तर्क ===
===प्रस्तावात्मक तर्क ===
प्रस्तावपरक तर्क में निम्नलिखित रूपों के सभी सूत्रों को तार्किक सिद्धांतों के रूप में लेना आम है, जहां <math>\phi</math>, <math>\chi</math>, तथा <math>\psi</math> भाषा के सूत्र कोई भी हो सकते हैं और जहाँ सम्मिलित [[तार्किक संयोजक]] हों<math>\neg</math>तुरंत निम्नलिखित प्रस्ताव की अस्वीकृति के लिए और<math>\to</math>पूर्वगामी से परिणामी प्रस्तावों में शामिल होने के लिए:
प्रस्तावपूर्वक तर्क में निम्नलिखित रूपों के सभी सूत्रों को तार्किक सिद्धांतों के रूप में लेना साधारण  है, जहां <math>\phi</math>, <math>\chi</math>, तथा <math>\psi</math> भाषा के सूत्र कोई भी हो सकते हैं और जहाँ सम्मिलित [[तार्किक संयोजक]] हों<math>\neg</math>तुरंत निम्नलिखित प्रस्ताव की अस्वीकृति के लिए और<math>\to</math>पूर्वगामी से परिणामी प्रस्तावों में सम्मलित होने के लिए:


#<math>\phi \to (\psi \to \phi)</math>
#<math>\phi \to (\psi \to \phi)</math>
#<math>(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))</math>
#<math>(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))</math>
#<math>(\lnot \phi \to \lnot \psi) \to (\psi \to \phi).</math>
#<math>(\lnot \phi \to \lnot \psi) \to (\psi \to \phi).</math>
इनमें से प्रत्येक पैटर्न एक स्वयंसिद्ध स्कीमा है, अनंत संख्या में स्वयंसिद्धों को उत्पन्न करने का नियम। उदाहरण के लिए, यदि <math>A</math>, <math>B</math>, तथा <math>C</math> प्रस्तावात्मक चर हैं, फिर <math>A \to (B \to A)</math> तथा <math>(A \to \lnot B) \to (C \to (A \to \lnot B))</math> दोनों अभिगृहीत स्कीमा 1 के उदाहरण हैं, और इसलिए अभिगृहीत हैं। यह दिखाया जा सकता है कि केवल इन तीन स्वयंसिद्ध स्कीमाटा और मोडस पोनेन्स के साथ, कोई व्यक्ति प्रस्ताविक कलन के सभी पुनरुत्पादन को सिद्ध कर सकता है। यह भी दिखाया जा सकता है कि इन स्कीमाटा की कोई भी जोड़ी [[मूड सेट करना]] के साथ सभी पुनरुत्पादन साबित करने के लिए पर्याप्त नहीं है।
इनमें से प्रत्येक पैटर्न एक स्वयंसिद्ध स्कीमा है, अनंत संख्या में स्वयंसिद्धों को उत्पन्न करने का नियम। उदाहरण के लिए, यदि <math>A</math>, <math>B</math>, तथा <math>C</math> प्रस्तावात्मक चर हैं, फिर <math>A \to (B \to A)</math> तथा <math>(A \to \lnot B) \to (C \to (A \to \lnot B))</math> दोनों अभिगृहीत स्कीमा 1 के उदाहरण हैं, और इसलिए अभिगृहीत हैं। यह दिखाया जा सकता है कि केवल इन तीन स्वयंसिद्ध स्कीमाटा और मोडस पोनेन्स के साथ, कोई व्यक्ति प्रस्ताविक कलन के सभी पुनरुत्पादन को सिद्ध कर सकता है। यह भी दिखाया जा सकता है कि इन स्कीमाटा की कोई भी जोड़ी [[मूड सेट करना|मूड समूह करना]] के साथ सभी पुनरुत्पादन प्रमाणित करने के लिए पर्याप्त नहीं है।


आदिम संयोजकों के समान या भिन्न सेटों को शामिल करते हुए अन्य अभिगृहीत स्कीमाटा का वैकल्पिक रूप से निर्माण किया जा सकता है।<ref>Mendelson, "6. Other Axiomatizations" of Ch. 1</ref>
आदिम संयोजकों के समान या भिन्न समूहों को सम्मलित करते हुए अन्य अभिगृहीत स्कीमाटा का वैकल्पिक रूप से निर्माण किया जा सकता है।<ref>Mendelson, "6. Other Axiomatizations" of Ch. 1</ref>इन स्वयंसिद्ध स्कीमाटा का उपयोग विधेय कलन में भी किया जाता है, लेकिन कलन में एक परिमाणक को सम्मलित करने के लिए अतिरिक्त तार्किक स्वयंसिद्धों की आवश्यकता होती है।<ref>Mendelson, "3. First-Order Theories" of Ch. 2</ref>
इन स्वयंसिद्ध स्कीमाटा का उपयोग विधेय कलन में भी किया जाता है, लेकिन कलन में एक परिमाणक को शामिल करने के लिए अतिरिक्त तार्किक स्वयंसिद्धों की आवश्यकता होती है।<ref>Mendelson, "3. First-Order Theories" of Ch. 2</ref>




=== प्रथम-क्रम तर्क ===
=== प्रथम-क्रम तर्क ===
<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
समानता का सिद्धांत। होने देना <math>\mathfrak{L}</math> [[पहले क्रम की भाषा]] बनें। प्रत्येक चर के लिए <math>x</math>, सूत्र
समानता का सिद्धांत। <math>\mathfrak{L}</math> [[पहले क्रम की भाषा]] होने देना। प्रत्येक चर के लिए <math>x</math>, सूत्र


<डिव वर्ग = केंद्र>
<डिव वर्ग = केंद्र>
Line 103: Line 92:
सर्वमान्य है।
सर्वमान्य है।


इसका मतलब है कि, किसी भी [[मुक्त चर और बाध्य चर]] के लिए <math>x\,,</math> सूत्र <math>x = x</math> एक स्वयंसिद्ध के रूप में माना जा सकता है। इसके अलावा, इस उदाहरण में, इसके लिए अस्पष्टता और आदिम धारणाओं की कभी न खत्म होने वाली श्रृंखला में न पड़ने के लिए, या तो हम क्या मतलब है की एक सटीक धारणा <math>x = x</math> (या, उस मामले के लिए, बराबर होने के लिए) पहले अच्छी तरह से स्थापित होना चाहिए, या प्रतीक का विशुद्ध रूप से औपचारिक और वाक्य-विन्यास उपयोग <math>=</math> लागू किया जाना है, केवल इसे एक स्ट्रिंग और केवल प्रतीकों की एक स्ट्रिंग के रूप में माना जाता है, और गणितीय तर्क वास्तव में ऐसा करता है।
इसका आशय है कि, किसी भी मुक्त चर और बाध्य चर के लिए <math>x\,,</math> सूत्र <math>x = x</math> एक स्वयंसिद्ध के रूप में माना जा सकता है। इसके अतिरिक्त, इस उदाहरण में, इसके लिए अस्पष्टता और आदिम धारणाओं की कभी न खत्म होने वाली श्रृंखला में न पड़ने के लिए, या तो आशय है कि एक त्रुटिहीन धारणा <math>x = x</math> (या, उस स्थिति के लिए, बराबर होने के लिए) पहले अच्छी तरह से स्थापित होना चाहिए, या प्रतीक का विशुद्ध रूप से औपचारिक और वाक्य-विन्यास उपयोग <math>=</math> लागू किया जाना है, केवल इसे एक स्ट्रिंग और केवल प्रतीकों की एक स्ट्रिंग के रूप में माना जाता है, और गणितीय तर्क वास्तव में ऐसा करता है।


एक और, अधिक दिलचस्प उदाहरण [[स्वयंसिद्ध योजना]], वह है जो हमें वह प्रदान करती है जिसे यूनिवर्सल इंस्टेंटेशन के रूप में जाना जाता है:
एक और, अधिक दिलचस्प उदाहरण [[स्वयंसिद्ध योजना]], वह है जो हमें वह प्रदान करती है जिसे सार्वभौमिक तात्कालिकता के रूप में जाना जाता हैI


<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
सार्वभौमिक तात्कालिकता के लिए स्वयंसिद्ध योजना। एक सूत्र दिया <math>\phi</math> पहले क्रम की भाषा में <math>\mathfrak{L}</math>, एक परिवर्तनीय <math>x</math> और एक प्रथम क्रम तर्क#शर्तें <math>t</math> वह प्रथम-क्रम तर्क है # अनुमान के नियम <math>x</math> में <math>\phi</math>, सूत्र
सार्वभौमिक तात्कालिकता के लिए स्वयंसिद्ध योजना। एक सूत्र <math>\phi</math> दिया पहले क्रम की भाषा में <math>\mathfrak{L}</math>, एक परिवर्तनीय <math>x</math> और एक प्रथम क्रम तर्क शर्तें <math>t</math> वह प्रथम-क्रम तर्क है अनुमान के नियम <math>x</math> में <math>\phi</math>, सूत्र


<डिव वर्ग = केंद्र>
<डिव वर्ग = केंद्र>
Line 116: Line 105:
सर्वमान्य है।
सर्वमान्य है।


जहां प्रतीक <math>\phi^x_t</math> सूत्र के लिए खड़ा है <math>\phi</math> अवधि के साथ <math>t</math> इसके लिए प्रतिस्थापित <math>x</math>. (चरों का प्रतिस्थापन देखें।) अनौपचारिक शब्दों में, यह उदाहरण हमें यह बताने की अनुमति देता है कि, यदि हम जानते हैं कि एक निश्चित संपत्ति <math>P</math> प्रत्येक के लिए रखता है <math>x</math> और कि <math>t</math> हमारी संरचना में किसी विशेष वस्तु के लिए खड़ा है, तो हमें दावा करने में सक्षम होना चाहिए <math>P(t)</math>. फिर से, हम दावा कर रहे हैं कि सूत्र <math>\forall x \phi \to \phi^x_t</math> वैध है, अर्थात्, हमें इस तथ्य का प्रमाण देने में सक्षम होना चाहिए, या अधिक ठीक से बोलना, एक मेटाप्रूफ। ये उदाहरण गणितीय तर्क के हमारे सिद्धांत के रूपक हैं क्योंकि हम स्वयं प्रमाण की अवधारणा के साथ काम कर रहे हैं। इसके अलावा, हम 'अस्तित्ववादी सामान्यीकरण' भी कर सकते हैं:
जहां प्रतीक <math>\phi^x_t</math> सूत्र के लिए खड़ा है <math>\phi</math> अवधि के साथ <math>t</math> इसके लिए प्रतिस्थापित <math>x</math>. (चरों का प्रतिस्थापन देखें।) अनौपचारिक शब्दों में, यह उदाहरण हमें यह बताने की अनुमति देता है कि, यदि हम जानते हैं कि एक निश्चित संपत्ति <math>P</math> प्रत्येक के लिए रखता है <math>x</math> और कि <math>t</math> हमारी संरचना में किसी विशेष वस्तु के लिए खड़ा है, तो हमें आशय करने में सक्षम होना चाहिए <math>P(t)</math>. फिर से, हम आशय कर रहे हैं कि सूत्र <math>\forall x \phi \to \phi^x_t</math> वैध है, अर्थात्, हमें इस तथ्य का प्रमाण देने में सक्षम होना चाहिए, या अधिक ठीक से बोलना, एक मेटाप्रूफ। ये उदाहरण गणितीय तर्क के हमारे सिद्धांत के रूपक हैं क्योंकि हम स्वयं प्रमाण की अवधारणा के साथ काम कर रहे हैं। इसके अतिरिक्त, हम 'अस्तित्ववादी सामान्यीकरण' भी कर सकते हैं:


<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
<div style= Border: 1px सॉलिड #CCCCCC; पैडिंग-लेफ्ट: 5px; >
'अस्तित्व के सामान्यीकरण के लिए स्वयंसिद्ध योजना।' एक सूत्र दिया <math>\phi</math> पहले क्रम की भाषा में <math>\mathfrak{L}</math>, एक परिवर्तनीय <math>x</math> और एक शब्द <math>t</math> कि के लिए प्रतिस्थापन योग्य है <math>x</math> में <math>\phi</math>, सूत्र
'अस्तित्व के सामान्यीकरण के लिए स्वयंसिद्ध योजना।' एक सूत्र <math>\phi</math> दिया  पहले क्रम की भाषा <math>\mathfrak{L}</math> में , एक परिवर्तनीय <math>x</math> और एक शब्द <math>t</math> कि के लिए प्रतिस्थापन योग्य है <math>x</math> में <math>\phi</math>, सूत्र


<डिव वर्ग = केंद्र>
<डिव वर्ग = केंद्र>
Line 128: Line 117:


=== गैर-तार्किक स्वयंसिद्ध ===
=== गैर-तार्किक स्वयंसिद्ध ===
अतार्किक अभिगृहीत ऐसे सूत्र हैं जो सिद्धांत-विशिष्ट मान्यताओं की भूमिका निभाते हैं। दो अलग-अलग संरचनाओं के बारे में तर्क, उदाहरण के लिए, प्राकृतिक संख्याएँ और [[पूर्णांक]], एक ही तार्किक स्वयंसिद्धों को शामिल कर सकते हैं; गैर-तार्किक स्वयंसिद्धों का उद्देश्य किसी विशेष संरचना (या संरचनाओं के समूह, जैसे [[समूह (बीजगणित)]]) के बारे में क्या खास है, पर कब्जा करना है। इस प्रकार गैर-तार्किक स्वयंसिद्ध, तार्किक स्वयंसिद्धों के विपरीत, 'टॉटोलॉजी (तर्क)' नहीं हैं। एक गैर-तार्किक स्वयंसिद्ध का दूसरा नाम '' अभिधारणा'' है।<ref>Mendelson, "3. First-Order Theories: Proper Axioms" of Ch. 2</ref>
अतार्किक अभिगृहीत ऐसे सूत्र हैं जो सिद्धांत-विशिष्ट मान्यताओं की भूमिका निभाते हैं। दो भिन्न -भिन्न संरचनाओं के बारे में तर्क, उदाहरण के लिए, प्राकृतिक संख्याएँ और [[पूर्णांक]], एक ही तार्किक स्वयंसिद्धों को सम्मिलित कर सकते हैं; गैर-तार्किक स्वयंसिद्धों का उद्देश्य किसी विशेष संरचना (या संरचनाओं के समूह, जैसे [[समूह (बीजगणित)]] के बारे में क्या मुख्य है, पर स्वत्व करना है। इस प्रकार गैर-तार्किक स्वयंसिद्ध, तार्किक स्वयंसिद्धों के विपरीत, 'टॉटोलॉजी (तर्क)' नहीं हैं। एक गैर-तार्किक स्वयंसिद्ध का दूसरा नाम ''अभिधारणा'' है।<ref>Mendelson, "3. First-Order Theories: Proper Axioms" of Ch. 2</ref> लगभग हर आधुनिक [[गणितीय सिद्धांत]] गैर-तार्किक स्वयंसिद्धों के दिए गए समूह से शुरू होता है, और यह था{{Explain|date=June 2019|reason=use of past tense without explanation of change}} सोच सिद्धांत रूप में प्रत्येक सिद्धांत को इस तरह स्वयंसिद्ध किया जा सकता है और तार्किक सूत्रों की नंगे भाषा में औपचारिक रूप दिया जा सकता है।<!-- This turned out to be impossible{{Citation needed|date=March 2010}} and proved to be quite a story (''[[#role|see below]]''); however recently this approach has been resurrected in the form of [[neo-logicism]].-->गैर-तार्किक स्वयंसिद्धों को प्रायः गणितीय [[प्रवचन]] में केवल स्वयंसिद्धों के रूप में संदर्भित किया जाता है। इसका तातपर्य यह नहीं है कि यह आशय  किया जाता है कि वे कुछ पूर्ण अर्थों में सत्य हैं। उदाहरण के लिए, कुछ समूहों में, समूह संक्रिया [[विनिमेय]] है, और इसे एक अतिरिक्त अभिगृहीत की शुरूआत के साथ मुखरित किया जा सकता है, लेकिन इस अभिगृहीत के बिना, हम काफी अच्छी तरह से विकसित (अधिक सामान्य) समूह सिद्धांत कर सकते हैं, और हम यहां तक ​​कि ले सकते हैं गैर-विनिमेय समूहों के अध्ययन के लिए एक स्वयंसिद्ध के रूप में इसका निषेध।
लगभग हर आधुनिक [[गणितीय सिद्धांत]] गैर-तार्किक स्वयंसिद्धों के दिए गए सेट से शुरू होता है, और यह था{{Explain|date=June 2019|reason=use of past tense without explanation of change}} सोच{{Citation needed|date=July 2011}} सिद्धांत रूप में प्रत्येक सिद्धांत को इस तरह स्वयंसिद्ध किया जा सकता है और तार्किक सूत्रों की नंगे भाषा में औपचारिक रूप दिया जा सकता है।<!-- This turned out to be impossible{{Citation needed|date=March 2010}} and proved to be quite a story (''[[#role|see below]]''); however recently this approach has been resurrected in the form of [[neo-logicism]].-->
गैर-तार्किक स्वयंसिद्धों को अक्सर गणितीय [[प्रवचन]] में केवल स्वयंसिद्धों के रूप में संदर्भित किया जाता है। इसका मतलब यह नहीं है कि यह दावा किया जाता है कि वे कुछ पूर्ण अर्थों में सत्य हैं। उदाहरण के लिए, कुछ समूहों में, समूह संक्रिया [[विनिमेय]] है, और इसे एक अतिरिक्त अभिगृहीत की शुरूआत के साथ मुखरित किया जा सकता है, लेकिन इस अभिगृहीत के बिना, हम काफी अच्छी तरह से विकसित (अधिक सामान्य) समूह सिद्धांत कर सकते हैं, और हम यहां तक ​​कि ले सकते हैं गैर-विनिमेय समूहों के अध्ययन के लिए एक स्वयंसिद्ध के रूप में इसका निषेध।


इस प्रकार, एक स्वयंसिद्ध एक औपचारिक प्रणाली # तार्किक प्रणाली के लिए एक प्रारंभिक आधार है जो एक साथ अनुमान के नियमों के साथ एक '[[कटौती प्रणाली]]' को परिभाषित करता है।
इस प्रकार, एक स्वयंसिद्ध एक औपचारिक प्रणाली तार्किक प्रणाली के लिए एक प्रारंभिक आधार है जो एक साथ अनुमान के नियमों के साथ एक '[[कटौती प्रणाली]]' को परिभाषित करता है।


==== उदाहरण ====
==== उदाहरण ====
यह खंड गणितीय सिद्धांतों का उदाहरण देता है जो पूरी तरह से गैर-तार्किक स्वयंसिद्धों (स्वयंसिद्ध, अब से) के एक सेट से विकसित किए गए हैं। इनमें से किसी भी विषय का कठोर उपचार इन स्वयंसिद्धों के विनिर्देशन से शुरू होता है।
यह खंड गणितीय सिद्धांतों का उदाहरण देता है जो पूरी तरह से गैर-तार्किक स्वयंसिद्धों (स्वयंसिद्ध, अब से) के एक समूह से विकसित किए गए हैं। इनमें से किसी भी विषय का कठोर उपचार इन स्वयंसिद्धों के विनिर्देशन से शुरू होता है।


मूल सिद्धांत, जैसे कि अंकगणित, [[वास्तविक विश्लेषण]] और [[जटिल विश्लेषण]] को अक्सर गैर-स्वयंसिद्ध रूप से पेश किया जाता है, लेकिन स्पष्ट रूप से या स्पष्ट रूप से आम तौर पर एक धारणा है कि उपयोग किए जा रहे स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के स्वयंसिद्ध विकल्प हैं, संक्षिप्त ZFC, या कुछ [[स्वयंसिद्ध सेट सिद्धांत]] की बहुत समान प्रणाली जैसे वॉन न्यूमैन-बर्नेज़-गोडेल सेट सिद्धांत, ZFC का एक [[रूढ़िवादी विस्तार]]। कभी-कभी मोर्स-केली सेट थ्योरी या [[ग्रोथेंडिक ब्रह्मांड]] के उपयोग की अनुमति देने वाले [[दृढ़ता से दुर्गम कार्डिनल]] के साथ सेट थ्योरी जैसे थोड़े मजबूत सिद्धांतों का उपयोग किया जाता है, लेकिन वास्तव में, अधिकांश गणितज्ञ वास्तव में ZFC से कमजोर सिस्टम में सभी की जरूरत को साबित कर सकते हैं, जैसे कि दूसरा -आदेश अंकगणित।{{citation needed|reason=This claim should include a citation |date=April 2016}}
मूल सिद्धांत, जैसे कि अंकगणित, [[वास्तविक विश्लेषण]] और सम्मिश्र विश्लेषण को प्रायः गैर-स्वयंसिद्ध रूप से प्रस्तावित किया जाता है, लेकिन स्पष्ट रूप से या स्पष्ट रूप से सामान्यतः एक धारणा है कि उपयोग किए जा रहे स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समूह सिद्धांत के स्वयंसिद्ध विकल्प हैं, संक्षिप्त जेडएफसी, या कुछ [[स्वयंसिद्ध सेट सिद्धांत|स्वयंसिद्ध समूह सिद्धांत]] की बहुत समान प्रणाली जैसे वॉन न्यूमैन-बर्नेज़-गोडेल समूह सिद्धांत, जेडएफसी का एक [[रूढ़िवादी विस्तार]]। कभी-कभी मोर्स-केली समूह सिद्धांत या [[ग्रोथेंडिक ब्रह्मांड]] के उपयोग की अनुमति देने वाले [[दृढ़ता से दुर्गम कार्डिनल]] के साथ समूह सिद्धांत जैसे थोड़े मजबूत सिद्धांतों का उपयोग किया जाता है, लेकिन वास्तव में, अधिकांश गणितज्ञ वास्तव में जेडएफसी से कमजोर प्रणाली में सभी की आवश्यकता को प्रमाणित कर सकते हैं, जैसे कि दूसरा -आदेश अंकगणित। गणित में टोपोलॉजी का अध्ययन [[बिंदु सेट टोपोलॉजी|बिंदु समूह टोपोलॉजी]], [[बीजगणितीय टोपोलॉजी]], [[अंतर टोपोलॉजी]] और सभी संबंधित सामग्री, जैसे [[समरूपता सिद्धांत]], [[होमोटॉपी सिद्धांत]] के माध्यम से होता है। अमूर्त बीजगणित का विकास अपने साथ [[समूह सिद्धांत]], वलय (गणित), क्षेत्र (गणित) और गैलोज़ सिद्धांत लेकर आया।
गणित में टोपोलॉजी का अध्ययन [[बिंदु सेट टोपोलॉजी]], [[बीजगणितीय टोपोलॉजी]], [[अंतर टोपोलॉजी]] और सभी संबंधित सामग्री, जैसे [[समरूपता सिद्धांत]], [[होमोटॉपी सिद्धांत]] के माध्यम से होता है। अमूर्त बीजगणित का विकास अपने साथ [[समूह सिद्धांत]], वलय (गणित), क्षेत्र (गणित) और गैलोज़ सिद्धांत लेकर आया।


गणित के अधिकांश क्षेत्रों को शामिल करने के लिए इस सूची का विस्तार किया जा सकता है, जिसमें [[माप सिद्धांत]], [[एर्गोडिक सिद्धांत]], संभाव्यता, [[प्रतिनिधित्व सिद्धांत]] और [[अंतर ज्यामिति]] शामिल हैं।
गणित के अधिकांश क्षेत्रों को सम्मलित करने के लिए इस सूची का विस्तार किया जा सकता है, जिसमें [[माप सिद्धांत]], [[एर्गोडिक सिद्धांत]], संभाव्यता, [[प्रतिनिधित्व सिद्धांत]] और [[अंतर ज्यामिति]] सम्मलित हैं।


=== अंकगणित ===
=== अंकगणित ===
पीआनो स्वयंसिद्ध प्रथम-क्रम अंकगणित का सबसे व्यापक रूप से उपयोग किया जाने वाला स्वयंसिद्ध है। वे [[संख्या सिद्धांत]] के बारे में कई महत्वपूर्ण तथ्यों को साबित करने के लिए काफी मजबूत स्वयंसिद्धों का एक समूह हैं और उन्होंने गोडेल को अपने प्रसिद्ध गोडेल की दूसरी अपूर्णता प्रमेय को स्थापित करने की अनुमति दी।<ref>Mendelson, "5. The Fixed Point Theorem. Gödel's Incompleteness Theorem" of Ch. 2</ref>
पीआनो स्वयंसिद्ध प्रथम-क्रम अंकगणित का सबसे व्यापक रूप से उपयोग किया जाने वाला स्वयंसिद्ध है। वे [[संख्या सिद्धांत]] के बारे में कई महत्वपूर्ण तथ्यों को प्रमाणित करने के लिए काफी मजबूत स्वयंसिद्धों का एक समूह हैं और उन्होंने गोडेल को अपने प्रसिद्ध गोडेल की दूसरी अपूर्णता प्रमेय को स्थापित करने की अनुमति दी।<ref>Mendelson, "5. The Fixed Point Theorem. Gödel's Incompleteness Theorem" of Ch. 2</ref> हमारे पास एक भाषा <math>\mathfrak{L}_{NT} = \{0, S\}</math> है जहाँ  <math>0</math> एक स्थिर प्रतीक है और <math>S</math> एक एकल कार्य है और निम्नलिखित स्वयंसिद्ध हैं:
हमारे पास एक भाषा है <math>\mathfrak{L}_{NT} = \{0, S\}</math> कहाँ पे <math>0</math> एक स्थिर प्रतीक है और <math>S</math> एक एकल कार्य है और निम्नलिखित स्वयंसिद्ध हैं:


# <math>\forall x. \lnot (Sx = 0) </math>
# <math>\forall x. \lnot (Sx = 0) </math>
Line 150: Line 135:
# <math>(\phi(0) \land \forall x.\,(\phi(x) \to \phi(Sx))) \to \forall x.\phi(x)</math> किसी के लिए <math>\mathfrak{L}_{NT}</math> सूत्र <math>\phi</math> एक मुक्त चर के साथ।
# <math>(\phi(0) \land \forall x.\,(\phi(x) \to \phi(Sx))) \to \forall x.\phi(x)</math> किसी के लिए <math>\mathfrak{L}_{NT}</math> सूत्र <math>\phi</math> एक मुक्त चर के साथ।


मानक संरचना है <math>\mathfrak{N} = \langle\N, 0, S\rangle</math> कहाँ पे <math>\N</math> प्राकृतिक संख्याओं का समुच्चय है, <math>S</math> उत्तराधिकारी कार्य है और <math>0</math> स्वाभाविक रूप से संख्या 0 के रूप में व्याख्या की जाती है।
मानक संरचना है <math>\mathfrak{N} = \langle\N, 0, S\rangle</math> जहाँ  <math>\N</math> प्राकृतिक संख्याओं का समुच्चय <math>S</math> है<math>0</math> उत्तराधिकारी कार्य है और स्वाभाविक रूप से संख्या 0 के रूप में व्याख्या की जाती है।


=== यूक्लिडियन ज्यामिति ===
=== यूक्लिडियन ज्यामिति ===
संभवतः सबसे पुराना, और सबसे प्रसिद्ध, अभिगृहीतों की सूची यूक्लिडियन ज्यामिति के 4 + 1 यूक्लिड की अभिधारणाएं हैं। स्वयंसिद्धों को 4 + 1 के रूप में संदर्भित किया जाता है क्योंकि लगभग दो सहस्राब्दी के लिए समानांतर अभिधारणा|पांचवां (समानांतर) अभिधारणा (एक रेखा के बाहर एक बिंदु के माध्यम से बिल्कुल एक समानांतर होता है) को पहले चार से व्युत्पन्न होने का संदेह था। अंततः, पाँचवीं अभिधारणा प्रथम चार अभिधारणा से स्वतंत्र पाई गई। कोई यह मान सकता है कि एक रेखा के बाहर एक बिंदु के माध्यम से ठीक एक समानांतर मौजूद है, या असीम रूप से कई मौजूद हैं। यह विकल्प हमें ज्यामिति के दो वैकल्पिक रूप देता है जिसमें त्रिभुज के आंतरिक कोण क्रमशः 180 डिग्री या उससे कम तक जुड़ते हैं, और यूक्लिडियन और हाइपरबोलिक ज्यामिति ज्यामिति के रूप में जाने जाते हैं। यदि कोई दूसरी अवधारणा को भी हटा देता है (एक रेखा को अनिश्चित काल तक बढ़ाया जा सकता है) तो [[अण्डाकार ज्यामिति]] उत्पन्न होती है, जहां एक रेखा के बाहर एक बिंदु के माध्यम से कोई समानांतर नहीं होता है, और जिसमें त्रिभुज के आंतरिक कोण 180 डिग्री से अधिक तक जुड़ते हैं।
संभवतः सबसे पुराना, और सबसे प्रसिद्ध, अभिगृहीतों की सूची यूक्लिडियन ज्यामिति के 4 + 1 यूक्लिड की अभिधारणाएं हैं। स्वयंसिद्धों को 4 + 1 के रूप में संदर्भित किया जाता है क्योंकि लगभग दो सहस्राब्दी के लिए समानांतर अभिधारणा|पांचवां (समानांतर) अभिधारणा (एक रेखा के बाहर एक बिंदु के माध्यम से बिल्कुल एक समानांतर होता है) को पहले चार से व्युत्पन्न होने का संदेह था। अंततः, पाँचवीं अभिधारणा प्रथम चार अभिधारणा से स्वतंत्र पाई गई। कोई यह मान सकता है कि एक रेखा के बाहर एक बिंदु के माध्यम से ठीक एक समानांतर सम्मलितहै, या असीम रूप से कई सम्मलित हैं। यह विकल्प हमें ज्यामिति के दो वैकल्पिक रूप देता है जिसमें त्रिभुज के आंतरिक कोण क्रमशः 180 डिग्री या उससे कम तक जुड़ते हैं, और यूक्लिडियन और हाइपरबोलिक ज्यामिति के रूप में जाने जाते हैं। यदि कोई दूसरी अवधारणा को भी हटा देता है (एक रेखा को अनिश्चित काल तक बढ़ाया जा सकता है) तो [[अण्डाकार ज्यामिति]] उत्पन्न होती है, जहां एक रेखा के बाहर एक बिंदु के माध्यम से कोई समानांतर नहीं होता है, और जिसमें त्रिभुज के आंतरिक कोण 180 डिग्री से अधिक तक जुड़ते हैं।


=== वास्तविक विश्लेषण ===
=== वास्तविक विश्लेषण ===
अध्ययन के उद्देश्य [[वास्तविक संख्या]] के दायरे में हैं। डेडेकिंड पूर्ण आदेशित क्षेत्र के गुणों द्वारा वास्तविक संख्याओं को विशिष्ट रूप से (समरूपता तक) चुना जाता है, जिसका अर्थ है कि ऊपरी सीमा के साथ वास्तविक संख्याओं के किसी भी गैर-खाली सेट में कम से कम ऊपरी सीमा होती है। हालाँकि, इन गुणों को स्वयंसिद्धों के रूप में व्यक्त करने के लिए दूसरे क्रम के तर्क के उपयोग की आवश्यकता होती है। लोवेनहाइम-स्कोलेम प्रमेय हमें बताते हैं कि यदि हम स्वयं को पहले क्रम के तर्क तक सीमित रखते हैं, तो वास्तविक के लिए कोई भी स्वयंसिद्ध प्रणाली अन्य मॉडलों को स्वीकार करती है, जिसमें वास्तविक से छोटे मॉडल और बड़े मॉडल दोनों शामिल हैं। उत्तरार्द्ध में से कुछ का अध्ययन गैर-मानक विश्लेषण में किया जाता है।
अध्ययन के उद्देश्य [[वास्तविक संख्या]] के '''कुंडल''' में हैं। डेडेकिंड पूर्ण आदेशित क्षेत्र के गुणों द्वारा वास्तविक संख्याओं को विशिष्ट रूप से (समरूपता तक) चुना जाता है, जिसका अर्थ है कि ऊपरी सीमा के साथ वास्तविक संख्याओं के किसी भी गैर-खाली समूह में कम से कम ऊपरी सीमा होती है। चूंकि, इन गुणों को स्वयंसिद्धों के रूप में व्यक्त करने के लिए दूसरे क्रम के तर्क के उपयोग की आवश्यकता होती है। लोवेनहाइम-स्कोलेम प्रमेय हमें बताते हैं कि यदि हम स्वयं को पहले क्रम के तर्क तक सीमित रखते हैं, तो वास्तविक के लिए कोई भी स्वयंसिद्ध प्रणाली अन्य मॉडलों को स्वीकार करती है, जिसमें वास्तविक से छोटे मॉडल और बड़े मॉडल दोनों सम्मलितहैं। उत्तरार्द्ध में से कुछ का अध्ययन गैर-मानक विश्लेषण में किया जाता है।
 
===<स्पैन आईडी= भूमिका>गणितीय तर्क में भूमिका</span>===


==== [[वियोजक]] सिस्टम और पूर्णता ====
==== वियोजक प्रणाली और पूर्णता ====
एक डिडक्टिव सिस्टम में एक सेट होता है <math>\Lambda</math> तार्किक स्वयंसिद्धों का, एक सेट <math>\Sigma</math> गैर-तार्किक सिद्धांतों और एक सेट का <math>\{(\Gamma, \phi)\}</math> अनुमान के नियमों का। एक कटौतीत्मक प्रणाली की एक वांछनीय संपत्ति यह है कि यह 'पूर्ण' हो। एक प्रणाली को पूर्ण कहा जाता है यदि, सभी सूत्रों के लिए <math>\phi</math>,
एक कटौती प्रणाली में एक समूह होता है <math>\Lambda</math> तार्किक स्वयंसिद्धों का, एक समूह  <math>\Sigma</math> गैर-तार्किक सिद्धांतों और एक समूह का <math>\{(\Gamma, \phi)\}</math> अनुमान के नियमों का। एक कटौतीत्मक प्रणाली की एक वांछनीय संपत्ति यह है कि यह 'पूर्ण' हो। एक प्रणाली को पूर्ण कहा जाता है यदि, सभी सूत्रों के लिए <math>\phi</math>,
<डिव वर्ग = केंद्र>
<डिव वर्ग = केंद्र>
<math>\text{if }\Sigma \models \phi\text{ then }\Sigma \vdash \phi</math>
<math>\text{if }\Sigma \models \phi\text{ then }\Sigma \vdash \phi</math>


अर्थात्, किसी भी कथन के लिए जो तार्किक परिणाम है <math>\Sigma</math> वहाँ वास्तव में से बयान की कटौती मौजूद है <math>\Sigma</math>. यह कभी-कभी व्यक्त किया जाता है कि जो कुछ भी सत्य है वह सिद्ध होता है, लेकिन यह समझना चाहिए कि यहाँ सत्य का अर्थ स्वयंसिद्धों के सेट द्वारा सत्य बनाया गया है, न कि, उदाहरण के लिए, अभीष्ट व्याख्या में सत्य है। गोडेल की पूर्णता प्रमेय एक निश्चित प्रकार की निगमनात्मक प्रणाली की पूर्णता को स्थापित करती है।
अर्थात्, किसी भी कथन के लिए जो तार्किक परिणाम है <math>\Sigma</math> वहाँ वास्तव में से वर्णन की कटौती सम्मलितहै <math>\Sigma</math>. यह कभी-कभी व्यक्त किया जाता है कि जो कुछ भी सत्य है वह सिद्ध होता है, लेकिन यह समझना चाहिए कि यहाँ सत्य का अर्थ स्वयंसिद्धों के समूह  द्वारा सत्य बनाया गया है, न कि, उदाहरण के लिए, अभीष्ट व्याख्या में सत्य है। गोडेल की पूर्णता प्रमेय एक निश्चित प्रकार की निगमनात्मक प्रणाली की पूर्णता को स्थापित करती है।


ध्यान दें कि गोडेल की पहली अपूर्णता प्रमेय के संदर्भ में पूर्णता का एक अलग अर्थ है, जो बताता है कि गैर-तार्किक स्वयंसिद्धों का कोई पुनरावर्ती, सुसंगत सेट नहीं है <math>\Sigma</math> अंकगणित का सिद्धांत पूर्ण है, इस अर्थ में कि हमेशा एक अंकगणितीय कथन मौजूद रहेगा <math>\phi</math> ऐसा नहीं है <math>\phi</math> न <math>\lnot\phi</math> दिए गए अभिगृहीतों के समुच्चय से सिद्ध किया जा सकता है।
ध्यान दें कि गोडेल की पहली अपूर्णता प्रमेय के संदर्भ में पूर्णता का एक भिन्न अर्थ है, जो बताता है कि गैर-तार्किक स्वयंसिद्धों का कोई पुनरावर्ती, <math>\Sigma</math> सुसंगत समूह  नहीं है  अंकगणित का सिद्धांत पूर्ण है, इस अर्थ में कि हमेशा एक अंकगणितीय कथन सम्मलित रहेगा <math>\phi</math> ऐसा नहीं है <math>\phi</math> न <math>\lnot\phi</math> दिए गए अभिगृहीतों के समुच्चय से सिद्ध किया जा सकता है।


इस प्रकार, एक ओर, एक निगमनात्मक प्रणाली की पूर्णता की धारणा है और दूसरी ओर गैर-तार्किक स्वयंसिद्धों के एक सेट की पूर्णता की। पूर्णता प्रमेय और अपूर्णता प्रमेय, उनके नामों के बावजूद, एक दूसरे का खंडन नहीं करते हैं।
इस प्रकार, एक ओर, एक निगमनात्मक प्रणाली की पूर्णता की धारणा है और दूसरी ओर गैर-तार्किक स्वयंसिद्धों के एक समूह  की पूर्णता की। पूर्णता प्रमेय और अपूर्णता प्रमेय, उनके नामों के अतिरिक्त, एक दूसरे का खंडन नहीं करते हैं।


===आगे की चर्चा===
===आगे की चर्चा===
प्रारंभिक [[गणितज्ञ]]ों ने [[ज्यामिति की नींव]] को [[भौतिक स्थान]] के एक मॉडल के रूप में माना, और जाहिर है, ऐसा केवल एक ही मॉडल हो सकता है। यह विचार कि वैकल्पिक गणितीय प्रणालियाँ मौजूद हो सकती हैं, 19वीं शताब्दी के गणितज्ञों के लिए बहुत परेशान करने वाला था और [[बूलियन बीजगणित (तर्क)]] जैसी प्रणालियों के विकासकर्ताओं ने उन्हें पारंपरिक अंकगणित से प्राप्त करने के लिए विस्तृत प्रयास किए। Éवरिस्ते गाल्वा ने अपनी असामयिक मृत्यु से ठीक पहले दिखाया कि ये प्रयास काफी हद तक व्यर्थ गए। अंततः, बीजगणितीय प्रणालियों के बीच अमूर्त समानांतरों को विवरणों की तुलना में अधिक महत्वपूर्ण माना गया, और [[सार बीजगणित]] का जन्म हुआ। आधुनिक दृष्टि से, अभिगृहीत सूत्रों का कोई भी समुच्चय हो सकता है, जब तक कि वे असंगत न हों।
प्रारंभिक [[गणितज्ञ|गणितज्ञों]] ने [[ज्यामिति की नींव]] को [[भौतिक स्थान]] के एक मॉडल के रूप में माना, और जाहिर है, ऐसा केवल एक ही मॉडल हो सकता है। यह विचार कि वैकल्पिक गणितीय प्रणालियाँ सम्मलित हो सकती हैं, 19वीं दशक के गणितज्ञों के लिए बहुत परेशान करने वाला था और [[बूलियन बीजगणित (तर्क)]] जैसी प्रणालियों के विकासकर्ताओं ने उन्हें पारंपरिक अंकगणित से प्राप्त करने के लिए विस्तृत प्रयास किए। इवरिस गाल्वा ने अपनी असामयिक मृत्यु से ठीक पहले दिखाया कि ये प्रयास काफी हद तक व्यर्थ गए। अंततः, बीजगणितीय प्रणालियों के बीच अमूर्त समानांतरों को विवरणों की तुलना में अधिक महत्वपूर्ण माना गया, और [[सार बीजगणित]] का जन्म हुआ। आधुनिक दृष्टि से, अभिगृहीत सूत्रों का कोई भी समुच्चय हो सकता है, जब तक कि वे असंगत न हों।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Mathematics|Philosophy}}
 
* [[स्वयंसिद्ध प्रणाली]]
* [[स्वयंसिद्ध प्रणाली]]
* [[हठधर्मिता]]
* पहला सिद्धांत, विज्ञान और दर्शन में स्वयंसिद्ध
* [[पहला [[सिद्धांत]]]], विज्ञान और दर्शन में स्वयंसिद्ध
* स्वयंसिद्धों की सूची
* [[स्वयंसिद्धों की सूची]]
* [[मॉडल सिद्धांत]]
* [[मॉडल सिद्धांत]]
* नियम ज्यूरिस
* नियम ज्यूरिस
Line 189: Line 171:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{Notelist}}
{{Notelist}}


==संदर्भ==
==संदर्भ==
Line 196: Line 177:


==अग्रिम पठन==
==अग्रिम पठन==
* Mendelson, Elliot (1987). ''Introduction to mathematical logic.'' Belmont, California: Wadsworth & Brooks. {{ISBN|0-534-06624-0}}
* Mendelson, Elliot (1987). ''Introduction to mathematical logic.'' Belmont, California: Wadsworth & Brooks.  
* {{cite Q|Q26720682}}<!-- On an Evolutionist Theory of Axioms -->
[[Category:All articles with dead external links]]
[[Category:All articles with unsourced statements]]
[[Category:Articles containing Ancient Greek (to 1453)-language text]]
[[Category:Articles with dead external links from February 2019]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from April 2016]]
[[Category:Articles with unsourced statements from July 2011]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 26/11/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics navigational boxes]]
[[Category:Navbox orphans]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages containing links to subscription-only content]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Philosophy and thinking navigational boxes]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Use dmy dates from December 2020]]
[[Category:Wikipedia articles needing clarification from June 2019]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:औपचारिक प्रणाली]]
[[Category:गणित का इतिहास]]
[[Category:गणितीय तर्क]]
[[Category:गणितीय शब्दावली]]
[[Category:गणितीय सिद्धांत| ]]
[[Category:ज्ञानमीमांसा में अवधारणाएं]]
[[Category:तत्वमीमांसा में अवधारणाएं]]
[[Category:तर्क]]
[[Category:तर्क का इतिहास]]
[[Category:तर्क में अवधारणाएं]]
[[Category:दर्शनशास्त्र का इतिहास]]
[[Category:दार्शनिक शब्दावली]]
[[Category:निगमनात्मक तर्क]]
[[Category:नैतिकता की अवधारणा]]
[[Category:प्राचीन ग्रीक तत्वमीमांसा में अवधारणाएं]]
[[Category:प्राचीन यूनानी दर्शन]]
[[Category:बौद्धिक इतिहास]]
[[Category:विज्ञान का इतिहास]]
[[Category:विज्ञान के दर्शन में अवधारणा]]


==इस पेज में लापता आंतरिक लिंक की सूची==
*प्राचीन यूनानी
*आत्म सबूत
*अंक शास्त्र
*गणित का दर्शन
*विचार
*पश्च विश्लेषण
*घेरा
*लाइन-लाइन चौराहा
*लगातार
*मक तर्क
*पियानो अंकगणित
*समुच्चय सिद्धान्त
*निरंतर परिकल्पना
*छिपा-चर सिद्धांत
*बहुत नाजुक स्थिति
*ईपीआर विरोधाभास
*संतुष्टि
*नकार
*अनुलाग
*स्वयंसिद्ध योजना
*प्रस्तावक चर
*विधेय गणना
*चर का प्रतिस्थापन
*दूसरे क्रम का अंकगणित
*अंगूठी (गणित)
*गाल्वा सिद्धांत
*संभावना
*प्रथम क्रम अंकगणित
*पियानो सिद्धांत
*एकात्मक समारोह
*उत्तराधिकारी समारोह
*त्रिकोण
*पहले क्रम का तर्क
*गैर मानक विश्लेषण
*समाकृतिकता
*दूसरे क्रम का तर्क
*शारीरिक कानून
*पूर्वधारणा
==बाहरी संबंध==
==बाहरी संबंध==
{{Wiktionary|axiom|given}}
{{EB1911 poster|Axiom}}
* {{PhilPapers|search|axiom}}
* {{PhilPapers|search|axiom}}
* {{planetmath|urlname=Axiom|title=Axiom}}
* {{planetmath|urlname=Axiom|title=Axiom}}
* [http://us.metamath.org/mpegif/mmset.html#axioms ''Metamath'' axioms page]
* [http://us.metamath.org/mpegif/mmset.html#axioms ''Metamath'' axioms page]


{{Mathematical logic}}
 
 
[[Category:All articles with dead external links]]
[[Category:All articles with unsourced statements]]
[[Category:Articles containing Ancient Greek (to 1453)-language text]]
[[Category:Articles with dead external links from February 2019]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from April 2016]]
[[Category:Articles with unsourced statements from July 2011]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 26/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages containing links to subscription-only content]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Use dmy dates from December 2020]]
[[Category:Wikipedia articles needing clarification from June 2019]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:औपचारिक प्रणाली]]
[[Category:गणित का इतिहास]]
[[Category:गणितीय तर्क]]
[[Category:गणितीय शब्दावली]]
[[Category:गणितीय सिद्धांत| ]]
[[Category:गणितीय सिद्धांत| ]]
[[Category: प्राचीन यूनानी दर्शन]]
[[Category:ज्ञानमीमांसा में अवधारणाएं]]
[[Category: प्राचीन ग्रीक तत्वमीमांसा में अवधारणाएं]]
[[Category:तत्वमीमांसा में अवधारणाएं]]
[[Category: ज्ञानमीमांसा में अवधारणाएं]]
[[Category:तर्क]]
[[Category: नैतिकता की अवधारणा]]
[[Category: तर्क में अवधारणाएं]]
[[Category: तत्वमीमांसा में अवधारणाएं]]
[[Category: विज्ञान के दर्शन में अवधारणा]]
[[Category: निगमनात्मक तर्क]]
[[Category:औपचारिक प्रणाली]]
[[Category:तर्क का इतिहास]]
[[Category:तर्क का इतिहास]]
[[Category: गणित का इतिहास]]
[[Category:तर्क में अवधारणाएं]]
[[Category: दर्शनशास्त्र का इतिहास]]
[[Category:दर्शनशास्त्र का इतिहास]]
[[Category:दार्शनिक शब्दावली]]
[[Category:निगमनात्मक तर्क]]
[[Category:नैतिकता की अवधारणा]]
[[Category:प्राचीन ग्रीक तत्वमीमांसा में अवधारणाएं]]
[[Category:प्राचीन यूनानी दर्शन]]
[[Category:बौद्धिक इतिहास]]
[[Category:विज्ञान का इतिहास]]
[[Category:विज्ञान का इतिहास]]
[[Category:बौद्धिक इतिहास]]
[[Category:विज्ञान के दर्शन में अवधारणा]]
[[Category:तर्क]]
[[Category: गणितीय तर्क]]
[[Category: गणितीय शब्दावली]]
[[Category: दार्शनिक शब्दावली]]
[[Category: तर्क]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 26/11/2022]]

Latest revision as of 12:36, 27 October 2023

एक अभिगृहीत, अभिधारणा, या पूर्वधारणा एक ऐसा कथन है जिसे आगे के विवेचना और विवेचनाओं के लिए एक आधार या प्रारंभिक बिंदु के रूप में कार्य करने के लिए सत्य माना जाता है। यह शब्द प्राचीन ग्रीक शब्द एक्सिओमा से आया है जिसका अर्थ है 'वह जो योग्य या उपयुक्त समझा जाता है' या 'वह जो स्वयं को स्पष्ट मानता है'।[1][2] अध्ययन के विभिन्न क्षेत्रों के संदर्भ में उपयोग किए जाने पर शब्द की परिभाषा में सूक्ष्म अंतर होता है। जैसा कि क्लासिक दर्शन में परिभाषित किया गया है, एक स्वयंसिद्ध कथन एक ऐसा कथन है जो इतना स्व-प्रमाण या अच्छी तरह से स्थापित है कि इसे विवाद या प्रश्न के बिना स्वीकार किया जाता है।[3] जैसा कि आधुनिक तर्क में प्रयोग किया जाता है, एक स्वयंसिद्ध विवेचना के लिए एक आधार या प्रारंभिक बिंदु है।[4]जैसा कि गणित में प्रयोग किया जाता है, स्वयंसिद्ध शब्द का उपयोग दो संबंधित लेकिन भिन्न -भिन्न अर्थों में किया जाता है: "तार्किक स्वयंसिद्ध" और "गैर-तार्किक स्वयंसिद्ध"। तार्किक स्वयंसिद्ध सामान्य ऐसे कथन होते हैं जिन्हें उनके द्वारा परिभाषित तर्क की प्रणाली के भीतर सत्य माना जाता है और प्रायः प्रतीकात्मक रूप में दिखाया जाता है (जैसे, (A और B ) का तात्पर्य A ), जबकि गैर-तार्किक स्वयंसिद्धों (जैसे, a + b = b + a) वास्तव में एक विशिष्ट गणितीय सिद्धांत (जैसे अंकगणित) के डोमेन के तत्वों के बारे में वास्तविक अभिकथन हैं।

जब बाद के अर्थ में उपयोग किया जाता है, तो "स्वयंसिद्ध", "अभिधारणा", और "अनुमान" का परस्पर उपयोग किया जा सकता है। इस स्थिति में, एक गैर-तार्किक स्वयंसिद्ध केवल एक औपचारिक तार्किक अभिव्यक्ति है जिसका उपयोग गणितीय सिद्धांत बनाने के लिए कटौती में किया जाता है, और प्रकृति में स्व-स्पष्ट हो भी सकता है और नहीं भी हो सकता है (उदाहरण के लिए, यूक्लिडियन ज्यामिति में समानांतर अभिधारणा)। ज्ञान की एक प्रणाली को स्वयंसिद्ध करने के लिए यह दिखाना है कि इसके आशय को छोटे, अच्छी तरह से समझे जाने वाले वाक्यों (स्वयंसिद्ध) से प्राप्त किया जा सकता है, और सामान्य पर किसी दिए गए गणितीय डोमेन को स्वयंसिद्ध करने के कई उपयोग हैं।

कोई भी स्वयंसिद्ध एक कथन है जो एक प्रारंभिक बिंदु के रूप में कार्य करता है जिससे अन्य कथन तार्किक रूप से प्राप्त होते हैं। क्या यह सार्थक है (और, यदि ऐसा है, तो इसका क्या अर्थ है) एक स्वयंसिद्ध के लिए "सत्य" होना गणित के दर्शन में तर्क का विषय है।[5]

व्युत्पत्ति

स्वयंसिद्ध शब्द ग्रीक भाषा के शब्द एक्सिओमा से आया है क्रिया एक्सिओइन से एक मौखिक संज्ञा, जिसका अर्थ योग्य समझा जाना है, लेकिन इसकी आवश्यकता भी है, जो बदले में आता है एक्सिओस, जिसका अर्थ है संतुलन में होना, और इसलिए (समान) मूल्य (जैसा), योग्य, उचित होना। प्राचीन ग्रीस के दार्शनिकों के बीच एक स्वयंसिद्ध दावा था जिसे प्रमाण की आवश्यकता के बिना स्वतः स्पष्ट सत्य के रूप में देखा जा सकता था।[6] अभिधारणा शब्द का मूल अर्थ "मांग" है; उदाहरण के लिए, यूक्लिड मांग करता है कि कोई सहमत हो कि कुछ चीजें की जा सकती हैं (उदाहरण के लिए, किन्हीं दो बिंदुओं को एक सीधी रेखा से जोड़ा जा सकता है) ।[7] प्राचीन जियोमीटरों ने अभिगृहीतों और अभिधारणाओं के बीच कुछ अंतर बनाए रखा। यूक्लिड की पुस्तकों पर टिप्पणी करते हुए, प्रोक्लस ने टिप्पणी की कि "जेमिनस का मानना ​​था कि इस अभिधारणा को एक अभिधारणा के रूप में नहीं बल्कि एक स्वयंसिद्ध के रूप में वर्गीकृत किया जाना चाहिए, क्योंकि यह, पहले तीन अभिधारणाओं की तरह, कुछ निर्माण की संभावना पर जोर नहीं देता है लेकिन एक अभिधारणा को व्यक्त करता है। आवश्यक संपत्ति।[8] बोथियस ने 'पोस्टुलेट' को पेटिटियो के रूप में अनुवादित किया और स्वयंसिद्ध धारणाओं को कम्युनिस कहा लेकिन बाद की पांडुलिपियों में इस प्रयोग को हमेशा कठोरता से नहीं रखा गया।

ऐतिहासिक विकास

प्रारंभिक यूनानी

तार्किक-निगमनात्मक विधि जिसके द्वारा निष्कर्ष (नया ज्ञान) परिसर (पुराने ज्ञान) से ध्वनि तर्कों (न्यायशास्त्र, अनुमान के नियम) के अनुप्रयोग के माध्यम से प्राचीन यूनानियों द्वारा विकसित किया गया था, और आधुनिक गणित का मूल सिद्धांत बन गया है। टॉटोलॉजी को बाहर रखा गया है, यदि कुछ भी नहीं माना जाता है तो कुछ भी नहीं निकाला जा सकता है। इस प्रकार अभिगृहीत और अभिगृहीत निगमनात्मक ज्ञान के दिए गए निकाय के अंतर्गत बुनियादी मान्यताएँ हैं। उन्हें बिना प्रदर्शन के स्वीकार कर लिया जाता है। अन्य सभी अभिकथनों (गणित के स्थिति में प्रमेय) को इन बुनियादी मान्यताओं की सहायता से सिद्ध किया जाना चाहिए। चूँकि , गणितीय ज्ञान की व्याख्या प्राचीन काल से आधुनिक काल में बदल गई है, और फलस्वरूप वर्तमान समय के गणितज्ञों के लिए अभिगृहीत और स्वयं सिद्ध मान लेना शब्द अरस्तू और यूक्लिड की तुलना में थोड़ा भिन्न अर्थ रखते हैं।[6]

प्राचीन यूनानियों ने ज्यामिति को कई विज्ञानों में से एक माना और ज्यामिति के प्रमेयों को वैज्ञानिक तथ्यों के समकक्ष रखा। इस प्रकार, उन्होंने त्रुटि से बचने के साधन के रूप में और ज्ञान को संरचित करने और संप्रेषित करने के लिए तर्क-निगमनात्मक पद्धति का विकास और उपयोग किया। अरस्तू का पश्च विश्लेषिकी शास्त्रीय दृष्टिकोण का एक निश्चित विवरण है।

एक "स्वयंसिद्ध", शास्त्रीय शब्दावली में, विज्ञान की कई शाखाओं के लिए एक स्व-स्पष्ट धारणा को संदर्भित करता है। एक अच्छा उदाहरण यह आशय होगा कि

जब समान राशि को बराबर से लिया जाता है, तो समान राशि प्राप्त होती है।

विभिन्न विज्ञानों के आधार में कुछ अतिरिक्त परिकल्पनाएँ थीं जिन्हें बिना प्रमाण के स्वीकार कर लिया गया। इस प्रकार की परिकल्पना को अभिधारणा कहा जाता था। जबकि अभिगृहीत अनेक विज्ञानों के लिए सामान्य थे, प्रत्येक विशेष विज्ञान के सिद्धांत भिन्न थे। वास्तविक दुनिया के अनुभव के माध्यम से उनकी वैधता स्थापित की जानी थी। अरस्तू ने चेतावनी दी है कि यदि शिक्षार्थी सिद्धांतों की सच्चाई के बारे में संदेह में है तो विज्ञान की सामग्री को सफलतापूर्वक संप्रेषित नहीं किया जा सकता है।[9] यूक्लिड के तत्वों द्वारा शास्त्रीय दृष्टिकोण को अच्छे प्रकार से चित्रित किया गया है [lower-alpha 1] जहां तत्वों की एक सूची दी गई है (हमारे अनुभव से तैयार किए गए सामान्य-संवेदी ज्यामितीय तथ्य), इसके बाद "सामान्य धारणा" (बहुत बुनियादी, स्व-स्पष्ट अभिकथन) की एक सूची है। )

अभिधारणाएँ
  1. किसी भी बिंदु से किसी बिंदु तक एक सीधी रेखा खींचना संभव है।
  2. किसी रेखाखंड को दोनों दिशाओं में लगातार बढ़ाना संभव है।
  3. किसी भी केंद्र और किसी भी त्रिज्या वाले वृत्त का वर्णन करना संभव है।
  4. यह सत्य है कि सभी समकोण एक दूसरे के बराबर होते हैं।
  5. (समानांतर अभिधारणा ) यह सत्य है कि, यदि कोई सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के बहुभुज को दो समकोणों से कम बनाती है, जिससे दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस ओर रेखा का चौराहा बन जाता है। जो दो समकोणों से कम कोण होते हैं।
सामान्य धारणाएं
  1. जो वस्तुएँ एक ही वस्तु के बराबर होती हैं वे आपस में भी बराबर होती हैं।
  2. यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।
  3. यदि बराबर को बराबर में से घटाया जाए, तो शेषफल बराबर होता है।
  4. जो चीजें एक दूसरे से मेल खाती हैं वे एक दूसरे के बराबर होती हैं।
  5. संपूर्ण भाग से बड़ा है।

आधुनिक विकास

पिछले 150 वर्षों में गणित द्वारा सीखा गया एक परिणाम यह है कि गणितीय अभिकथनों (स्वयंसिद्ध, अभिधारणाएं, प्रस्तावपूर्वक तर्क, प्रमेय) और परिभाषाओं से अर्थ को भिन्न करना उपयोगी है। किसी भी अध्ययन में पुरानी धारणाओं, या अपरिभाषित शब्दों या अवधारणाओं की आवश्यकता को स्वीकार करना चाहिए। इस प्रकार के अमूर्त या औपचारिकता गणितीय ज्ञान को अधिक सामान्य, कई भिन्न -भिन्न अर्थों में सक्षम बनाता है, और इसलिए कई संदर्भों में उपयोगी होता है। इस आंदोलन में एलेसेंड्रो पडोआ, मारियो पियरी और जोसेफ पीनो अग्रणी थे।

संरचनावादी गणित और आगे जाता है, और बिना किसी विशेष अनुप्रयोग को ध्यान में रखे सिद्धांतों और स्वयंसिद्ध (जैसे क्षेत्र सिद्धांत (गणित), समूह (गणित), टोपोलॉजिकल स्पेस, रैखिक स्थान) को विकसित करता है। एक स्वयंसिद्ध और अभिधारणा के बीच का अंतर लुप्त हो जाता है। यूक्लिड की अभिधारणाएँ लाभप्रद रूप से यह कहकर प्रेरित हैं कि वे ज्यामितीय तथ्यों की एक बड़ी संपदा की ओर ले जाती हैं। इन सम्मिश्र तथ्यों की सत्यता आधारभूत परिकल्पनाओं की स्वीकृति पर निर्भर करती है। चूँकि, यूक्लिड की पांचवीं अभिधारणा को बाहर निकालकर, ऐसे सिद्धांत प्राप्त किए जा सकते हैं जिनका व्यापक संदर्भों में अर्थ है (जैसे, अतिशयोक्तिपूर्ण ज्यामिति)। जैसे, किसी को भी अधिक लचीलेपन के साथ लाइन और समानांतर जैसे लेबलों का उपयोग करने के लिए तैयार रहना चाहिए। अतिशयोक्तिपूर्ण ज्यामिति के विकास ने गणितज्ञों को यह सिखाया कि अभिधारणाओं को विशुद्ध रूप से औपचारिक कथनों के रूप में मानना ​​उपयोगी है, न कि अनुभव पर आधारित तथ्यों के रूप में।

जब गणितज्ञ क्षेत्र के स्वयंसिद्धों को नियोजित करते हैं, तब संकल्प और भी अधिक अमूर्त होते हैं। क्षेत्र सिद्धांत के प्रस्ताव किसी एक विशेष अनुप्रयोग से संबंधित नहीं हैं; गणितज्ञ अब पूर्ण अमूर्तता में काम करता है। खेतों के कई उदाहरण हैं; क्षेत्र सिद्धांत उन सभी के बारे में सही जानकारी देती है।

यह कहना सही नहीं है कि क्षेत्र सिद्धांत के स्वयंसिद्ध ऐसे प्रस्ताव हैं जिन्हें बिना प्रमाण के सत्य माना जाता है। बल्कि, क्षेत्र स्वयंसिद्ध बाधाओं का एक समूह है। यदि जोड़ और गुणा की कोई भी प्रणाली इन बाधाओं को संतुष्ट करती है, तो कोई इस प्रणाली के बारे में अतिरिक्त जानकारी को तुरंत जानने की स्थिति में है।

आधुनिक गणित अपनी नींव को इस सीमा तक औपचारिक रूप देता है कि गणितीय सिद्धांतों को गणितीय वस्तुओं के रूप में माना जा सकता है, और स्वयं गणित को तर्क की एक शाखा के रूप में माना जा सकता है। फ्रीज, बर्ट्रेंड रसेल , पॉइंकेयर, डेविड हिल्बर्ट और गोडेल इस विकास के कुछ प्रमुख व्यक्ति हैं।

आधुनिक गणित में सीखा गया एक और प्रमाण छिपी धारणाओं के लिए कथित परिणामो की सावधानी से जांच करना है।

आधुनिक समझ में, स्वयंसिद्धों का एक समूह औपचारिक रूप से घोषित अभिकथनों का कोई भी वर्ग (सेट सिद्धांत) है जिससे अन्य औपचारिक रूप से कथित अभिकथनों का पालन होता है - कुछ अच्छी तरह से परिभाषित नियमों के अनुप्रयोग द्वारा। इस दृष्टि से तर्क मात्र एक अन्य औपचारिक प्रणाली बन जाता है। स्वयंसिद्धों का एक समूह सुसंगत होना चाहिए; स्वयंसिद्धों से विरोधाभास प्राप्त करना असंभव होना चाहिए। स्वयंसिद्धों का एक समूह गैर-निरर्थक भी होना चाहिए; एक अभिकथन जिसे अन्य अभिगृहीतों से निकाला जा सकता है, उसे अभिगृहीत नहीं माना जाना चाहिए।

यह आधुनिक तर्कशास्त्रियों की प्रारंभिक आशा थी कि गणित की विभिन्न शाखाएँ, शायद गणित की सभी शाखाएँ, बुनियादी स्वयंसिद्धों के एक सुसंगत संग्रह से प्राप्त की जा सकती हैं। औपचारिक कार्यक्रम की प्रारंभिक सफलता हिल्बर्ट की औपचारिकता थी[lower-alpha 2] यूक्लिडियन ज्यामिति का,[10] और उन सूक्तियों की संगति का संबंधित प्रदर्शन।

एक व्यापक संदर्भ में, सभी गणित को जॉर्ज कैंटर | कैंटर के समूह सिद्धांत पर आधारित करने का प्रयास किया गया था। यहां, रसेल के विरोधाभास और भोली समूह सिद्धांत के समान विरोधाभासों के उद्भव ने इस संभावना को बढ़ा दिया कि ऐसी कोई भी प्रणाली असंगत हो सकती है।

औपचारिकतावादी परियोजना को एक निर्णायक झटका लगा, जब 1931 में गोडेल ने दिखाया कि यह संभव है, पर्याप्त रूप से स्वयंसिद्धों के बड़े समूह के लिए (पीनो अंकगणित | पियानो के स्वयंसिद्ध, उदाहरण के लिए) एक चर्चा का निर्माण करने के लिए जिसकी सच्चाई स्वयंसिद्धों के उस समूह से स्वतंत्र है। एक परिणाम के रूप में, गोडेल ने प्रमाणित किया कि पीनो अंकगणित जैसे सिद्धांत की निरंतरता उस सिद्धांत के मंडल में एक अप्रमाणित अभिकथन है।[11] पीनो अंकगणित की निरंतरता में विश्वास करना उचित है क्योंकि यह प्राकृतिक संख्याओं की प्रणाली से संतुष्ट है, एक अनंत समूह लेकिन सहज रूप से सुलभ औपचारिक प्रणाली है। चूँकि , वर्तमान में, समूह सिद्धांत के लिए आधुनिक ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की निरंतरता को प्रदर्शित करने का कोई ज्ञात उपयोग नहीं है। इसके अतिरिक्त, बलपूर्वक (पॉल कोहेन) की तकनीकों का उपयोग करके कोई भी दिखा सकता है कि सातत्य परिकल्पना (कैंटर) ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों से स्वतंत्र है।[12] इस प्रकार, अभिगृहीतों के इस अति सामान्य समुच्चय को भी गणित का निश्चित आधार नहीं माना जा सकता है।

अन्य विज्ञान

प्रायोगिक विज्ञान - गणित और तर्क के विपरीत - में सामान्य संस्थापक अभिकथन भी होते हैं जिससे एक निगमनात्मक तर्क का निर्माण किया जा सकता है ताकि उन प्रस्तावों को व्यक्त किया जा सके जो गुणों की भविष्यवाणी करते हैं - या तो अभी भी सामान्य या एक विशिष्ट प्रयोगात्मक संदर्भ के लिए बहुत अधिक विशिष्ट हैं। उदाहरण के लिए, शास्त्रीय यांत्रिकी में न्यूटन के नियम, शास्त्रीय विद्युत चुंबकत्व में मैक्सवेल के समीकरण, सामान्य सापेक्षता में आइंस्टीन के समीकरण, जेनेटिक्स के मेंडल के नियम, डार्विन के प्राकृतिक चयन कानून, आदि। इन संस्थापक अभिकथनों को सामान्यतः सिद्धांत कहा जाता है जिससे गणितीय स्वयंसिद्धों से भिन्न किया जा सके।

तथ्यों की बात करें तो गणित में अभिगृहीतों की भूमिका और प्रयोगात्मक विज्ञानों में अभिधारणाओं की भूमिका भिन्न-भिन्न है। गणित में कोई स्वयंसिद्ध को न तो सिद्ध करता है और न ही असिद्ध करता है। गणितीय स्वयंसिद्धों का एक समूह नियमों का समूह देता है जो एक वैचारिक क्षेत्र को ठीक करता है, जिसमें प्रमेय तार्किक रूप से अनुसरण करते हैं। इसके विपरीत, प्रायोगिक विज्ञानों में, अभिधारणाओं का एक समूह उन परिणामों को निकालने की अनुमति देगा जो प्रयोगात्मक परिणामों से मेल खाते हैं या मेल नहीं खाते हैं। यदि अभिधारणाएं प्रयोगात्मक भविष्यवाणियों को निकालने की अनुमति नहीं देती हैं, तो वे एक वैज्ञानिक वैचारिक रूपरेखा निर्धारित नहीं करते हैं और उन्हें पूर्ण या अधिक त्रुटिहीन बनाना पड़ता है। यदि अभिगृहीत प्रायोगिक परिणामों के पूर्वानुमान निकालने की अनुमति देते हैं, तो प्रयोगों के साथ तुलना उस सिद्धांत को मिथ्या सिद्ध करने (मिथ्याकरण) की अनुमति देती है जिसे अभिधारणा स्थापित करती है। एक सिद्धांत को तब तक मान्य माना जाता है जब तक कि उसे गलत प्रमाणित नहीं किया गया हो।

अब, गणितीय स्वयंसिद्धों और वैज्ञानिक अभिधारणाओं के बीच संक्रमण हमेशा थोड़ा धुंधला होता है, विशेष रूप से भौतिकी में। यह भौतिक सिद्धांतों का समर्थन करने के लिए गणितीय उपकरणों के भारी उपयोग के कारण है। उदाहरण के लिए, न्यूटन के नियमों का परिचय शायद ही कभी एक पूर्वापेक्षा के रूप में स्थापित होता है न तो यूक्लिडियन ज्यामिति या अंतर कलन जो कि वे लागू करते हैं। यह और अधिक स्पष्ट हो गया जब अल्बर्ट आइंस्टीन ने पहली बार विशेष सापेक्षता का परिचय दिया जहां अपरिवर्तनीय मात्रा यूक्लिडियन लंबाई (के रूप में परिभाषित किया गया है ) से अधिक नहीं है लेकिन मिन्कोवस्की अंतरिक्ष-समय अंतराल (के रूप में परिभाषित किया गया है ), और फिर सामान्य सापेक्षता जहां फ्लैट मिन्कोस्कीयन ज्यामिति को घुमावदार कई गुना पर छद्म-रीमैनियन ज्यामिति के साथ बदल दिया गया है।

क्वांटम भौतिकी में, अभिधारणाओं के दो समुच्चय कुछ समय के लिए सह-अस्तित्व में रहे हैं, जो मिथ्याकरण का एक बहुत अच्छा उदाहरण प्रदान करते हैं। 'कोपेनहेगन व्याख्या' (नील्स बोह्र, वर्नर हाइजेनबर्ग, मैक्स बोर्न) ने एक पूर्ण गणितीय औपचारिकता के साथ एक परिचालन दृष्टिकोण विकसित किया जिसमें एक वियोज्य हिल्बर्ट अंतरिक्ष में वैक्टरों ('राज्यों') द्वारा क्वांटम प्रणाली का विवरण सम्मिलित है, और रैखिक ऑपरेटरों के रूप में भौतिक मात्राएं सम्मिलित हैं। जो इस हिल्बर्ट अंतरिक्ष में कार्य करता है। यह दृष्टिकोण पूरी तरह से मिथ्या है और इसने अब तक भौतिकी में सबसे त्रुटिहीन भविष्यवाणियां की हैं। लेकिन इसमें स्वाभाविक रूप से पूछे जाने वाले प्रश्नों के उत्तर की अनुमति नहीं देने का असंतोषजनक पहलू है। इस कारण से, अल्बर्ट आइंस्टीन, इरविन श्रोडिंगर, डेविड बोहम द्वारा कुछ समय के लिए एक और 'छिपी-चर सिद्धांत' दृष्टिकोण विकसित किया गया था। इसे इसलिए बनाया गया था जिससे क्वांटम उलझाव जैसी परिघटनाओं को नियतात्मक स्पष्टीकरण देने की कोशिश की जा सके। इस दृष्टिकोण ने माना कि कोपेनहेगन स्कूल का विवरण पूरा नहीं था, और यह माना कि कुछ अभी तक अज्ञात चर को सिद्धांत में जोड़ा जाना था जिससे कुछ ऐसे प्रश्नों का उत्तर देने की अनुमति मिल सके जिनका वह उत्तर नहीं देता है (जिनके संस्थापक तत्वों पर ईपीआर के रूप में चर्चा की गई थी) 1935 में विरोधाभास)। इस विचार को गंभीरता से लेते हुए, जॉन स्टीवर्ट बेल ने 1964 में एक भविष्यवाणी की, जो कोपेनहेगन और छिपे हुए चर स्थिति में विभिन्न प्रयोगात्मक परिणामों (बेल की असमानताओं) को जन्म देगी। प्रयोग पहली बार 1980 के दशक की शुरुआत में एलेन पहलू द्वारा आयोजित किया गया था, और परिणाम ने सरल छिपे हुए चर दृष्टिकोण को छोड़ दिया (परिष्कृत छिपे हुए चर अभी भी सम्मलित हो सकते हैं लेकिन उनके गुण अभी भी उन समस्याओं से अधिक परेशान करने वाले होंगे जिन्हें वे समाधान करने का प्रयास करते हैं)। इसका आशय यह नहीं है कि क्वांटम भौतिकी के वैचारिक ढांचे को अब पूर्ण माना जा सकता है, क्योंकि कुछ खुले प्रश्न अभी भी सम्मलित हैं (क्वांटम और शास्त्रीय क्षेत्रों के बीच की सीमा, क्वांटम मापन के दौरान क्या होता है, पूरी तरह से बंद क्वांटम प्रणाली में क्या होता है जैसे ब्रह्मांड के रूप में ही, आदि)।

गणितीय तर्क

गणितीय तर्क के क्षेत्र में, स्वयंसिद्धों की दो धारणाओं के बीच एक स्पष्ट अंतर किया जाता है: तार्किक और गैर-तार्किक (कुछ सीमा तक क्रमशः स्वयंसिद्धों और अभिधारणाओं के बीच के प्राचीन भेद के समान है)।

तार्किक स्वयंसिद्ध

ये एक औपचारिक भाषा में कुछ सूत्र (गणितीय तर्क) हैं जो तनातनी (तर्क) हैं, अर्थात, ऐसे सूत्र जो मूल्यों के प्रत्येक कार्य (गणितीय तर्क) द्वारा संतोषजनक हैं। सामान्यतः कोई तार्किक सिद्धांत के रूप में कम से कम कुछ न्यूनतम समूह टॉटोलॉजी लेता है जो भाषा में सभी टॉटोलॉजी (तर्क) को सिद्ध करने के लिए पर्याप्त है; विधेय तर्क के स्थिति में उससे अधिक तार्किक स्वयंसिद्धों की आवश्यकता होती है, जिससे तार्किक सत्यों को सिद्ध किया जा सके जो सख्त अर्थों में पुनरुक्ति नहीं हैं।

उदाहरण

प्रस्तावात्मक तर्क

प्रस्तावपूर्वक तर्क में निम्नलिखित रूपों के सभी सूत्रों को तार्किक सिद्धांतों के रूप में लेना साधारण है, जहां , , तथा भाषा के सूत्र कोई भी हो सकते हैं और जहाँ सम्मिलित तार्किक संयोजक होंतुरंत निम्नलिखित प्रस्ताव की अस्वीकृति के लिए औरपूर्वगामी से परिणामी प्रस्तावों में सम्मलित होने के लिए:

इनमें से प्रत्येक पैटर्न एक स्वयंसिद्ध स्कीमा है, अनंत संख्या में स्वयंसिद्धों को उत्पन्न करने का नियम। उदाहरण के लिए, यदि , , तथा प्रस्तावात्मक चर हैं, फिर तथा दोनों अभिगृहीत स्कीमा 1 के उदाहरण हैं, और इसलिए अभिगृहीत हैं। यह दिखाया जा सकता है कि केवल इन तीन स्वयंसिद्ध स्कीमाटा और मोडस पोनेन्स के साथ, कोई व्यक्ति प्रस्ताविक कलन के सभी पुनरुत्पादन को सिद्ध कर सकता है। यह भी दिखाया जा सकता है कि इन स्कीमाटा की कोई भी जोड़ी मूड समूह करना के साथ सभी पुनरुत्पादन प्रमाणित करने के लिए पर्याप्त नहीं है।

आदिम संयोजकों के समान या भिन्न समूहों को सम्मलित करते हुए अन्य अभिगृहीत स्कीमाटा का वैकल्पिक रूप से निर्माण किया जा सकता है।[13]इन स्वयंसिद्ध स्कीमाटा का उपयोग विधेय कलन में भी किया जाता है, लेकिन कलन में एक परिमाणक को सम्मलित करने के लिए अतिरिक्त तार्किक स्वयंसिद्धों की आवश्यकता होती है।[14]


प्रथम-क्रम तर्क

समानता का सिद्धांत। पहले क्रम की भाषा होने देना। प्रत्येक चर के लिए , सूत्र

<डिव वर्ग = केंद्र>

सर्वमान्य है।

इसका आशय है कि, किसी भी मुक्त चर और बाध्य चर के लिए सूत्र एक स्वयंसिद्ध के रूप में माना जा सकता है। इसके अतिरिक्त, इस उदाहरण में, इसके लिए अस्पष्टता और आदिम धारणाओं की कभी न खत्म होने वाली श्रृंखला में न पड़ने के लिए, या तो आशय है कि एक त्रुटिहीन धारणा (या, उस स्थिति के लिए, बराबर होने के लिए) पहले अच्छी तरह से स्थापित होना चाहिए, या प्रतीक का विशुद्ध रूप से औपचारिक और वाक्य-विन्यास उपयोग लागू किया जाना है, केवल इसे एक स्ट्रिंग और केवल प्रतीकों की एक स्ट्रिंग के रूप में माना जाता है, और गणितीय तर्क वास्तव में ऐसा करता है।

एक और, अधिक दिलचस्प उदाहरण स्वयंसिद्ध योजना, वह है जो हमें वह प्रदान करती है जिसे सार्वभौमिक तात्कालिकता के रूप में जाना जाता हैI

सार्वभौमिक तात्कालिकता के लिए स्वयंसिद्ध योजना। एक सूत्र दिया पहले क्रम की भाषा में , एक परिवर्तनीय और एक प्रथम क्रम तर्क शर्तें वह प्रथम-क्रम तर्क है अनुमान के नियम में , सूत्र

<डिव वर्ग = केंद्र>

सर्वमान्य है।

जहां प्रतीक सूत्र के लिए खड़ा है अवधि के साथ इसके लिए प्रतिस्थापित . (चरों का प्रतिस्थापन देखें।) अनौपचारिक शब्दों में, यह उदाहरण हमें यह बताने की अनुमति देता है कि, यदि हम जानते हैं कि एक निश्चित संपत्ति प्रत्येक के लिए रखता है और कि हमारी संरचना में किसी विशेष वस्तु के लिए खड़ा है, तो हमें आशय करने में सक्षम होना चाहिए . फिर से, हम आशय कर रहे हैं कि सूत्र वैध है, अर्थात्, हमें इस तथ्य का प्रमाण देने में सक्षम होना चाहिए, या अधिक ठीक से बोलना, एक मेटाप्रूफ। ये उदाहरण गणितीय तर्क के हमारे सिद्धांत के रूपक हैं क्योंकि हम स्वयं प्रमाण की अवधारणा के साथ काम कर रहे हैं। इसके अतिरिक्त, हम 'अस्तित्ववादी सामान्यीकरण' भी कर सकते हैं:

'अस्तित्व के सामान्यीकरण के लिए स्वयंसिद्ध योजना।' एक सूत्र दिया पहले क्रम की भाषा में , एक परिवर्तनीय और एक शब्द कि के लिए प्रतिस्थापन योग्य है में , सूत्र

<डिव वर्ग = केंद्र>

सर्वमान्य है।

गैर-तार्किक स्वयंसिद्ध

अतार्किक अभिगृहीत ऐसे सूत्र हैं जो सिद्धांत-विशिष्ट मान्यताओं की भूमिका निभाते हैं। दो भिन्न -भिन्न संरचनाओं के बारे में तर्क, उदाहरण के लिए, प्राकृतिक संख्याएँ और पूर्णांक, एक ही तार्किक स्वयंसिद्धों को सम्मिलित कर सकते हैं; गैर-तार्किक स्वयंसिद्धों का उद्देश्य किसी विशेष संरचना (या संरचनाओं के समूह, जैसे समूह (बीजगणित) के बारे में क्या मुख्य है, पर स्वत्व करना है। इस प्रकार गैर-तार्किक स्वयंसिद्ध, तार्किक स्वयंसिद्धों के विपरीत, 'टॉटोलॉजी (तर्क)' नहीं हैं। एक गैर-तार्किक स्वयंसिद्ध का दूसरा नाम अभिधारणा है।[15] लगभग हर आधुनिक गणितीय सिद्धांत गैर-तार्किक स्वयंसिद्धों के दिए गए समूह से शुरू होता है, और यह था[further explanation needed] सोच सिद्धांत रूप में प्रत्येक सिद्धांत को इस तरह स्वयंसिद्ध किया जा सकता है और तार्किक सूत्रों की नंगे भाषा में औपचारिक रूप दिया जा सकता है।गैर-तार्किक स्वयंसिद्धों को प्रायः गणितीय प्रवचन में केवल स्वयंसिद्धों के रूप में संदर्भित किया जाता है। इसका तातपर्य यह नहीं है कि यह आशय किया जाता है कि वे कुछ पूर्ण अर्थों में सत्य हैं। उदाहरण के लिए, कुछ समूहों में, समूह संक्रिया विनिमेय है, और इसे एक अतिरिक्त अभिगृहीत की शुरूआत के साथ मुखरित किया जा सकता है, लेकिन इस अभिगृहीत के बिना, हम काफी अच्छी तरह से विकसित (अधिक सामान्य) समूह सिद्धांत कर सकते हैं, और हम यहां तक ​​कि ले सकते हैं गैर-विनिमेय समूहों के अध्ययन के लिए एक स्वयंसिद्ध के रूप में इसका निषेध।

इस प्रकार, एक स्वयंसिद्ध एक औपचारिक प्रणाली तार्किक प्रणाली के लिए एक प्रारंभिक आधार है जो एक साथ अनुमान के नियमों के साथ एक 'कटौती प्रणाली' को परिभाषित करता है।

उदाहरण

यह खंड गणितीय सिद्धांतों का उदाहरण देता है जो पूरी तरह से गैर-तार्किक स्वयंसिद्धों (स्वयंसिद्ध, अब से) के एक समूह से विकसित किए गए हैं। इनमें से किसी भी विषय का कठोर उपचार इन स्वयंसिद्धों के विनिर्देशन से शुरू होता है।

मूल सिद्धांत, जैसे कि अंकगणित, वास्तविक विश्लेषण और सम्मिश्र विश्लेषण को प्रायः गैर-स्वयंसिद्ध रूप से प्रस्तावित किया जाता है, लेकिन स्पष्ट रूप से या स्पष्ट रूप से सामान्यतः एक धारणा है कि उपयोग किए जा रहे स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समूह सिद्धांत के स्वयंसिद्ध विकल्प हैं, संक्षिप्त जेडएफसी, या कुछ स्वयंसिद्ध समूह सिद्धांत की बहुत समान प्रणाली जैसे वॉन न्यूमैन-बर्नेज़-गोडेल समूह सिद्धांत, जेडएफसी का एक रूढ़िवादी विस्तार। कभी-कभी मोर्स-केली समूह सिद्धांत या ग्रोथेंडिक ब्रह्मांड के उपयोग की अनुमति देने वाले दृढ़ता से दुर्गम कार्डिनल के साथ समूह सिद्धांत जैसे थोड़े मजबूत सिद्धांतों का उपयोग किया जाता है, लेकिन वास्तव में, अधिकांश गणितज्ञ वास्तव में जेडएफसी से कमजोर प्रणाली में सभी की आवश्यकता को प्रमाणित कर सकते हैं, जैसे कि दूसरा -आदेश अंकगणित। गणित में टोपोलॉजी का अध्ययन बिंदु समूह टोपोलॉजी, बीजगणितीय टोपोलॉजी, अंतर टोपोलॉजी और सभी संबंधित सामग्री, जैसे समरूपता सिद्धांत, होमोटॉपी सिद्धांत के माध्यम से होता है। अमूर्त बीजगणित का विकास अपने साथ समूह सिद्धांत, वलय (गणित), क्षेत्र (गणित) और गैलोज़ सिद्धांत लेकर आया।

गणित के अधिकांश क्षेत्रों को सम्मलित करने के लिए इस सूची का विस्तार किया जा सकता है, जिसमें माप सिद्धांत, एर्गोडिक सिद्धांत, संभाव्यता, प्रतिनिधित्व सिद्धांत और अंतर ज्यामिति सम्मलित हैं।

अंकगणित

पीआनो स्वयंसिद्ध प्रथम-क्रम अंकगणित का सबसे व्यापक रूप से उपयोग किया जाने वाला स्वयंसिद्ध है। वे संख्या सिद्धांत के बारे में कई महत्वपूर्ण तथ्यों को प्रमाणित करने के लिए काफी मजबूत स्वयंसिद्धों का एक समूह हैं और उन्होंने गोडेल को अपने प्रसिद्ध गोडेल की दूसरी अपूर्णता प्रमेय को स्थापित करने की अनुमति दी।[16] हमारे पास एक भाषा है जहाँ एक स्थिर प्रतीक है और एक एकल कार्य है और निम्नलिखित स्वयंसिद्ध हैं:

  1. किसी के लिए सूत्र एक मुक्त चर के साथ।

मानक संरचना है जहाँ प्राकृतिक संख्याओं का समुच्चय है, उत्तराधिकारी कार्य है और स्वाभाविक रूप से संख्या 0 के रूप में व्याख्या की जाती है।

यूक्लिडियन ज्यामिति

संभवतः सबसे पुराना, और सबसे प्रसिद्ध, अभिगृहीतों की सूची यूक्लिडियन ज्यामिति के 4 + 1 यूक्लिड की अभिधारणाएं हैं। स्वयंसिद्धों को 4 + 1 के रूप में संदर्भित किया जाता है क्योंकि लगभग दो सहस्राब्दी के लिए समानांतर अभिधारणा|पांचवां (समानांतर) अभिधारणा (एक रेखा के बाहर एक बिंदु के माध्यम से बिल्कुल एक समानांतर होता है) को पहले चार से व्युत्पन्न होने का संदेह था। अंततः, पाँचवीं अभिधारणा प्रथम चार अभिधारणा से स्वतंत्र पाई गई। कोई यह मान सकता है कि एक रेखा के बाहर एक बिंदु के माध्यम से ठीक एक समानांतर सम्मलितहै, या असीम रूप से कई सम्मलित हैं। यह विकल्प हमें ज्यामिति के दो वैकल्पिक रूप देता है जिसमें त्रिभुज के आंतरिक कोण क्रमशः 180 डिग्री या उससे कम तक जुड़ते हैं, और यूक्लिडियन और हाइपरबोलिक ज्यामिति के रूप में जाने जाते हैं। यदि कोई दूसरी अवधारणा को भी हटा देता है (एक रेखा को अनिश्चित काल तक बढ़ाया जा सकता है) तो अण्डाकार ज्यामिति उत्पन्न होती है, जहां एक रेखा के बाहर एक बिंदु के माध्यम से कोई समानांतर नहीं होता है, और जिसमें त्रिभुज के आंतरिक कोण 180 डिग्री से अधिक तक जुड़ते हैं।

वास्तविक विश्लेषण

अध्ययन के उद्देश्य वास्तविक संख्या के कुंडल में हैं। डेडेकिंड पूर्ण आदेशित क्षेत्र के गुणों द्वारा वास्तविक संख्याओं को विशिष्ट रूप से (समरूपता तक) चुना जाता है, जिसका अर्थ है कि ऊपरी सीमा के साथ वास्तविक संख्याओं के किसी भी गैर-खाली समूह में कम से कम ऊपरी सीमा होती है। चूंकि, इन गुणों को स्वयंसिद्धों के रूप में व्यक्त करने के लिए दूसरे क्रम के तर्क के उपयोग की आवश्यकता होती है। लोवेनहाइम-स्कोलेम प्रमेय हमें बताते हैं कि यदि हम स्वयं को पहले क्रम के तर्क तक सीमित रखते हैं, तो वास्तविक के लिए कोई भी स्वयंसिद्ध प्रणाली अन्य मॉडलों को स्वीकार करती है, जिसमें वास्तविक से छोटे मॉडल और बड़े मॉडल दोनों सम्मलितहैं। उत्तरार्द्ध में से कुछ का अध्ययन गैर-मानक विश्लेषण में किया जाता है।

वियोजक प्रणाली और पूर्णता

एक कटौती प्रणाली में एक समूह होता है तार्किक स्वयंसिद्धों का, एक समूह   गैर-तार्किक सिद्धांतों और एक समूह का अनुमान के नियमों का। एक कटौतीत्मक प्रणाली की एक वांछनीय संपत्ति यह है कि यह 'पूर्ण' हो। एक प्रणाली को पूर्ण कहा जाता है यदि, सभी सूत्रों के लिए , <डिव वर्ग = केंद्र>

अर्थात्, किसी भी कथन के लिए जो तार्किक परिणाम है वहाँ वास्तव में से वर्णन की कटौती सम्मलितहै . यह कभी-कभी व्यक्त किया जाता है कि जो कुछ भी सत्य है वह सिद्ध होता है, लेकिन यह समझना चाहिए कि यहाँ सत्य का अर्थ स्वयंसिद्धों के समूह  द्वारा सत्य बनाया गया है, न कि, उदाहरण के लिए, अभीष्ट व्याख्या में सत्य है। गोडेल की पूर्णता प्रमेय एक निश्चित प्रकार की निगमनात्मक प्रणाली की पूर्णता को स्थापित करती है।

ध्यान दें कि गोडेल की पहली अपूर्णता प्रमेय के संदर्भ में पूर्णता का एक भिन्न अर्थ है, जो बताता है कि गैर-तार्किक स्वयंसिद्धों का कोई पुनरावर्ती, सुसंगत समूह  नहीं है अंकगणित का सिद्धांत पूर्ण है, इस अर्थ में कि हमेशा एक अंकगणितीय कथन सम्मलित रहेगा ऐसा नहीं है दिए गए अभिगृहीतों के समुच्चय से सिद्ध किया जा सकता है।

इस प्रकार, एक ओर, एक निगमनात्मक प्रणाली की पूर्णता की धारणा है और दूसरी ओर गैर-तार्किक स्वयंसिद्धों के एक समूह  की पूर्णता की। पूर्णता प्रमेय और अपूर्णता प्रमेय, उनके नामों के अतिरिक्त, एक दूसरे का खंडन नहीं करते हैं।

आगे की चर्चा

प्रारंभिक गणितज्ञों ने ज्यामिति की नींव को भौतिक स्थान के एक मॉडल के रूप में माना, और जाहिर है, ऐसा केवल एक ही मॉडल हो सकता है। यह विचार कि वैकल्पिक गणितीय प्रणालियाँ सम्मलित हो सकती हैं, 19वीं दशक के गणितज्ञों के लिए बहुत परेशान करने वाला था और बूलियन बीजगणित (तर्क) जैसी प्रणालियों के विकासकर्ताओं ने उन्हें पारंपरिक अंकगणित से प्राप्त करने के लिए विस्तृत प्रयास किए। इवरिस गाल्वा ने अपनी असामयिक मृत्यु से ठीक पहले दिखाया कि ये प्रयास काफी हद तक व्यर्थ गए। अंततः, बीजगणितीय प्रणालियों के बीच अमूर्त समानांतरों को विवरणों की तुलना में अधिक महत्वपूर्ण माना गया, और सार बीजगणित का जन्म हुआ। आधुनिक दृष्टि से, अभिगृहीत सूत्रों का कोई भी समुच्चय हो सकता है, जब तक कि वे असंगत न हों।

यह भी देखें

टिप्पणियाँ

  1. Although not complete; some of the stated results did not actually follow from the stated postulates and common notions.
  2. Hilbert also made explicit the assumptions that Euclid used in his proofs but did not list in his common notions and postulates.

संदर्भ

  1. Cf. axiom, n., etymology. Oxford English Dictionary, accessed 2012-04-28.
  2. Oxford American College Dictionary: "n. a statement or proposition that is regarded as being established, accepted, or self-evidently true. ORIGIN: late 15th cent.: ultimately from Greek axiōma 'what is thought fitting,' from axios 'worthy.' HighBeam[dead link] (subscription required)
  3. "A proposition that commends itself to general acceptance; a well-established or universally conceded principle; a maxim, rule, law" axiom, n., definition 1a. Oxford English Dictionary Online, accessed 2012-04-28. Cf. Aristotle, Posterior Analytics I.2.72a18-b4.
  4. "A proposition (whether true or false)" axiom, n., definition 2. Oxford English Dictionary Online, accessed 2012-04-28.
  5. See for example Maddy, Penelope (Jun 1988). "Believing the Axioms, I". Journal of Symbolic Logic. 53 (2): 481–511. doi:10.2307/2274520. JSTOR 2274520. for a realist view.
  6. 6.0 6.1 "स्वयंसिद्ध - द यूनिवर्सल एनसाइक्लोपीडिया ऑफ़ फिलॉसफी" (PDF). Polskie Towarzystwo Tomasza z Akwinu. Archived (PDF) from the original on 2022-10-09.
  7. Wolff, P. Breakthroughs in Mathematics, 1963, New York: New American Library, pp 47–48
  8. Heath, T. 1956. The Thirteen Books of Euclid's Elements. New York: Dover. p 200
  9. Aristotle, Metaphysics Bk IV, Chapter 3, 1005b "Physics also is a kind of Wisdom, but it is not the first kind. – And the attempts of some of those who discuss the terms on which truth should be accepted, are due to want of training in logic; for they should know these things already when they come to a special study, and not be inquiring into them while they are listening to lectures on it." W.D. Ross translation, in The Basic Works of Aristotle, ed. Richard McKeon, (Random House, New York, 1941)
  10. For more, see Hilbert's axioms.
  11. Raatikainen, Panu (2018), "Gödel's Incompleteness Theorems", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-10-19
  12. Koellner, Peter (2019), "The Continuum Hypothesis", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Spring 2019 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-10-19
  13. Mendelson, "6. Other Axiomatizations" of Ch. 1
  14. Mendelson, "3. First-Order Theories" of Ch. 2
  15. Mendelson, "3. First-Order Theories: Proper Axioms" of Ch. 2
  16. Mendelson, "5. The Fixed Point Theorem. Gödel's Incompleteness Theorem" of Ch. 2


अग्रिम पठन

  • Mendelson, Elliot (1987). Introduction to mathematical logic. Belmont, California: Wadsworth & Brooks.

बाहरी संबंध