द्रव: Difference between revisions

From Vigyanwiki
Line 51: Line 51:


=== वॉल्यूम ===
=== वॉल्यूम ===
[[File:Cavitating-prop.jpg|thumb|एक नाव प्रोपेलर से पानी में गुहिकायन]]द्रवों की [[ मात्रा ]] को आयतन की इकाइयों में मापा जाता है। इनमें यूनिट क्यूबिक मीटर (एम .) की अंतर्राष्ट्रीय प्रणाली शामिल है<sup>3</sup>) और इसके विभाजन, विशेष रूप से घन डेसीमीटर, जिसे आमतौर पर लीटर (1 डीएम) कहा जाता है<sup>3</sup> = 1 एल = 0.001 मी<sup>3</sup>), और घन सेंटीमीटर, जिसे मिलीलीटर (1 सेमी . भी कहा जाता है)<sup>3</sup> = 1 एमएल = 0.001 एल = 10<sup>−6</sup> मी<sup>3</सुप>)।<ref>{{Citation |last1    = Knight
[[File:Cavitating-prop.jpg|thumb|एक नाव प्रोपेलर से पानी में गुहिकायन]]द्रवों की [[ मात्रा ]] को आयतन की इकाइयों में मापा जाता है। इनमें यूनिट क्यूबिक मीटर (एम .) की अंतर्राष्ट्रीय प्रणाली शामिल है<sup>3</sup>) और इसके विभाजन, विशेष रूप से घन डेसीमीटर, जिसे आमतौर पर लीटर (1 डीएम) कहा जाता है<sup>3</sup> = 1 एल = 0.001 मी<sup>3</sup>), और घन सेंटीमीटर, जिसे मिलीलीटर (1 सेमी . भी कहा जाता है)<sup>3</sup> = 1 एमएल = 0.001 एल = 10<sup>−6</sup> मी<sup>3</sup>)।<ref>{{Citation |last1    = Knight
  |first1    = Randall D.
  |first1    = Randall D.
  |title    = Physics for Scientists and Engineers: A Strategic Approach (With Modern Physics)
  |title    = Physics for Scientists and Engineers: A Strategic Approach (With Modern Physics)
Line 72: Line 72:
हालांकि, नगण्य संपीड्यता अन्य घटनाओं को जन्म देती है। पाइपों की टक्कर, जिसे [[ पानी के पाइप के अंदर आवाज ]] कहा जाता है, तब होता है जब एक वाल्व अचानक बंद हो जाता है, जिससे वाल्व पर एक बड़ा दबाव-स्पाइक बन जाता है जो ध्वनि की गति के तहत सिस्टम के माध्यम से पीछे की ओर यात्रा करता है। तरल की असंपीड़ता के कारण होने वाली एक अन्य घटना [[ गुहिकायन ]] है। चूंकि तरल पदार्थों में थोड़ा [[ लोच (भौतिकी) ]] होता है, इसलिए उन्हें सचमुच उच्च अशांति या दिशा में नाटकीय परिवर्तन के क्षेत्रों में अलग किया जा सकता है, जैसे नाव प्रोपेलर के पीछे के किनारे या पाइप में एक तेज कोने। कम दबाव (वैक्यूम) के क्षेत्र में एक तरल वाष्पीकृत हो जाता है और बुलबुले बनाता है, जो उच्च दबाव वाले क्षेत्रों में प्रवेश करते ही ढह जाते हैं। यह तरल को बुलबुले द्वारा छोड़े गए गुहाओं को जबरदस्त स्थानीयकृत बल से भरने का कारण बनता है, किसी भी आसन्न ठोस सतह को नष्ट कर देता है।<ref>''Fluid Mechanics and Hydraulic Machines'' by S. C. Gupta -- Dorling-Kindersley 2006 Page 85</ref>
हालांकि, नगण्य संपीड्यता अन्य घटनाओं को जन्म देती है। पाइपों की टक्कर, जिसे [[ पानी के पाइप के अंदर आवाज ]] कहा जाता है, तब होता है जब एक वाल्व अचानक बंद हो जाता है, जिससे वाल्व पर एक बड़ा दबाव-स्पाइक बन जाता है जो ध्वनि की गति के तहत सिस्टम के माध्यम से पीछे की ओर यात्रा करता है। तरल की असंपीड़ता के कारण होने वाली एक अन्य घटना [[ गुहिकायन ]] है। चूंकि तरल पदार्थों में थोड़ा [[ लोच (भौतिकी) ]] होता है, इसलिए उन्हें सचमुच उच्च अशांति या दिशा में नाटकीय परिवर्तन के क्षेत्रों में अलग किया जा सकता है, जैसे नाव प्रोपेलर के पीछे के किनारे या पाइप में एक तेज कोने। कम दबाव (वैक्यूम) के क्षेत्र में एक तरल वाष्पीकृत हो जाता है और बुलबुले बनाता है, जो उच्च दबाव वाले क्षेत्रों में प्रवेश करते ही ढह जाते हैं। यह तरल को बुलबुले द्वारा छोड़े गए गुहाओं को जबरदस्त स्थानीयकृत बल से भरने का कारण बनता है, किसी भी आसन्न ठोस सतह को नष्ट कर देता है।<ref>''Fluid Mechanics and Hydraulic Machines'' by S. C. Gupta -- Dorling-Kindersley 2006 Page 85</ref>


[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from February 2021]]
[[Category:CS1]]
[[Category:Created On 02/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Pages with template loops]]


===दबाव और उत्प्लावकता ===
===दबाव और उत्प्लावकता ===

Revision as of 12:23, 11 November 2022

तरल पानी की एक गोलाकार बूंद (तरल) बनने से सतह क्षेत्र कम हो जाता है, जो तरल पदार्थों में सतह तनाव का प्राकृतिक परिणाम है।

एक तरल लगभग संपीड्यता द्रव है जो अपने कंटेनर के आकार के अनुरूप होता है लेकिन दबाव से स्वतंत्र (लगभग) स्थिर मात्रा को बरकरार रखता है। जैसे, यह पदार्थ की अवस्था # चार मूलभूत अवस्थाओं में से एक है (अन्य ठोस , गैस और प्लाज्मा (भौतिकी) हैं), और एक निश्चित आयतन वाला एकमात्र राज्य है लेकिन कोई निश्चित आकार नहीं है। एक तरल पदार्थ के छोटे कंपन कणों से बना होता है, जैसे कि परमाणु, अंतर-आणविक बंधों द्वारा एक साथ रखे जाते हैं। एक गैस की तरह, एक तरल प्रवाहित हो सकता है और एक कंटेनर का आकार ले सकता है। अधिकांश तरल पदार्थ संपीड़न का विरोध करते हैं, हालांकि अन्य को संपीड़ित किया जा सकता है। एक गैस के विपरीत, एक कंटेनर के हर स्थान को भरने के लिए एक तरल फैलता नहीं है, और काफी स्थिर घनत्व बनाए रखता है। तरल अवस्था की एक विशिष्ट संपत्ति सतह तनाव है, जिससे गीला पन होता है। पानी अब तक पृथ्वी पर सबसे आम तरल है।

एक तरल का घनत्व आमतौर पर एक ठोस के करीब होता है, और गैस की तुलना में बहुत अधिक होता है। इसलिए, तरल और ठोस दोनों को संघनित पदार्थ भौतिकी कहा जाता है। दूसरी ओर, चूंकि तरल पदार्थ और गैसें प्रवाह करने की क्षमता साझा करते हैं, इसलिए वे दोनों तरल पदार्थ कहलाते हैं। हालांकि तरल पानी पृथ्वी पर प्रचुर मात्रा में है, पदार्थ की यह अवस्था वास्तव में ज्ञात ब्रह्मांड में सबसे कम आम है, क्योंकि तरल पदार्थों को मौजूद रहने के लिए अपेक्षाकृत संकीर्ण तापमान/दबाव सीमा की आवश्यकता होती है। ब्रह्मांड में सबसे अधिक ज्ञात पदार्थ गैसीय रूप में है (पता लगाने योग्य ठोस पदार्थ के निशान के साथ) तारे के भीतर से तारे के बीच बादल या प्लाज्मा के रूप में।

परिचय

ठंडे पानी के साथ गर्म पानी से भरे एक सिंक की थर्मल छवि, जिसमें दिखाया गया है कि गर्म और ठंडा पानी एक दूसरे में कैसे बहता है।

तरल पदार्थ की अवस्था में से एक है, अन्य ठोस, गैस और प्लाज्मा (भौतिकी) हैं। एक तरल एक तरल है। एक ठोस के विपरीत, एक तरल में अणु ओं को गति करने की अधिक स्वतंत्रता होती है। एक ठोस में अणुओं को एक साथ बांधने वाली ताकतें तरल में केवल अस्थायी होती हैं, जिससे तरल प्रवाहित होता है जबकि ठोस कठोर रहता है।

तरल, गैस की तरह, द्रव के गुणों को प्रदर्शित करता है। एक तरल प्रवाहित हो सकता है, एक कंटेनर के आकार को ग्रहण कर सकता है, और, यदि एक सीलबंद कंटेनर में रखा जाता है, तो कंटेनर में प्रत्येक सतह पर समान रूप से लागू दबाव वितरित करेगा। यदि तरल को बैग में रखा जाता है, तो इसे किसी भी आकार में निचोड़ा जा सकता है। एक गैस के विपरीत, एक तरल लगभग असम्पीडित होता है, जिसका अर्थ है कि यह दबावों की एक विस्तृत श्रृंखला पर लगभग एक स्थिर मात्रा में रहता है; यह आम तौर पर एक कंटेनर में उपलब्ध स्थान को भरने के लिए विस्तारित नहीं होता है, लेकिन अपनी सतह बनाता है, और यह हमेशा किसी अन्य तरल के साथ आसानी से मिश्रण नहीं कर सकता है। ये गुण जलगति विज्ञान जैसे अनुप्रयोगों के लिए उपयुक्त तरल बनाते हैं।

तरल कण मजबूती से बंधे होते हैं लेकिन कठोरता से नहीं। वे एक दूसरे के चारों ओर स्वतंत्र रूप से घूमने में सक्षम हैं, जिसके परिणामस्वरूप सीमित मात्रा में कण गतिशीलता होती है। जैसे-जैसे तापमान बढ़ता है, अणुओं के बढ़े हुए कंपन के कारण अणुओं के बीच दूरियां बढ़ती हैं। जब कोई तरल अपने क्वथनांक तक पहुँच जाता है, तो अणुओं को एक साथ बाँधने वाली संयोजक शक्तियाँ टूट जाती हैं, और तरल अपनी गैसीय अवस्था में बदल जाता है (जब तक कि अति ताप न हो)। यदि तापमान कम हो जाता है, तो अणुओं के बीच की दूरी कम हो जाती है। जब तरल अपने गलनांक पर पहुंच जाता है तो अणु आमतौर पर एक बहुत ही विशिष्ट क्रम में बंद हो जाते हैं, जिसे क्रिस्टलीकरण कहा जाता है, और उनके बीच के बंधन अधिक कठोर हो जाते हैं, जिससे तरल अपनी ठोस अवस्था में बदल जाता है (जब तक कि सुपरकूलिंग न हो)।

उदाहरण

तापमान और दबाव के लिए मानक स्थितियों में केवल दो रासायनिक तत्व तरल होते हैं: पारा (तत्व) और ब्रोमिन चार और तत्वों के गलनांक कमरे के तापमान से थोड़ा ऊपर होते हैं: फ्रैनशियम , सीज़ियम , गैलियम और रूबिडीयाम [1] धातु मिश्र जो कमरे के तापमान पर तरल होते हैं, उनमें NaK , एक सोडियम-पोटेशियम धातु मिश्र धातु, गैलिस्टन, एक फ्यूज़िबल मिश्र धातु तरल, और कुछ अमलगम (रसायन विज्ञान) (पारा युक्त मिश्र धातु) शामिल हैं।

शुद्ध पदार्थ जो सामान्य परिस्थितियों में तरल होते हैं उनमें पानी, इथेनॉल और कई अन्य कार्बनिक सॉल्वैंट्स शामिल हैं। रसायन विज्ञान और जीव विज्ञान में तरल पानी का महत्वपूर्ण महत्व है; इसे जीवन के अस्तित्व के लिए एक आवश्यकता माना जाता है।

अकार्बनिक तरल पदार्थों में पानी, मैग्मा, अकार्बनिक गैर-जलीय सॉल्वैंट्स और कई अम्ल शामिल हैं।

महत्वपूर्ण रोजमर्रा के तरल पदार्थों में जलीय घोल जैसे घरेलू विरंजित करना , खनिज तेल और गैसोलीन जैसे विभिन्न पदार्थों के अन्य मिश्रण , विनाईग्रेटे या मेयोनेज़ जैसे पायसन , रक्त की तरह निलंबन (रसायन विज्ञान) और रंग और दूध जैसे कोलाइड शामिल हैं।

कई गैसें तरल ऑक्सीजन , तरल नाइट्रोजन , तरल हाइड्रोजन और तरल हीलियम जैसे तरल पदार्थ को ठंडा करके गैसों का द्रवीकरण हो सकती हैं। हालाँकि, वायुमंडलीय दबाव पर सभी गैसों को द्रवित नहीं किया जा सकता है। उदाहरण के लिए, कार्बन डाइआक्साइड को केवल 5.1 वायुमंडल (इकाई) से ऊपर के दबाव में ही द्रवित किया जा सकता है।[2] कुछ सामग्रियों को पदार्थ की शास्त्रीय तीन अवस्थाओं में वर्गीकृत नहीं किया जा सकता है। उदाहरण के लिए, तरल स्फ़टिक (लिक्विड क्रिस्टल डिस्प्ले में प्रयुक्त) में सॉलिड-समान और लिक्विड-जैसे दोनों गुण होते हैं, और लिक्विड या सॉलिड से अलग पदार्थ की अपनी स्थिति से संबंधित होते हैं।

आवेदन

एक लावा लैंप में दो अमिश्रणीय तरल पदार्थ (एक पिघला हुआ मोम और एक पानी का घोल) होता है जो संवहन के कारण गति को बढ़ाता है। ऊपरी सतह के अलावा, तरल पदार्थों के बीच सतहें भी बनती हैं, जिसके लिए तल पर मोम की बूंदों को फिर से संयोजित करने के लिए एक टेंशन ब्रेकर की आवश्यकता होती है।

स्नेहक , सॉल्वैंट्स और शीतलक के रूप में तरल पदार्थों के कई प्रकार के उपयोग होते हैं।

अन्य लॉजी में, तरल पदार्थों का अध्ययन स्नेहक के रूप में उनके गुणों के लिए किया जाता है। तेल जैसे स्नेहक चिपचिपाहट और प्रवाह विशेषताओं के लिए चुने जाते हैं जो घटक के ऑपरेटिंग तापमान रेंज में उपयुक्त होते हैं। तेल अक्सर इंजन, गियर बॉक्स , धातु और हाइड्रोलिक सिस्टम में उनके अच्छे स्नेहन गुणों के लिए उपयोग किया जाता है।[3] अन्य तरल पदार्थ या ठोस को भंग करने के लिए कई तरल पदार्थ सॉल्वैंट्स के रूप में उपयोग किए जाते हैं। समाधान (रसायन विज्ञान) विभिन्न प्रकार के अनुप्रयोगों में पाए जाते हैं, जिनमें पेंट, सीलेंट और चिपकने वाले शामिल हैं। मिट्टी का तेल और एसीटोन का उपयोग उद्योग में अक्सर भागों और मशीनरी से तेल, ग्रीस और टार को साफ करने के लिए किया जाता है। शरीर के तरल पदार्थ पानी आधारित समाधान हैं।

पृष्ठसक्रियकारक आमतौर पर साबुन और डिटर्जेंट में पाए जाते हैं। अल्कोहल जैसे सॉल्वैंट्स को अक्सर रोगाणुरोधी के रूप में उपयोग किया जाता है। वे सौंदर्य प्रसाधन, स्याही और तरल डाई लेजर में पाए जाते हैं। उनका उपयोग खाद्य उद्योग में, वनस्पति तेल के निष्कर्षण जैसी प्रक्रियाओं में किया जाता है।[4] तरल पदार्थ में गैसों की तुलना में बेहतर तापीय चालकता होती है, और प्रवाह की क्षमता यांत्रिक घटकों से अतिरिक्त गर्मी को हटाने के लिए तरल को उपयुक्त बनाती है। उष्मा का आदान प्रदान करने वाला जैसे रेडियेटर के माध्यम से तरल को चैनल करके गर्मी को हटाया जा सकता है, या वाष्पीकरण के दौरान तरल के साथ गर्मी को हटाया जा सकता है।[5] इंजन को गर्म होने से बचाने के लिए पानी या ग्लाइकोल कूलेंट का उपयोग किया जाता है।[6] परमाणु रिएक्टरों में उपयोग किए जाने वाले शीतलक में पानी या तरल धातु, जैसे सोडियम या विस्मुट शामिल हैं।[7] तरल प्रणोदक फिल्मों का उपयोग राकेट ों के प्रणोद कक्षों को ठंडा करने के लिए किया जाता है।[8] मशीनिंग में, उत्पन्न अतिरिक्त गर्मी को दूर करने के लिए पानी और तेल का उपयोग किया जाता है, जो काम के टुकड़े और टूलींग दोनों को जल्दी से बर्बाद कर सकता है। पसीने के दौरान, पसीना वाष्पित होकर मानव शरीर से गर्मी को दूर करता है। हीटिंग, वेंटिलेशन और एयर कंडीशनिंग उद्योग (एचवीएसी) में, तरल पदार्थ जैसे पानी का उपयोग गर्मी को एक क्षेत्र से दूसरे क्षेत्र में स्थानांतरित करने के लिए किया जाता है।[9] इसी तरह, तरल पदार्थों का उपयोग अक्सर उनके बेहतर ताप-स्थानांतरण गुणों के लिए खाना पकाने में किया जाता है। बेहतर चालकता के अलावा, क्योंकि गर्म तरल पदार्थ फैलते और बढ़ते हैं जबकि ठंडे क्षेत्र सिकुड़ते और डूबते हैं, कम गतिज चिपचिपाहट वाले तरल पदार्थ काफी स्थिर तापमान पर संवहन के माध्यम से गर्मी स्थानांतरित करते हैं, जिससे एक तरल ब्लैंचिंग (खाना पकाने) , उबालने या तलने के लिए उपयुक्त होता है। . गैस को तरल में संघनित करके भी गर्मी हस्तांतरण की उच्च दर प्राप्त की जा सकती है। तरल के क्वथनांक पर, सभी ऊष्मा ऊर्जा का उपयोग तरल से गैस में चरण परिवर्तन के लिए किया जाता है, बिना तापमान में वृद्धि के, और रासायनिक संभावित ऊर्जा के रूप में संग्रहीत किया जाता है। जब गैस वापस तरल में संघनित होती है तो यह अतिरिक्त ऊष्मा-ऊर्जा एक स्थिर तापमान पर निकलती है। इस घटना का उपयोग गुस्से जैसी प्रक्रियाओं में किया जाता है। चूंकि तरल पदार्थों में अक्सर अलग-अलग क्वथनांक होते हैं, तरल या गैसों के मिश्रण या घोल को आमतौर पर गर्मी, ठंड, खालीपन , दबाव या अन्य साधनों का उपयोग करके आसवन द्वारा अलग किया जा सकता है। मादक पेय पदार्थों के उत्पादन से लेकर तेल शोधशाला तक, आर्गन , ऑक्सीजन , नाइट्रोजन , नीयन या क्सीनन जैसी गैसों के वायु पृथक्करण से द्रवीकरण (उनके व्यक्तिगत क्वथनांक से नीचे ठंडा करना) तक हर चीज में आसवन पाया जा सकता है।[10] द्रव हाइड्रोलिक सिस्टम का प्राथमिक घटक है, जो तरल शक्ति प्रदान करने के लिए पास्कल के नियम का लाभ उठाता है। तरल गति को यांत्रिक कार्य में बदलने के लिए प्राचीन काल से ही पंप और जल पहिया जैसे उपकरणों का उपयोग किया जाता रहा है। हाइड्रोलिक पंप ों के माध्यम से तेल को मजबूर किया जाता है, जो इस बल को हाइड्रोलिक सिलेंडर ों तक पहुंचाते हैं। हाइड्रोलिक्स कई अनुप्रयोगों में पाया जा सकता है, जैसे ऑटोमोटिव ब्रेक और ऑटोमोटिव ट्रांसमिशन , भारी उपकरण (निर्माण) , और हवाई जहाज नियंत्रण प्रणाली। लिफ्टिंग, प्रेसिंग, क्लैम्पिंग और फॉर्मिंग के लिए मरम्मत और निर्माण में विभिन्न हाइड्रॉलिक प्रेस का बड़े पैमाने पर उपयोग किया जाता है।[11] कभी-कभी उपकरणों को मापने में तरल पदार्थ का उपयोग किया जाता है। एक थर्मामीटर अक्सर तरल पदार्थ के थर्मल विस्तार का उपयोग करता है, जैसे पारा (तत्व), तापमान को इंगित करने के लिए प्रवाह करने की उनकी क्षमता के साथ संयुक्त। हवा के दबाव को इंगित करने के लिए एक दबाव नापने का यंत्र तरल के वजन का उपयोग करता है।[12]


यांत्रिक गुण

वॉल्यूम

एक नाव प्रोपेलर से पानी में गुहिकायन

द्रवों की मात्रा को आयतन की इकाइयों में मापा जाता है। इनमें यूनिट क्यूबिक मीटर (एम .) की अंतर्राष्ट्रीय प्रणाली शामिल है3) और इसके विभाजन, विशेष रूप से घन डेसीमीटर, जिसे आमतौर पर लीटर (1 डीएम) कहा जाता है3 = 1 एल = 0.001 मी3), और घन सेंटीमीटर, जिसे मिलीलीटर (1 सेमी . भी कहा जाता है)3 = 1 एमएल = 0.001 एल = 10−6 मी3)।[13]

तरल की मात्रा का आयतन उसके तापमान और दबाव से तय होता है। तरल पदार्थ आमतौर पर गर्म होने पर फैलते हैं, और ठंडा होने पर सिकुड़ते हैं। 0°C और 4°C के बीच का पानी एक उल्लेखनीय अपवाद है।[14] दूसरी ओर, तरल पदार्थों में कम संपीड्यता होती है। उदाहरण के लिए, मानक वायुमंडलीय दबाव (बार) में प्रत्येक इकाई वृद्धि के लिए पानी प्रति मिलियन केवल 46.4 भागों से संकुचित होगा।[15] कमरे के तापमान पर लगभग 4000 बार (400 मेगापास्कल या 58,000 पाउंड प्रति वर्ग इंच) दबाव में पानी की मात्रा में केवल 11% की कमी का अनुभव होता है।[16] असंपीड़नीयता द्रव को हाइड्रोलिक्स के लिए उपयुक्त बनाती है, क्योंकि द्रव में एक बिंदु पर दबाव में परिवर्तन तरल के हर दूसरे हिस्से में कम से कम प्रसारित होता है और संपीड़न के रूप में बहुत कम ऊर्जा खो जाती है।[17] हालांकि, नगण्य संपीड्यता अन्य घटनाओं को जन्म देती है। पाइपों की टक्कर, जिसे पानी के पाइप के अंदर आवाज कहा जाता है, तब होता है जब एक वाल्व अचानक बंद हो जाता है, जिससे वाल्व पर एक बड़ा दबाव-स्पाइक बन जाता है जो ध्वनि की गति के तहत सिस्टम के माध्यम से पीछे की ओर यात्रा करता है। तरल की असंपीड़ता के कारण होने वाली एक अन्य घटना गुहिकायन है। चूंकि तरल पदार्थों में थोड़ा लोच (भौतिकी) होता है, इसलिए उन्हें सचमुच उच्च अशांति या दिशा में नाटकीय परिवर्तन के क्षेत्रों में अलग किया जा सकता है, जैसे नाव प्रोपेलर के पीछे के किनारे या पाइप में एक तेज कोने। कम दबाव (वैक्यूम) के क्षेत्र में एक तरल वाष्पीकृत हो जाता है और बुलबुले बनाता है, जो उच्च दबाव वाले क्षेत्रों में प्रवेश करते ही ढह जाते हैं। यह तरल को बुलबुले द्वारा छोड़े गए गुहाओं को जबरदस्त स्थानीयकृत बल से भरने का कारण बनता है, किसी भी आसन्न ठोस सतह को नष्ट कर देता है।[18]

दबाव और उत्प्लावकता

गुरुत्वाकर्षण क्षेत्र में, तरल पदार्थ एक कंटेनर के किनारों के साथ-साथ तरल के भीतर किसी भी चीज़ पर दबाव डालते हैं। यह दबाव सभी दिशाओं में प्रसारित होता है और गहराई के साथ बढ़ता है। यदि कोई द्रव एकसमान गुरुत्वीय क्षेत्र में विरामावस्था में है, तो दाब गहराई पर द्वारा दिया गया है[19] : कहाँ पे:

सतह पर दबाव है
तरल का घनत्व है, गहराई के साथ एक समान माना जाता है
गुरुत्वाकर्षण है

हवा के लिए खुले पानी के शरीर के लिए, वायुमंडलीय दबाव होगा।

एकसमान गुरुत्वाकर्षण क्षेत्रों में स्थिर तरल भी उछाल की घटना को प्रदर्शित करते हैं, जहां तरल में डूबी हुई वस्तुएं गहराई के साथ दबाव भिन्नता के कारण एक शुद्ध बल का अनुभव करती हैं। बल का परिमाण वस्तु द्वारा विस्थापित द्रव के भार के बराबर होता है और बल की दिशा डूबी हुई वस्तु के औसत घनत्व पर निर्भर करती है। यदि घनत्व तरल से छोटा है, तो उत्प्लावन बल ऊपर की ओर इंगित करता है और वस्तु तैरती है, जबकि यदि घनत्व अधिक है, तो उत्प्लावन बल नीचे की ओर इंगित करता है और वस्तु डूब जाती है। इसे आर्किमिडीज के सिद्धांत के रूप में जाना जाता है।[20]


सतह

पानी में सतह की लहर ें

जब तक किसी द्रव का आयतन उसके पात्र के आयतन से बिल्कुल मेल नहीं खाता, तब तक एक या अधिक पृष्ठ देखे जा सकते हैं। एक सतह की उपस्थिति नई घटनाओं का परिचय देती है जो एक थोक तरल में मौजूद नहीं होती हैं। इसका कारण यह है कि एक सतह पर एक अणु केवल सतह के अंदरूनी हिस्से पर अन्य तरल अणुओं के साथ बंधन रखता है, जिसका अर्थ है कि एक शुद्ध बल सतह के अणुओं को अंदर की ओर खींचता है। समान रूप से, इस बल को ऊर्जा के संदर्भ में वर्णित किया जा सकता है: किसी दिए गए क्षेत्र की सतह बनाने से जुड़ी एक निश्चित मात्रा में ऊर्जा होती है। यह मात्रा एक भौतिक गुण है जिसे सतह तनाव कहा जाता है, प्रति इकाई क्षेत्र में ऊर्जा की इकाइयों में (एसआई इकाइयां: जूल/मीटर 2)। मजबूत अंतर-आणविक बलों वाले तरल पदार्थों में बड़े सतह तनाव होते हैं।[21]

सतह तनाव का एक व्यावहारिक निहितार्थ यह है कि तरल पदार्थ अपने सतह क्षेत्र को कम करते हैं, गोलाकार बूंद (तरल) और बुलबुला (भौतिकी) बनाते हैं जब तक कि अन्य बाधाएं मौजूद न हों। सतही तनाव कई अन्य घटनाओं के लिए भी जिम्मेदार है, जिसमें सतह तरंगें, केशिका क्रिया, गीलापन और केशिका तरंग शामिल हैं। सीमित तरल के तहत तरल पदार्थों में, सतह के प्रभाव एक प्रमुख भूमिका निभा सकते हैं - तरल के मैक्रोस्कोपिक नमूने की तुलना में - अणुओं का एक बहुत बड़ा अंश सतह के पास स्थित होता है।

किसी द्रव का पृष्ठ तनाव सीधे उसकी अस्थिरता को प्रभावित करता है। अधिकांश सामान्य तरल पदार्थों में दसियों mJ/m . के तनाव होते हैं2, इसलिए तेल, पानी या गोंद की बूंदें आसानी से मिल सकती हैं और अन्य सतहों का पालन कर सकती हैं, जबकि पारा जैसी तरल धातुओं में सैकड़ों mJ/m के बीच तनाव हो सकता है।2, इस प्रकार बूंदें आसानी से नहीं जुड़ती हैं और सतहें केवल विशिष्ट परिस्थितियों में ही गीली हो सकती हैं।

तापमान जैसी बदलती परिस्थितियों के संपर्क में आने पर सामान्य तरल पदार्थों की सतह के तनाव मूल्यों की अपेक्षाकृत संकीर्ण सीमा पर कब्जा कर लेते हैं, जो कि चिपचिपाहट जैसे अन्य यांत्रिक गुणों में देखी गई भारी भिन्नता के साथ दृढ़ता से विपरीत होता है।[22]


प्रवाह

चिपचिपाहट का अनुकरण। बाईं ओर के द्रव में कम चिपचिपापन और न्यूटोनियन व्यवहार होता है जबकि दाईं ओर के तरल में उच्च चिपचिपाहट और गैर-न्यूटोनियन व्यवहार होता है।

तरल पदार्थ के प्रवाह की विशेषता वाला एक महत्वपूर्ण भौतिक गुण चिपचिपापन है। सहज रूप से, चिपचिपाहट एक तरल के प्रवाह के प्रतिरोध का वर्णन करती है।

अधिक तकनीकी रूप से, चिपचिपापन एक तरल के प्रतिरोध को एक निश्चित दर पर विरूपण के लिए मापता है, जैसे कि जब इसे परिमित वेग से कतराया जा रहा हो।[23] एक विशिष्ट उदाहरण a . के माध्यम से बहने वाला तरल है पाइप: इस मामले में तरल कतरनी विरूपण से गुजरता है क्योंकि यह पाइप की दीवारों के पास अधिक धीरे-धीरे बहता है केंद्र के पास की तुलना में। नतीजतन, यह प्रवाह के लिए चिपचिपा प्रतिरोध प्रदर्शित करता है। प्रवाह को बनाए रखने के लिए, एक बाहरी बल लगाया जाना चाहिए, जैसे कि पाइप के सिरों के बीच दबाव का अंतर।

बढ़ते तापमान के साथ तरल पदार्थों की चिपचिपाहट कम हो जाती है।[24][25] का सटीक नियंत्रण कई अनुप्रयोगों, विशेष रूप से स्नेहन उद्योग में चिपचिपाहट महत्वपूर्ण है। इस तरह के नियंत्रण को प्राप्त करने का एक तरीका अलग-अलग चिपचिपाहट के दो या दो से अधिक तरल पदार्थों को सटीक अनुपात में मिलाना है।[26] इसके अलावा, विभिन्न योजक मौजूद हैं जो तापमान-निर्भरता को नियंत्रित कर सकते हैं चिकनाई वाले तेलों की चिपचिपाहट। यह क्षमता महत्वपूर्ण है क्योंकि मशीनरी अक्सर की एक सीमा से अधिक काम करती है तापमान (चिपचिपापन सूचकांक भी देखें)।[27] एक तरल का चिपचिपा व्यवहार या तो न्यूटोनियन द्रव या गैर-न्यूटोनियन द्रव | गैर-न्यूटोनियन द्रव हो सकता है। एक न्यूटनियन तरल एक रैखिक तनाव/तनाव वक्र प्रदर्शित करता है, जिसका अर्थ है कि इसकी चिपचिपाहट समय, कतरनी दर, या कतरनी दर इतिहास से स्वतंत्र है। न्यूटोनियन तरल पदार्थों के उदाहरणों में पानी, ग्लिसरीन , मोटर ऑयल , शहद या पारा शामिल हैं। एक गैर-न्यूटोनियन तरल वह है जहां चिपचिपापन इन कारकों से स्वतंत्र नहीं होता है और कतरनी के नीचे या तो गाढ़ा (चिपचिपापन में वृद्धि) या पतला (चिपचिपापन में कमी) होता है। गैर-न्यूटोनियन तरल पदार्थों के उदाहरणों में चटनी , मेयोनेज़, हेयर जैल, प्ले-रवींद्र या स्टार्च समाधान शामिल हैं।[28]


कारावास के तहत लोच

सीमित तरल पदार्थ थोक तरल पदार्थों की तुलना में विभिन्न यांत्रिक गुणों का प्रदर्शन कर सकते हैं। उदाहरण के लिए, उप-मिलीमीटर कारावास के तहत तरल पदार्थ (उदाहरण के लिए कठोर दीवारों के बीच की खाई में) एक ठोस जैसी यांत्रिक प्रतिक्रिया प्रदर्शित करता है और इसमें आश्चर्यजनक रूप से बड़ी कम आवृत्ति वाला लोचदार कतरनी मापांक होता है, जो कारावास की लंबाई के व्युत्क्रम घन शक्ति के साथ होता है।[29]


ध्वनि प्रसार

किसी द्रव में ध्वनि की चाल किसके द्वारा दी जाती है? कहाँ पे तरल का थोक मापांक है और घनत्व। उदाहरण के तौर पर, पानी का थोक मापांक लगभग 2.2 पास्कल (इकाई) और घनत्व 1000 किग्रा/मी है।3, जो c = 1.5 km/s देता है।[30]

ऊष्मप्रवैगिकी

चरण संक्रमण

एक विशिष्ट चरण आरेख । बिंदीदार रेखा पानी के असामान्य व्यवहार को दर्शाती है। हरी रेखाएं दिखाती हैं कि दबाव के साथ हिमांक कैसे भिन्न हो सकता है, और नीली रेखा दिखाती है कि दबाव के साथ क्वथनांक कैसे भिन्न हो सकता है। लाल रेखा उस सीमा को दर्शाती है जहां उच्च बनाने की क्रिया (रसायन विज्ञान) या निक्षेपण (भौतिकी) हो सकती है।

क्वथनांक से नीचे के तापमान पर, तरल रूप में कोई भी पदार्थ वाष्प के संघनन की रिवर्स प्रक्रिया के साथ संतुलन तक पहुंचने तक वाष्पित हो जाएगा। इस बिंदु पर वाष्प उसी दर से संघनित होगी जैसे तरल वाष्पित होता है। इस प्रकार, एक तरल स्थायी रूप से मौजूद नहीं हो सकता है यदि वाष्पित तरल को लगातार हटा दिया जाता है।[31] एक तरल अपने क्वथनांक पर या उससे ऊपर सामान्य रूप से उबलता है, हालांकि कुछ परिस्थितियों में सुपरहीटिंग इसे रोक सकता है।

हिमांक से नीचे के तापमान पर, एक तरल क्रिस्टलीकरण की ओर प्रवृत्त होगा, जो अपने ठोस रूप में बदल जाएगा। गैस में संक्रमण के विपरीत, निरंतर दबाव में इस संक्रमण पर कोई संतुलन नहीं होता है,[citation needed] इसलिए जब तक सुपरकूलिंग नहीं होती है, तरल अंततः पूरी तरह से क्रिस्टलीकृत हो जाएगा। हालांकि, यह केवल निरंतर दबाव में ही सच है, ताकि (उदाहरण के लिए) एक बंद, मजबूत कंटेनर में पानी और बर्फ एक संतुलन तक पहुंच सकें जहां दोनों चरण सह-अस्तित्व में हों। ठोस से द्रव में विपरीत संक्रमण के लिए, गलन ांक देखें।

अंतरिक्ष में द्रव

चरण आरेख बताता है कि अंतरिक्ष या किसी अन्य निर्वात में तरल पदार्थ क्यों नहीं होते हैं। चूंकि दबाव शून्य है (ग्रहों और चंद्रमाओं की सतहों या अंदरूनी हिस्सों को छोड़कर) अंतरिक्ष के संपर्क में आने वाले पानी और अन्य तरल पदार्थ या तो तुरंत उबल जाएंगे या तापमान के आधार पर जम जाएंगे। पृथ्वी के निकट अंतरिक्ष के क्षेत्रों में, यदि सूर्य सीधे उस पर नहीं चमक रहा है तो पानी जम जाएगा और सूर्य के प्रकाश में आते ही वाष्पीकृत (उदात्त) हो जाएगा। यदि पानी चंद्रमा पर बर्फ के रूप में मौजूद है, तो यह केवल छायादार छिद्रों में ही मौजूद हो सकता है जहां सूर्य कभी चमकता नहीं है और जहां आसपास की चट्टान इसे बहुत अधिक गर्म नहीं करती है। शनि की कक्षा के निकट किसी बिंदु पर, सूर्य का प्रकाश इतना मंद होता है कि बर्फ को जलवाष्प में परिवर्तित नहीं कर सकता। यह शनि के छल्ले बनाने वाली बर्फ की लंबी उम्र से स्पष्ट है।[32]


समाधान

तरल पदार्थ गैसों, ठोस और अन्य तरल पदार्थों के साथ विलयन (रसायन विज्ञान) बना सकते हैं।

दो द्रवों को मिश्रणीय कहा जाता है यदि वे किसी भी अनुपात में विलयन बना सकते हैं; अन्यथा वे अमिश्रणीय हैं। एक उदाहरण के रूप में, पानी और इथेनॉल (शराब पीना) गलत हैं जबकि पानी और पेट्रोल अमिश्रणीय हैं।[33] कुछ मामलों में अन्यथा अमिश्रणीय तरल पदार्थों के मिश्रण को एक पायस बनाने के लिए स्थिर किया जा सकता है, जहां एक तरल सूक्ष्म बूंदों के रूप में दूसरे में फैल जाता है। आमतौर पर बूंदों को स्थिर करने के लिए एक सर्फेक्टेंट की उपस्थिति की आवश्यकता होती है। एक इमल्शन का एक परिचित उदाहरण मेयोनेज़ है, जिसमें पानी और तेल का मिश्रण होता है जो लेसितिण द्वारा स्थिर होता है, अंडे की जर्दी में पाया जाने वाला पदार्थ।[34]


सूक्ष्म विवरण

तरल पदार्थ बनाने वाले अणु अव्यवस्थित और दृढ़ता से परस्पर क्रिया करते हैं, जो आणविक स्तर पर तरल पदार्थों का कड़ाई से वर्णन करना कठिन बना देता है। यह खड़ा है पदार्थ, गैसों और ठोस पदार्थों के अन्य दो सामान्य चरणों के विपरीत। यद्यपि गैसें अव्यवस्थित होती हैं, वे पर्याप्त रूप से तनु होती हैं कि कई-शरीर की बातचीत को नजरअंदाज किया जा सकता है, और इसके बजाय आणविक बातचीत को मॉडल किया जा सकता है अच्छी तरह से परिभाषित बाइनरी टकराव की घटनाओं के संदर्भ में। इसके विपरीत, यद्यपि ठोस घने और प्रबल होते हैं अंतःक्रियात्मक, आणविक स्तर पर उनकी नियमित संरचना (जैसे एक क्रिस्टलीय जाली) के लिए अनुमति देता है महत्वपूर्ण सैद्धांतिक सरलीकरण। इन्हीं कारणों से द्रवों का सूक्ष्म सिद्धांत गैसों और ठोस पदार्थों की तुलना में कम विकसित होता है।[35]


स्थिर संरचना कारक

एक शास्त्रीय मोनोएटोमिक तरल की संरचना। परमाणुओं के संपर्क में कई निकटतम पड़ोसी होते हैं, फिर भी कोई लंबी दूरी का क्रम मौजूद नहीं होता है।

एक तरल में, परमाणु एक क्रिस्टलीय जाली नहीं बनाते हैं, न ही वे लंबी दूरी के क्रम का कोई अन्य रूप दिखाते हैं। यह एक्स-रे विवर्तन में ब्रैग चोटियों की अनुपस्थिति से प्रकट होता है | एक्स-रे और न्यूट्रॉन विवर्तन । सामान्य परिस्थितियों में, विवर्तन पैटर्न में गोलाकार समरूपता होती है, जो तरल की आइसोट्रॉपी को व्यक्त करती है। रेडियल दिशा में, विवर्तन तीव्रता सुचारू रूप से दोलन करती है। यह आमतौर पर स्थैतिक संरचना कारक एस (क्यू) द्वारा वर्णित किया जाता है, जिसमें वेवनंबर q=(4π/λ)sin θ होता है जो जांच (फोटॉन या न्यूट्रॉन) की तरंग दैर्ध्य और [[ ब्रैग चोटी ]] द्वारा दिया जाता है। S(q) के दोलन तरल के निकट क्रम को व्यक्त करते हैं, अर्थात एक परमाणु और निकटतम, दूसरे निकटतम, ... पड़ोसियों के कुछ कोशों के बीच संबंध।

इन सहसंबंधों का अधिक सहज विवरण रेडियल वितरण फ़ंक्शन जी (आर) द्वारा दिया गया है, जो मूल रूप से एस (क्यू) का फूरियर रूपांतरण है। यह तरल में जोड़ी सहसंबंध ों के अस्थायी स्नैपशॉट के स्थानिक औसत का प्रतिनिधित्व करता है।

लेनार्ड-जोन्स मॉडल द्रव।

ध्वनि फैलाव और संरचनात्मक छूट

ध्वनि वेग के लिए उपरोक्त व्यंजक थोक मापांक K होता है। यदि K आवृत्ति स्वतंत्र है तो तरल एक रैखिक माध्यम के रूप में व्यवहार करता है, जिससे ध्वनि बिना अपव्यय और बिना मोड युग्मन के प्रचारित होती है। वास्तव में, कोई भी तरल कुछ ध्वनिक फैलाव दिखाता है: बढ़ती आवृत्ति के साथ, K कम-आवृत्ति, तरल जैसी सीमा से अधिक हो जाता है उच्च आवृत्ति, ठोस जैसी सीमा तक . सामान्य तरल पदार्थों में, इस क्रॉस ओवर का अधिकांश भाग GHz और THz के बीच आवृत्तियों पर होता है, जिसे कभी-कभी हाइपरसाउंड कहा जाता है।

उप-गीगाहर्ट्ज आवृत्तियों पर, एक सामान्य तरल अपरूपण तरंगों को बनाए नहीं रख सकता है: कतरनी मापांक की शून्य-आवृत्ति सीमा है . इसे कभी-कभी तरल की परिभाषित संपत्ति के रूप में देखा जाता है।[36][37] हालाँकि, बल्क मापांक K के रूप में, कतरनी मापांक G आवृत्ति-निर्भर है, और हाइपरसाउंड आवृत्तियों पर यह तरल जैसी सीमा से एक समान क्रॉस ओवर दिखाता है एक ठोस-जैसी, गैर-शून्य सीमा तक .

क्रेमर्स-क्रोनिग संबंध के अनुसार, ध्वनि वेग में फैलाव (K या G के वास्तविक भाग द्वारा दिया गया) ध्वनि क्षीणन (K या G के काल्पनिक भाग द्वारा दिया गया अपव्यय) में अधिकतम के साथ जाता है। रैखिक प्रतिक्रिया सिद्धांत के अनुसार, K या G का फूरियर रूपांतरण बताता है कि बाहरी गड़बड़ी के बाद सिस्टम कैसे संतुलन में लौटता है; इस कारण से, GHz से THz क्षेत्र में फैलाव चरण को आराम (भौतिकी) भौतिकी) भी कहा जाता है। उतार-चढ़ाव-अपव्यय प्रमेय के अनुसार, संतुलन की ओर विश्राम, संतुलन में उतार-चढ़ाव से घनिष्ठ रूप से जुड़ा हुआ है। ध्वनि तरंगों से जुड़े घनत्व में उतार-चढ़ाव को ब्रिलॉइन बिखरने द्वारा प्रयोगात्मक रूप से देखा जा सकता है।

कांच के संक्रमण की ओर एक तरल को सुपरकूलिंग करने पर, तरल से ठोस जैसी प्रतिक्रिया के लिए क्रॉसओवर GHz से MHz, kHz, Hz, ... तक चलता है; समान रूप से, संरचनात्मक छूट का विशिष्ट समय ns से µs, ms, s, ... तक बढ़ जाता है ... यह कांच बनाने वाले तरल पदार्थों के उपर्युक्त विस्कोलेस्टिक व्यवहार के लिए सूक्ष्म व्याख्या है।

संघ के प्रभाव

ठोस पदार्थों में परमाणु/आणविक प्रसार (या कण विस्थापन ) के तंत्र तरल पदार्थों में चिपचिपा प्रवाह और जमने के तंत्र से निकटता से संबंधित हैं। तरल के भीतर आणविक मुक्त स्थान के संदर्भ में चिपचिपाहट का विवरण[38] तरल पदार्थों के लिए खाते में आवश्यक रूप से संशोधित किए गए थे जिनके अणु सामान्य तापमान पर तरल अवस्था में जुड़े होने के लिए जाने जाते हैं। जब विभिन्न अणु एक साथ मिलकर एक संबद्ध अणु बनाते हैं, तो वे एक अर्ध-कठोर प्रणाली के भीतर एक निश्चित मात्रा में स्थान घेर लेते हैं जो पहले मोबाइल अणुओं के लिए खाली स्थान के रूप में उपलब्ध था। इस प्रकार, ठंडा करने पर अधिकांश पदार्थों की संबद्धता की प्रवृत्ति के कारण ठंडा होने पर चिपचिपाहट में वृद्धि होती है।[39] चिपचिपाहट पर दबाव के प्रभावों का वर्णन करने के लिए इसी तरह के तर्कों का इस्तेमाल किया जा सकता है, जहां यह माना जा सकता है कि चिपचिपापन मुख्य रूप से एक सीमित संपीड्यता वाले तरल पदार्थों के लिए मात्रा का एक कार्य है। इसलिए दबाव बढ़ने के साथ चिपचिपाहट बढ़ने की उम्मीद है। इसके अलावा, यदि आयतन को ऊष्मा द्वारा बढ़ाया जाता है लेकिन दबाव से फिर से कम किया जाता है, तो चिपचिपाहट समान रहती है।

छोटे समूहों में अणुओं के उन्मुखीकरण की स्थानीय प्रवृत्ति तरल (जैसा कि पहले उल्लेख किया गया है) को कुछ हद तक जुड़ाव देता है। इस जुड़ाव के परिणामस्वरूप एक तरल के भीतर काफी आंतरिक दबाव होता है, जो लगभग पूरी तरह से उन अणुओं के कारण होता है, जो अपने अस्थायी कम वेग (मैक्सवेल वितरण के बाद) के कारण अन्य अणुओं के साथ जुड़ जाते हैं। ऐसे कई अणुओं के बीच का आंतरिक दबाव ठोस रूप में अणुओं के समूह के बीच के दबाव के अनुरूप हो सकता है।

Phase transitions of matter ()
To
From
Solid Liquid Gas Plasma
Solid Melting Sublimation
Liquid Freezing Vaporization
Gas Deposition Condensation Ionization
Plasma Recombination


इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची

  • ड्रॉप (तरल)
  • तारे के बीच का बादल
  • अंतर-आणविक बंधन
  • वस्तुस्थिति
  • कमरे का तापमान
  • तापमान और दबाव के लिए मानक स्थितियां
  • अकार्बनिक गैर जलीय विलायक
  • यह प्रविष्टि
  • परिचालन तापमान
  • श्यानता
  • गोंद
  • ऊष्मीय चालकता
  • परमाणु रिऐक्टर
  • खाना बनाना
  • कीनेमेटीक्स चिपचिपापन
  • द्रवण
  • उबलना
  • कंवेक्शन
  • हवा का दबाव
  • इकाइयों की अंतर्राष्ट्रीय प्रणाली
  • प्रति वर्ग इंच पाउंड
  • वायुमण्डलीय दबाव
  • जौल
  • केशिका की कार्रवाई
  • नमनीयता
  • सतही तरंगें
  • बालों का जेल
  • बयान (भौतिकी)
  • हिमांक बिन्दू
  • विलेयशील
  • फुरियर रूपांतरण
  • लंबी दूरी का आदेश
  • स्थिर संरचना कारक
  • रेडियल वितरण समारोह
  • एक्स - रे विवर्तन
  • अपरूपण लहर
  • ब्रिलॉइन बिखरना

संदर्भ

  1. Theodore Gray, The Elements: A Visual Exploration of Every Known Atom in the Universe New York: Workman Publishing, 2009 p. 127 ISBN 1-57912-814-9
  2. Silberberg, Martin S. (2009), Chemistry: The Molecular Nature of Matter and Change, McGraw-Hill Higher Education, pp. 448–449, ISBN 978-0-07-304859-8
  3. Theo Mang, Wilfried Dressel ’’Lubricants and lubrication’’, Wiley-VCH 2007 ISBN 3-527-31497-0
  4. George Wypych ’’Handbook of solvents’’ William Andrew Publishing 2001 pp. 847–881 ISBN 1-895198-24-0
  5. N. B. Vargaftik ’’Handbook of thermal conductivity of liquids and gases’’ CRC Press 1994 ISBN 0-8493-9345-0
  6. Jack Erjavec ’’Automotive technology: a systems approach’’ Delmar Learning 2000 p. 309 ISBN 1-4018-4831-1
  7. Gerald Wendt ’’The prospects of nuclear power and technology’’ D. Van Nostrand Company 1957 p. 266
  8. ’’Modern engineering for design of liquid-propellant rocket engines’’ by Dieter K. Huzel, David H. Huang – American Institute of Aeronautics and Astronautics 1992 p. 99 ISBN 1-56347-013-6
  9. Thomas E Mull ’’HVAC principles and applications manual’’ McGraw-Hill 1997 ISBN 0-07-044451-X
  10. Unit Operations in Food Processing by R. L. Earle -- Pergamon Press 1983 Page 56--62, 138--141
  11. R. Keith Mobley Fluid power dynamics Butterworth-Heinemann 2000 p. vii ISBN 0-7506-7174-2
  12. Bela G. Liptak ’’Instrument engineers’ handbook: process control’’ CRC Press 1999 p. 807 ISBN 0-8493-1081-4
  13. Knight, Randall D. (2008), Physics for Scientists and Engineers: A Strategic Approach (With Modern Physics), Addison-Wesley, p. 443, ISBN 978-0-8053-2736-6
  14. Silberberg, Martin S. (2009), Chemistry: The Molecular Nature of Matter and Change, McGraw-Hill Higher Education, p. 461, ISBN 978-0-07-304859-8
  15. "तरल पदार्थों की संपीड्यता". hyperphysics.phy-astr.gsu.edu. Archived from the original on 7 December 2017. Retrieved 8 May 2018.
  16. Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations By Wenwu Zhang -- CRC Press 2011 Page 144
  17. Knight (2008) p. 454
  18. Fluid Mechanics and Hydraulic Machines by S. C. Gupta -- Dorling-Kindersley 2006 Page 85
  19. Knight (2008) p. 448
  20. Knight (2008) pp. 455-459
  21. Silberberg, Martin S. (2009), Chemistry: The Molecular Nature of Matter and Change, McGraw-Hill Higher Education, p. 457, ISBN 978-0-07-304859-8
  22. Edward Yu. Bormashenko (5 November 2018). वास्तविक सतहों का गीलापन. De Gruyter. pp. 3–5. ISBN 978-3-11-058314-4.
  23. Landau, L.D.; Lifshitz, E.M. (1987), Fluid Mechanics (2nd ed.), Pergamon Press, pp. 44–45, ISBN 978-0-08-033933-7
  24. Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (2007), Transport Phenomena (2nd ed.), John Wiley & Sons, Inc., p. 21, ISBN 978-0-470-11539-8
  25. Krausser, J.; Samwer, K.; Zaccone, A. (2015). "अंतरपरमाण्विक प्रतिकर्षण कोमलता सुपरकूल्ड मेटैलिक मेल्ट्स की नाजुकता को सीधे नियंत्रित करती है". Proceedings of the National Academy of Sciences of the USA. 112 (45): 13762–13767. arXiv:1510.08117. Bibcode:2015PNAS..11213762K. doi:10.1073/pnas.1503741112. PMC 4653154. PMID 26504208.
  26. Zhmud, Boris (2014), "Viscosity Blending Equations" (PDF), Lube-Tech, 93
  27. "चिपचिपापन सूचकांक". UK: Anton Paar. Archived from the original on March 9, 2020. Retrieved 29 August 2018.
  28. Honey in Traditional and Modern Medicine by Laid Boukraa -- CRC Press 2014 Page 22--24
  29. Zaccone, A.; Trachenko, K. (2020). "सीमित तरल पदार्थों की कम आवृत्ति कतरनी लोच की व्याख्या करना". Proceedings of the National Academy of Sciences of the USA. 117 (33): 19653–19655. arXiv:2007.11916. Bibcode:2020PNAS..11719653Z. doi:10.1073/pnas.2010787117. PMC 7443959. PMID 32747540.
  30. Taylor, John R. (2005), Classical Mechanics, University Science Books, pp. 727–729, ISBN 978-1-891389-22-1
  31. March, N.H.; Tosi, M.P. (2002), Introduction to Liquid State Physics, World Scientific, p. 7, Bibcode:2002ilsp.book.....M, doi:10.1142/4717, ISBN 978-981-3102-53-8
  32. Siegel, Ethan (2014-12-11). "अंतरिक्ष में पानी जमता है या उबलता है?". Starts With A Bang! (in English). Retrieved 2022-02-10.
  33. Silberberg, pp. 188 and 502
  34. Miodownik, Mark (2019), Liquid rules: The Delightful and Dangerous Substances that Flow Through Our Lives, Houghton Mifflin Harcourt, p. 124, ISBN 978-0-544-85019-4
  35. Fisher, I.Z. (1964), Statistical Theory of Liquids, The University of Chicago Press, pp. 1–11
  36. Born, Max (1940). "क्रिस्टल जाली की स्थिरता पर". Mathematical Proceedings. Cambridge Philosophical Society. 36 (2): 160–172. Bibcode:1940PCPS...36..160B. doi:10.1017/S0305004100017138. S2CID 104272002.
  37. Born, Max (1939). "क्रिस्टल और पिघलने के ऊष्मप्रवैगिकी". Journal of Chemical Physics. 7 (8): 591–604. Bibcode:1939JChPh...7..591B. doi:10.1063/1.1750497. Archived from the original on 2016-05-15.
  38. D.B. Macleod (1923). "On a relation between the viscosity of a liquid and its coefficient of expansion". Trans. Faraday Soc. 19: 6. doi:10.1039/tf9231900006.
  39. G.W. Stewart (1930). "The Cybotactic (Molecular Group) Condition in Liquids; the Association of Molecules". Phys. Rev. 35 (7): 726. Bibcode:1930PhRv...35..726S. doi:10.1103/PhysRev.35.726.