कॉम्पैक्ट डिस्क डिजिटल ऑडियो: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 8: Line 8:
| caption      =  
| caption      =  
| type          = [[Optical disc]]
| type          = [[Optical disc]]
| encoding      = 2 channels of [[LPCM]] audio, each [[signedness|signed]] 16-[[bit]] values sampled at 44100 [[Hertz|Hz]]
| encoding      = एलपीसीएम ऑडियो के 2 चैनल , प्रत्येक हस्ताक्षरित 16 - बिट मान 44100 हर्ट्ज पर नमूना लिया गया
| capacity      = up to 74–80 minutes (up to 24 minutes for mini 8 cm CD)
| capacity      = 74-80 मिनट तक (मिनी 8 सेमी सीडी के लिए 24 मिनट तक)
| read          = [[Semiconductor laser]] (780 nm wavelength)
| read          = [[Semiconductor laser]] (780 nm wavelength)
| write        =  
| write        =  

Revision as of 16:42, 30 October 2022

Compact Disc Digital Audio
CDDAlogo.svg
CD autolev crop.jpg
मीडिया प्रकारOptical disc
एन्कोडिंगएलपीसीएम ऑडियो के 2 चैनल , प्रत्येक हस्ताक्षरित 16 - बिट मान 44100 हर्ट्ज पर नमूना लिया गया
क्षमता74-80 मिनट तक (मिनी 8 सेमी सीडी के लिए 24 मिनट तक)
पढ़ने के लिए तंत्रSemiconductor laser (780 nm wavelength)
मानकIEC 60908
द्वारा विकसितSony & Philips
उपयोगAudio storage
के लिए बढ़ायाDVD-Audio
जारी किया1980

कॉम्पैक्ट डिस्क डिजिटल ऑडियो (सीडीडीए या सीडी-डीए), जिसे डिजिटल ऑडियो कॉम्पैक्ट डिस्क या केवल ऑडियो सीडी के रूप में भी जाना जाता है, ऑडियो कॉम्पैक्ट डिस्क के लिए मानकीकरण प्रारूप है। मानक को लाल किताब में परिभाषित किया गया है, जो इंद्रधनुष पुस्तकें श्रृंखला में से एक है जिसमें सभी सीडी सामग्री प्रारूप के लिए तकनीकी विनिर्देश शामिल हैं।

पहला व्यावसायिक रूप से उपलब्ध ऑडियो सीडी वादक , Sony CDP-101 , अक्टूबर 1982 को जापान में जारी किया गया था। 1983-84 में इस प्रारूप को दुनिया भर में स्वीकृति मिली, उन दो वर्षों में 2 करोड़ 22 लाख डिस्क चलाने के लिए दस लाख से अधिक सीडी वादक बेचे गए।[1] 2000 के दशक की शुरुआत में, सीडी को तेजी से डिजिटल भंडारण और वितरण के अन्य रूपों द्वारा प्रतिस्थापित किया जा रहा था, जिसके परिणामस्वरूप 2010 तक यू.एस. में बेची जाने वाली ऑडियो सीडी की संख्या अपने चरम से लगभग 50% कम हो गई थी; हालांकि, वे

संगीत उद्योग के लिए प्राथमिक वितरण विधियों में से एक बने रहे।[2] 2010 के दशक में, iTunes , Spotify , और YouTube जैसी डिजिटल संगीत सेवाओं से होने वाली आय पहली बार भौतिक स्वरूप की बिक्री से हुई आय से मेल खाती थी।[3] अमेरिका की रिकॉर्डिंग उद्योग परिषद की 2020 में मध्यवर्ष विवरण के अनुसार, 1980 के दशक के बाद पहली बार फोनोग्राफ रिकॉर्ड राजस्व सीडी से अधिक हो गया।[4][5]


इतिहास

ऑप्टोफोन, पहली बार 1931 में प्रस्तुत किया गया था, यह एक प्रारंभिक उपकरण था जो एक पारदर्शी तस्वीर पर ध्वनि संकेतों की रिकॉर्डिंग और प्लेबैक दोनों के लिए प्रकाश का उपयोग करता था।[6] तीस से अधिक वर्षों के बाद, अमेरिकी आविष्कारक जेम्स रसेल को एक दृष्टि की सहायता से पारदर्शी धातु की पन्नी पर डिजिटल चलचित्र रिकॉर्ड करने के लिए पहली प्रणाली का आविष्कार करने का श्रेय दिया गया है जो एक उच्च शक्ति वाले हेलोजन लैंप द्वारा पीछे से जलाया जाता था ।[7] रसेल का पेटेंट आवेदन 1966 में दायर किया गया था, और उन्हें 1970 में एक पेटेंट प्रदान किया गया था। मुकदमेबाजी के बाद, सोनी और फिलिप्स ने रसेल के पेटेंट को रिकॉर्डिंग के लिए अनुज्ञापत्र दिया, पर प्ले बैक के लिए नहीं क्योंकि 1980 के दशक में ये अधिकार उस समय की तत्कालीन ऑप्टिकल रिकॉर्डिंग सहयोगी संस्था के पास था जो कनाडा में स्थित थी।[8][9][10] यह एक बहस का विषय था कि क्या रसेल की अवधारणाओं, पेटेंटों और प्रोटोटाइपों ने कॉम्पैक्ट डिस्क की रचनाओं को कुछ हद तक ने उकसाया और प्रभावित किया है?[citation needed] कॉम्पैक्ट डिस्क एक लेज़र डिस्क तकनीक का एक विकास है, जहां एक केंद्रित लेजर किरण का उपयोग किया जाता है जो उच्च गुणवत्ता वाले डिजिटल ध्वनि संकेत के लिए आवश्यक उच्च सूचना घनत्व को सक्षम बनाता है। ऑप्टोफ़ोनी और जेम्स रसेल द्वारा पूर्व कला के विपरीत, डिस्क पर जानकारी एक सुरक्षात्मक सतह के माध्यम से एक प्रकाश स्रोत के रूप में एक लेजर का उपयोग करके एक परावर्तक परत से पढ़ी जाती है। 1970 के दशक के अंत में फिलिप्सऔर सोनी द्वारा स्वतंत्र रूप से प्रोटोटाइप विकसित किए गए थे।[11] हालांकि मूल रूप से फिलिप्स रिसर्च व्यवस्थापन ने इसे एक तुच्छ खोज के रूप में खारिज कर दिया था,[12]सीडी फिलिप्स के लिए प्राथमिक केंद्र बन गई क्योंकि लेजरडिस्क प्रारूप संघर्ष कर रहा था।[13] 1979 में, सोनी और फिलिप्स ने एक नई डिजिटल ऑडियो डिस्क रचना तैयार करने के लिए इंजीनियरों की एक संयुक्त कार्य दल की स्थापना की। एक साल के प्रयोग और चर्चा के बाद, लाल किताब में सीडी-डीए मानक रूप से 1980 में प्रकाशित हुआ था। 1982 में उनकी व्यावसायिक रिलीज़ के बाद, कॉम्पैक्ट डिस्क और उनके वादक बेहद लोकप्रिय थे। $1,000 तक की लागत के बावजूद, संयुक्त राज्य अमेरिका में 1983 और 1984 के बीच 400,000 से अधिक सीडी वादक बेचे गए।[14] 1988 तक, संयुक्त राज्य अमेरिका में सीडी की बिक्री विनाइल एलपी की बिक्री से आगे निकल गई, और 1992 तक सीडी की बिक्री पहले से रिकॉर्ड किए गए संगीत कैसेट टेपों को पार कर गई।[15][16] कॉम्पैक्ट डिस्क की सफलता का श्रेय फिलिप्स और सोनी के बीच सहयोग को दिया गया था , जो एक साथ सहमत हुए और अनुकूल हार्डवेयर विकसित किया। कॉम्पैक्ट डिस्क के एकीकृत डिजाइन ने उपभोक्ताओं को किसी भी कंपनी से कोई भी डिस्क या वादक खरीदने की अनुमति दी, और सीडी को घर पर संगीत बाजार पर बिना किसी चुनौती के हावी होने दिया।[17]


डिजिटल ऑडियो लेजर-डिस्क प्रोटोटाइप

1974 में, फिलिप्स के ध्वनि विभाजन के निर्देशक लू ओटेंस ने विनाइल रिकॉर्ड से बेहतर ध्वनि विकसित करने के लिए एक छोटा समूह शुरू किया और [18] 20 cm (7.9 in)[19] के व्यास के साथ एक ऑप्टिकल ध्वनि डिस्क बनाया। हालांकि, एनालॉग प्रारूप के असंतोषजनक प्रदर्शन के कारण, फिलिप्स के दो शोध इंजीनियरों ने मार्च 1974 में एक डिजिटल प्रारूप की सिफारिश की।[18] 1977 में, फिलिप्स ने एक डिजिटल ध्वनि डिस्क बनाने के उद्देश्य के साथ एक प्रयोगशाला की स्थापना की। फिलिप्स के प्रोटोटाइप कॉम्पैक्ट डिस्क को 11.5 cm (4.5 in) के व्यास पर स्थित किया गया जो एक ऑडियो कैसेट का विकर्ण था ।[18][20]


1970 में जापान के राष्ट्रीय सार्वजनिक प्रसारण संगठन NHK के भीतर एक प्रारंभिक डिजिटल ऑडियो रिकॉर्डर विकसित करने वाले हितरो नकाजिमा,1971 में Sony के ध्वनि विभाग के महाप्रबंधक बने। उनकी दल ने 1973 में एक बेटामैक्स चलचित्र रिकॉर्डर का उपयोग करके एक डिजिटल PCM ध्वनि अनुकूलक टेप रिकॉर्डर विकसित किया। इसके बाद , 1974 में एक ऑप्टिकल डिस्क पर डिजिटल ध्वनि संग्रहीत करने के लिए छलांग आसानी से बनाई गई थी।[21] सोनी ने पहली बार सितंबर 1976 में एक ऑप्टिकल डिजिटल ऑडियो डिस्क का सार्वजनिक रूप से प्रदर्शन किया। एक साल बाद, सितंबर 1977 में, सोनी ने प्रेस को दिखाया 30 cm (12 in) डिस्क जो रन-लेंथ सीमित मॉड्यूलेशन का उपयोग करके एक घंटे का डिजिटल ऑडियो (44,100 हर्ट्ज नमूना दर और 16-बिट रिज़ॉल्यूशन) चला सकती है।[22] सितंबर 1978 में, कंपनी ने 150 मिनट के चलने की क्षमता 44,056 हर्ट्ज सैंपलिंग रेट, 16-बिट लीनियर रेजोल्यूशन और क्रॉस-इंटरलीव्ड रीड-सोलोमन कोडिंग |क्रॉस-इंटरलीव्ड त्रुटि सुधार कोड के साथ एक ऑप्टिकल डिजिटल ऑडियो डिस्क का प्रदर्शन किया। बाद में 1980 में मानक कॉम्पैक्ट डिस्क प्रारूप के लिए समझौता किया गया। सोनी के डिजिटल ऑडियो डिस्क के तकनीकी विवरण 13-16 मार्च 1979 को ब्रसेल्स में आयोजित 62वें ऑडियो इंजीनियरिंग सोसायटी कन्वेंशन के दौरान प्रस्तुत किए गए थे।[22] सोनी का एईएस तकनीकी पेपर 1 मार्च 1979 को प्रकाशित हुआ था। एक हफ्ते बाद, 8 मार्च को, फिलिप्स ने फिलिप्स इंट्रोड्यूस कॉम्पैक्ट डिस्क नामक एक प्रेस कॉन्फ्रेंस में सार्वजनिक रूप से एक ऑप्टिकल डिजिटल ऑडियो डिस्क के प्रोटोटाइप का प्रदर्शन किया।[23] आइंटहॉवन , नीदरलैंड में।[24] सोनी के कार्यकारी नोरियो ओह , बाद में सीईओ और सोनी के अध्यक्ष, और हेइतारो नकाजिमा प्रारूप की व्यावसायिक क्षमता के बारे में आश्वस्त थे और व्यापक संदेह के बावजूद आगे के विकास को आगे बढ़ाया।[25]


सहयोग और मानकीकरण

डच आविष्कारक और फिलिप्स के मुख्य अभियंता कीस शॉहामर इमिंक उस टीम का हिस्सा थे जिसने 1980 में मानक कॉम्पैक्ट डिस्क का उत्पादन किया था।

1979 में, सोनी और फिलिप्स ने एक नई डिजिटल ध्वनि डिस्क रचना करने के लिए इंजीनियरों की एक संयुक्त कार्यदल की स्थापना की। इंजीनियरों कीस शॉहामर इमिंक और तोशितादा दोई के नेतृत्व में, अनुसंधान ने लेजर और ऑप्टिकल डिस्क प्रौद्योगिकी को आगे बढ़ाया।[23] एक साल के प्रयोग और चर्चा के बाद, कार्यदल ने लाल किताब सीडी-डीए मानक तैयार किया। पहली बार 1980 में प्रकाशित, मानक को औपचारिक रूप से अंतर्राष्ट्रीय विद्युतीय आयोग द्वारा 1987 में एक अंतरराष्ट्रीय मानक के रूप में अपनाया गया था, जिसमें विभिन्न संशोधन 1996 में मानक का हिस्सा बन गए थे।[citation needed]

फिलिप्स ने कॉम्पैक्ट डिस्क शब्द को एक अन्य ध्वनि उत्पाद, कॉम्पैक्ट कैसेट के अनुरूप बनाया,[20] और चलचित्र लेजरडिस्क तकनीक पर आधारित सामान्य निर्माण औद्योगिक प्रक्रिया में योगदान दिया। फिलिप्स ने आठ से चौदह मॉड्यूलेशन (ईएफएम) में भी योगदान दिया, जबकि सोनी ने त्रुटि-सुधार विधि, क्रॉस-इंटरलीव्ड रीड-सोलोमन कोडिंग (CIRC) का योगदान दिया, जो खरोंच और उंगलियों के निशान जैसे दोषों के लिए एक निश्चित लचीलापन प्रदान करता था।


कार्यदल के एक पूर्व सदस्य द्वारा बताई गई कॉम्पैक्ट डिस्क की कहानी,[18] तकनीकी निर्णयों पर पृष्ठभूमि की जानकारी देता है, जिसमें नमूना आवृत्ति, खेलने का समय और डिस्क व्यास का विकल्प शामिल है। कार्यदल में लगभग 6 व्यक्ति सम्मिलित थे,[12][26] हालांकि फिलिप्स के अनुसार, कॉम्पैक्ट डिस्क का आविष्कार सामूहिक रूप से एक दल के रूप में काम करने वाले लोगों के एक बड़े समूह द्वारा किया गया था।[27]

प्रारंभिक लॉन्च और अपनाने

फिलिप्स ने जर्मनी के हनोवर के पास लंगेनहेगन में पॉलीडोर प्रेसिंग परिचालन कारखाने की स्थापना की, और जल्द ही एक महत्वपूर्ण श्रृंखला पार कर ली।[citation needed]

  • पहला प्रेसिंग परीक्षणरिचर्ड स्ट्रॉस की उच्च स्वर की समता की रिकॉर्डिंग का था, जिसे 1-3 दिसंबर, 1980 को रिकॉर्ड किया गया था और बर्लिन फिलहारमोनिक द्वारा बजाया गया था और हर्बर्ट वॉन कारजानी द्वारा संचालित किया गया था, जिसे 1979 में एक राजदूत के रूप में सूचीबद्ध किया गया था।
    • पहला सार्वजनिक प्रदर्शन 1981 में बीबीसी टेलीविजन कार्यक्रम टुमॉरोज़ वर्ल्ड पर था, जब बी गीज़ का एल्बम लिविंग आइज़ (1981) बजाया गया था।
  • [28]
  • [29]
  • क्लाउडियो अराऊ द्वारा चोपिन वाल्ट्ज की 1979 की रिकॉर्डिंग का पहला व्यावसायिक कॉम्पैक्ट डिस्क का निर्माण 17 अगस्त 1982 को किया गया था।[30]
    • पहले 50 खिताब जापान में 1 अक्टूबर 1982 को जारी किए गए थे,[31] जिनमें से पहला बिली जोएल का एल्बम 52वें स्ट्रीट एल्बम का पुन: विमोचन था।[32]
  • बीबीसी रेडियो पर पहली सीडी अक्टूबर 1982 में बीबीसी रेडियो स्कॉटलैंड (जिमी मैक (प्रसारक) ब्रॉडकास्टर) कार्यक्रम, उसके बाद केन ब्रूस और एडी मैयर सभी बीबीसी स्कॉटलैंड पर बजायी गई थी। जिसके तुरंत बाद यूके के स्वतंत्र रेडियो स्टेशन जिसका नाम रेडियो फोर्थ था पर पहली सीडी , डायर स्ट्रेट द्वारा निर्मित एल्बम स्वर्ण से ज्यादा प्यार चलायी गई थी ।

जापानी लॉन्च के बाद 14 मार्च 1983 को यूरोप और उत्तरी अमेरिका जहां सीबीएस रिकॉर्ड्स ने सोलह खिताब जारी किए थे वहां पर सीडी वादक और डिस्क की शुरूआत हुई थी ।[citation needed][33][34] 1983 में सीडी की बढ़ती लोकप्रियता डिजिटल ऑडियो क्रांति की शुरुआत का प्रतीक थी।[35] इसे उत्साहपूर्वक अपनाया गया, विशेष रूप से जल्दी अपनाने वाले में यूरोपीय शास्त्रीय संगीत और ऑडियोफाइल समुदाय थे, और इसकी हैंडलिंग गुणवत्ता को विशेष प्रशंसा मिली। पोर्टेबल डिस्कमैन की शुरुआत के साथ वादकों की कीमत कम होती गई, सीडी ने बड़े लोकप्रिय और रॉक संगीत बाजारों में लोकप्रियता हासिल करना शुरू कर दिया। सीडी की बिक्री में वृद्धि के साथ, पूर्व-रिकॉर्डेड कैसेट टेप की बिक्री 1980 के दशक के अंत में घटने लगी; 1990 के दशक की शुरुआत में सीडी की बिक्री ने कैसेट की बिक्री को पीछे छोड़ दिया।[citation needed][36]

1985 के एल्बम ब्रदर्स इन आर्म्स के साथ सीडी पर दस लाख प्रतियां बेचने वाले पहले कलाकार डायर स्ट्रेट्स थे ।[37] पहले सीडी बाजारों में से एक लोकप्रिय संगीत को फिर से जारी करने के लिए समर्पित था, जिसकी व्यावसायिक क्षमता पहले ही सिद्ध हो चुकी थी। अपनी पूरी सूची को सीडी में बदलने वाले पहले प्रमुख कलाकार डेविड बॉवी थे, जिनके तत्कालीन चौदह स्टूडियो एल्बम जो अब सोलह है, को आरसीए रिकॉर्ड्स द्वारा फरवरी 1985 में उपलब्ध कराया गया था, साथ ही चार महान हिट एल्बम भी; उनके पंद्रहवें और सोलहवें एल्बम क्रमशः 1983 और 1984 में ईएमआई रिकॉर्ड द्वारा सीडी पर जारी किए जा चुके थे।[38] 26 फरवरी 1987 को द बीटल्स द्वारा यूके के पहले चार एल्बम कॉम्पैक्ट डिस्क पर मोनो में जारी किए गए थे।[39] 1988 में, दुनिया भर के 50 प्रेसिंग प्लांटों द्वारा 400 मिलियन सीडी का निर्माण किया गया था।[40]


आगे विकास

सोनी डिस्कमैन डी-ई307सीके पोर्टेबल सीडी प्लेयर 1-बिट डैक के साथ।

प्रारंभिक सीडी प्लेयर्स ने दोहरे भार के साथ डिज़िटल से एनालॉग कन्वर्टर (डीएसी) को नियोजित किया, जिसमें डीएसी के प्रत्येक बिट के लिए अलग-अलग विद्युत घटक शामिल थे।[41] उच्च-सटीक घटकों का उपयोग करते समय भी, यह दृष्टिकोण डिकोडिंग त्रुटियों से ग्रस्त था, जो शून्य-क्रॉसिंग समस्या से बढ़ गया था।[clarification needed][41]एक और गंभीर मुद्दा जो सीडी का विस्तार नहीं- बल्कि समय से संबंधित दोष था। डीएसी की अस्थिरता का सामना करते हुए, निर्माताओं ने शुरू में डीएसी में बिट्स की संख्या बढ़ाने और अपने आउटपुट के औसत से प्रति ऑडियो चैनल कई डीएसी का उपयोग करने की ओर रुख किया।[41]इससे सीडी प्लेयर की लागत तो बढ़ गई लेकिन मूल समस्या का समाधान नहीं हुआ।

1980 के दशक के अंत में एक सफलता डेल्टा-सिग्मा मॉडुलन के विकास में परिणत हुई#डिजिटल से एनालॉग रूपांतरण | 1-बिट DAC, जो उच्च-रिज़ॉल्यूशन वाले कम-आवृत्ति वाले डिजिटल इनपुट संकेत को कम-रिज़ॉल्यूशन वाले उच्च-आवर्ती संकेत में परिवर्तित करता है जिसे वोल्टेज में मापा जाता है और फिर एक एनालॉग फ़िल्टर के साथ चिकना किया जाता है। कम-रिज़ॉल्यूशन संकेत के अस्थायी उपयोग ने परिपथ रचना को सरल बनाया और दक्षता में सुधार किया, यही वजह है कि यह 1990 के दशक की शुरुआत से सीडी वादक प्रभावी हो गया। फिलिप्स ने नाड़ी-घनत्व मॉडुलन (पीडीएम) नामक इस तकनीक की एक भिन्नता का इस्तेमाल किया,[42] जबकि मत्सुशिता (अब पैनासोनिक ) ने नाड़ी-चौड़ाई मॉडुलन (पीडब्लूएम) को चुना, इसे एमएएसएच के रूप में विज्ञापित किया, जो कि उनके पेटेंट किए गए शोर को विभिन्न चरणों में आकार संस्थिता से लिया गया एक संक्षिप्त नाम है।[41]

सीडी को मुख्य रूप से आंकड़े संरक्षण करने के बजाय संगीत चलाने के लिए विनाइल रिकॉर्ड के उत्तराधिकारी के रूप में नियोजित किया गया था। हालाँकि, सीडी अन्य अनुप्रयोगों को सम्मिलित करने के लिए विकसित हुई थी। 1983 में, सीडी की शुरूआत के बाद, इमिंक और जोसेफ ब्राटा ने 73वें ध्वनि अभियांत्रिक सामाजिक सम्मेलन के दौरान मिटाने योग्य कॉम्पैक्ट डिस्क के साथ पहला प्रयोग प्रस्तुत किया।[43] जून 1985 में, कंप्यूटर-पठनीय सीडी-रोम (रीड-ओनली मेमोरी) और, 1990 में, सीडी-रिकॉर्डेबल को पेश किया गया था।[44] रिकॉर्ड करने योग्य सीडी ,संगीत की रिकॉर्डिंग और वितरण के लिए टेप का एक विकल्प बन गई और ध्वनि की गुणवत्ता में गिरावट के बिना इसे दोहराया जा सकता है। अन्य नए वीडियो प्रारूप जैसे डीवीडी और ब्लू रे सीडी के समान भौतिक ज्यामिति का उपयोग करते हैं, और अधिकांश डीवीडी और ब्लू-रे वादक ऑडियो सीडी के साथ पिछड़े संगत हैं।

संयुक्त राज्य अमेरिका में सीडी की बिक्री 2000 तक चरम पर थी।[45] 2000 के दशक की शुरुआत तक, सीडी वादक बड़े पैमाने पर कॉम्पैक्ट कैसेट वादक को नए स्वचालित में मानक उपकरण के रूप में बदल दिया था, 2010 के साथ संयुक्त राज्य अमेरिका में किसी भी कार के लिए फैक्ट्री-सुसज्जित कैसेट वादक के लिए अंतिम मॉडल वर्ष था।[46]


पतन

MP3 जैसे डिजीटल आधारित वितरण के साथ , 2000 के दशक में सीडी की बिक्री में गिरावट शुरू हुई। उदाहरण के लिए, 2000 और 2008 के बीच, संगीत की बिक्री में समग्र वृद्धि और वृद्धि के एक विषम वर्ष के बावजूद, प्रमुख-लेबल सीडी की बिक्री में कुल मिलाकर 20% की गिरावट आई,  हालांकि स्वतंत्र और DIY संगीत की बिक्री जारी आंकड़ों के अनुसार बेहतर प्रदर्शन कर सकती थी और मार्च 2009 तक सीडी अभी भी बहुत अधिक बिक रही थी।  2012 तक, सीडी और डीवीडी ने संयुक्त राज्य अमेरिका में संगीत की बिक्री का केवल 34% हिस्सा बनाया।  2015 तक , संयुक्त राज्य अमेरिका में केवल 24% संगीत भौतिक मीडिया पर खरीदा गया था, इसमें से 2/3 में सीडी शामिल थी;  हालांकि, उसी वर्ष जापान में, सीडी और अन्य भौतिक स्वरूपों पर 80% से अधिक संगीत खरीदा गया था।  2018 में, यूएस सीडी की बिक्री 5 करोड़ 20 लाख यूनिट थी- वर्ष 2000 में सीडी वितरण की अधिकतम मात्रा के 6% से भी कम थी।  यूके में 3 करोड़ 20 लाख यूनिट्स की बिक्री हुई, जो 2008 की तुलना में लगभग 10 करोड़ कम थी।

2010 के दशक के दौरान, ठोस संचार अवस्था और संगीत संबंधी सेवाओं की बढ़ती लोकप्रियता के कारण वाहन बनाने वाली संस्थाओं ने मिनीजैक सहायक इनपुट, यूएसबी उपकरणों के तारों को जोड़ने और बिना तारों के ब्लूटूथ को जोड़ने के पक्ष में स्वचालित वाहनों से सीडी प्लेयर को हटा दिया।  वाहन बनाने वाली संस्था ने सीडी वादकों को मूल्यवान स्थान का उपयोग करने और वजन लेने के रूप में देखा, जिसे बड़ी स्पर्श चित्रपट जैसे अधिक लोकप्रिय सुविधाओं के लिए पुनः आवंटित किया जा सकता है।  2021 तक, केवल लेक्सस और सामान्य वाहन अभी भी सीडी वादकों को कुछ वाहनों के साथ मानक उपकरण के रूप में सम्मिलित कर रहे थे।

साल-दर-साल बिक्री में तेजी से गिरावट के बावजूद, प्रौद्योगिकी की व्यापकता कुछ समय के लिए बनी रही, संस्थाओं ने औषधालयों, सुपरबाजार, और पेट्रोल पंप जैसे सार्वजनिक स्थानों में सीडी रखने वाले खरीदारों को लक्षित करने का विचार किया जिनका इंटरनेट-आधारित वितरण का उपयोग करने में सक्षम कम होने की संभावना थी।  2018 में बेस्ट बाय ने सीडी की बिक्री पर अपना ध्यान कम करने की योजना की घोषणा की, हालांकि, रिकॉर्ड बेचना जारी रखते हुए, जिसकी बिक्री विनाइल पुनरुद्धार के दौरान बढ़ रही है । ें[13][47][48][49]


पुरस्कार और प्रशंसा

सोनी और फिलिप्स को पेशेवर संगठनों से कॉम्पैक्ट डिस्क के विकास के लिए प्रशंसा मिली। इन पुरस्कारों में शामिल हैं

  • सोनी और फिलिप्स के लिए तकनीकी ग्रैमी पुरस्कार , 1998।[50]
  • IEEE महत्त्वपूर्ण पुरस्कार, 2009, केवल फिलिप्स के लिए प्रशस्ति पत्र के साथ: 8 मार्च 1979 को एन.वी. प्रदर्शन ने दिखाया कि डिजिटल ऑप्टिकल रिकॉर्डिंग और प्लेबैक का उपयोग करके शानदार स्टीरियो गुणवत्ता के साथ ध्वनि संकेत को पुन: पेश करना संभव है। फिलिप्स के इस शोध ने डिजिटल ऑप्टिकल रिकॉर्डिंग प्रणाली के लिए तकनीकी मानक स्थापित किया।[51]

मानक

लाल किताब सीडी के भौतिक मापदंडों और गुणों, ऑप्टिकल मापदंडों, विचलन और त्रुटि दर, लय प्रणाली (आठ से चौदह मॉड्यूलेशन, ईएफएम) और त्रुटि सुधार सुविधा (क्रॉस-इंटरलीव्ड रीड-सोलोमन कोडिंग, सीआईआरसी) को निर्दिष्ट करता है ,और आठ कॉम्पैक्ट डिस्क उपभाषा । ये मापदंड सभी कॉम्पैक्ट डिस्क के लिए सामान्य हैं और सभी तार्किक प्रारूपों द्वारा उपयोग किए जाते हैं: ऑडियो सीडी, सीडी-रोम, आदि। मानक डिजिटल ऑडियो एन्कोडिंग के रूप को भी निर्दिष्ट करता है।

लाल किताब का पहला संस्करण 1980 में फिलिप्स और सोनी द्वारा जारी किया गया था;[52][53]इसे डिजिटल ऑडियो डिस्क समिति द्वारा अपनाया गया था और अंतर्राष्ट्रीय विद्युतीय आयोग (आईईसी) तकनीकी समिति 100 द्वारा 1987 में एक अंतरराष्ट्रीय मानक के रूप में आईईसी 60908 के संदर्भ में इसकी पुष्टि की गई थी।[54]आईईसी 60908 का दूसरा संस्करण 1999 में प्रकाशित हुआ था[55]और यह पहले संस्करण, संशोधन 1(1992) और संशोधन 1शुद्धिपत्र की जगह लेता है। हालांकि आईईसी 60908 में लाल किताब जैसे उपलब्ध विस्तार के लिए सभी जानकारी शामिल नहीं है, जैसे कि सीडी-पाठ , सीडी+ईजी जी के विवरण।[56]


[57] इसका अनुज्ञा पत्र फिलिप्स और आईईसी से उपलब्ध है पर यह स्वतंत्र रूप से उपलब्ध नहीं है। 2013 तक फिलिप्स ने एडमिनियस को गुणवत्ता का अनुज्ञापत्र ठेके पर देता था ।[citation needed], और उसके बदले में प्रत्येक US$100 लाल किताब के लिए, साथ ही में US$50 सबकोड चैनल आर-डब्ल्यू और सीडी टेक्स्ट मोड एनेक्स के लिए धनराशि वसूल करते थे।[58]

ऑडियो प्रारूप

सीडी-डीए में निहित ऑडियो में दो-चैनल हस्ताक्षरित 16-बिट पल्स-कोड मॉड्यूलेशन एलपीसीएम होता है जिसे 44,100 हर्ट्ज पर नमूना लिया जाता है और इसे बाएं चैनल के साथ पहले आनेवाले छोटे एंडियन आंतरपत्रण स्त्रोत के रूप में लिखा जाता है।

नमूनाकरण दर को पीसीएम एडेप्टर के साथ वीडियो टेप पर डिजिटल ऑडियो रिकॉर्ड करते समय प्राप्त की गई दर से अनुकूलित किया जाता है, जो डिजिटल ऑडियो को संग्रहीत करने का एक पुराना तरीका है।[59] ऑडियो सीडी 22.05 kHz तक आवृत्तियों का प्रतिनिधित्व कर सकती है, 44.1 kHz नमूना दर की Nyquist आवृत्ति [citation needed]

16-बिट (सोनी) या 14-बिट फिलिप्स का परमाणीकरण (सिग्नल प्रोसेसिंग), और 44,056 या 44,100 नमूने/एस (सोनी) या लगभग 44,000 नमूने/एस (फिलिप्स) के उपयोग पर एक लंबी बहस चल रही थी। जब सोनी/फिलिप्स के कार्यदल ने कॉम्पैक्ट डिस्क को डिजाइन किया, फिलिप्स ने पहले से ही एक 14-बिट डिजिटल-टू-एनालॉग कनवर्टर विकसित किया था, लेकिन सोनी ने 16-बिट पर जोर दिया। अंत में सोनी की जीत हुई, इसलिए प्रति सेकंड 16 बिट्स और 44.1 किलो नमूने प्रबल हुए। फिलिप्स ने अपने 14-बिट डीएसी का उपयोग करके चार गुना अत्याधिक नमूने का उपयोग करके 16-बिट गुणवत्ता का उत्पादन करने का एक तरीका खोजा।[18]

कुछ सीडी को पूर्व प्रबलन के साथ महारत हासिल थी ,ये उच्च ध्वनि आवृत्तियों को एक कृत्रिम बढ़ावा देती थी । पूर्व प्रबलन चैनल की गतिशील रेंज का बेहतर उपयोग करके स्पष्ट संकेत से शोर में सुधार करता है। प्लेबैक पर, वादक एक समग्र फ्लैट के लिए आवृत्ति प्रतिक्रिया वक्र को पुनर्स्थापित करने के लिए एक डी-जोर फ़िल्टर लागू करता था। पूर्व प्रबलन समय स्थिरांक 50µs और 15µs (9.49 dB बूस्ट 20 kHz पर) हैं, और डिस्क सबकोड में एक बाइनरी फ़्लैग वादक को निर्देश देता है कि यदि उपयुक्त हो तो डी-एम्फिस फ़िल्टरिंग लागू करें। कंप्यूटर में ऐसी डिस्क का प्लेबैक या WAV फ़ाइलों को रिप करना आमतौर पर पूर्व-प्रबलन को ध्यान में नहीं रखता है, इसलिए ऐसी फ़ाइलें विकृत आवृत्ति प्रतिक्रिया के साथ वापस चलती हैं।[citation needed]


भंडारण क्षमता और खेलने का समय

सीडी के रचनाकारों ने मूल रूप से 100 मिमी (सोनी) या 115 मिमी (फिलिप्स) के डिस्क व्यास के साथ 60 मिनट के खेलने के समय का लक्ष्य रखा था।[12]सोनी के उपाध्यक्ष नोरियो ओगा ने 1951 के बेयरेथ महोत्सव में लुडविग वान बीथोवेन की सिम्फनी नंबर 9 (बीथोवेन) का आयोजन करने वाले विल्हेम फर्टवांग्लर की रिकॉर्डिंग को समायोजित करने के लिए क्षमता को 74 मिनट तक बढ़ाने का सुझाव दिया।[60][61]अतिरिक्त 14-मिनट के खेल के समय को बाद में 120 मिमी डिस्क में बदलने की आवश्यकता थी। फिलिप्स के मुख्य अभियंता कीस शॉहामर इमिंक, हालांकि, इस बात से इनकार करते हैं, यह दावा करते हुए कि वृद्धि तकनीकी विचारों से प्रेरित थी, और आकार में वृद्धि के बाद भी, फर्टवांग्लर रिकॉर्डिंग सबसे पुरानी सीडी में से एक पर फिट नहीं होगी।[18][12]

संडे ट्रिब्यून के एक साक्षात्कार के अनुसार,[62]कहानी थोड़ी अधिक शामिल है। 1979 में, फिलिप्स के पास पॉलीग्राम था, जो संगीत के दुनिया के सबसे बड़े वितरकों में से एक था। पॉलीग्राम ने जर्मनी के हनोवर में एक बड़ा प्रयोगात्मक सीडी प्लांट स्थापित किया था, जो 115 मिमी व्यास वाले बड़ी संख्या में सीडी का उत्पादन कर सकता था। सोनी के पास अभी तक ऐसी सुविधा नहीं थी। अगर सोनी 115 मिमी डिस्क पर सहमत होता, तो फिलिप्स को बाजार में एक महत्वपूर्ण प्रतिस्पर्धा में बढ़त हासिल होती। नोरियो ओगा द्वारा लगाए गए बीथोवेन की नौवीं सिम्फनी के लंबे समय तक चलने का उपयोग फिलिप्स को 120 मिमी स्वीकार करने के लिए प्रेरित करने के लिए किया गया था, जिससे कि डिस्क निर्माण पर फिलिप्स के पॉलीग्राम ने अपनी बढ़त खो दी।[62]

एक सीडी का 74 मिनट का खेल समय, जो प्रति पक्ष 22 मिनट से अधिक लंबा है[63][64]एलपी रिकॉर्ड की विशिष्ट | लांग-प्लेइंग (एलपी) विनाइल एल्बम , अक्सर शुरुआती वर्षों के दौरान सीडी के लाभ के लिए उपयोग किया जाता था जब सीडी और एलपी वाणिज्यिक बिक्री के लिए होड़ करते थे। सीडी को अक्सर एक या अधिक बोनस ट्रैक के साथ जारी किया जाता है, जो उपभोक्ताओं को अतिरिक्त सामग्री के लिए सीडी खरीदने के लिए प्रेरित करता है। हालांकि, एक सीडी पर डबल एलपी को संयोजित करने का प्रयास कभी-कभी विपरीत स्थिति में होता है जिसमें सीडी एलपी की तुलना में कम ऑडियो की पेशकश करेगी। ऐसा ही एक उदाहरण डीजे जैज़ी जेफ़ एंड द फ्रेश प्रिंस के डबल-एल्बम हीज़ द डीजे, आई एम द रैपर के साथ था, जिसमें एल्बम की प्रारंभिक सीडी रिलीज़ में एक डिस्क पर फ़िट होने के लिए लंबाई के लिए कई ट्रैक संपादित किए गए थे; हाल ही में सीडी फिर से जारी करती है जिसके परिणामस्वरूप एल्बम को दो डिस्क में पैकेज किया जाता है। 80-मिनट की सीडी के उद्भव ने कुछ डबल एल्बमों के लिए अनुमति दी, जिन्हें पहले लंबाई के लिए संपादित किया गया था या डबल-सीडी के रूप में पैक किया गया था, जिन्हें एकल डिस्क पर फिर से रिलीज़ किया जाना था, जैसे कि 1999 (राजकुमार एल्बम) प्रिंस (संगीतकार) द्वारा मामले में बाद के मामले में हू द्वारा पूर्व और टॉमी (द हू एल्बम)

74 मिनट से अधिक का खेल समय ट्रैक पिच को कम करके प्राप्त किया जाता है (डिस्क को घुमाने पर ट्रैक को अलग करने वाली दूरी)। हालांकि, अधिकांश खिलाड़ी अभी भी अधिक निकट स्थान वाले डेटा को समायोजित कर सकते हैं यदि यह अभी भी रेड बुक सहिष्णुता के भीतर है।[65]वर्तमान निर्माण प्रक्रियाएं एक ऑडियो सीडी को 80 मिनट तक (एक प्रतिकृति संयंत्र से दूसरे में चर) शामिल करने की अनुमति देती हैं, बिना सामग्री निर्माता को छूट पर हस्ताक्षर करने की आवश्यकता के बिना संयंत्र के मालिक को जिम्मेदारी से मुक्त करने की आवश्यकता होती है यदि उत्पादित सीडी कुछ प्लेबैक उपकरणों द्वारा मामूली या पूरी तरह से अपठनीय है . वर्तमान अभ्यास में, न्यूनतम इंजीनियरिंग सहनशीलता को कम करके अधिकतम सीडी खेलने का समय अधिक हो गया है।

Progression in the maximum duration of released audio CDs
Title Artist Label Released Time
Mission of Burma (compilation) Mission of Burma Rykodisc 1988 80:08[66]
Late Romantic Masterworks Andrew Fletcher Mirabilis Records 1990 80:51[67]
JS Bach, Das Orgelbüchlein Richard Marlow Mirabilis Records 1990 82:04[67]
Bruckner's Fifth (live) Munich Philharmonic cond. Christian Thielemann Deutsche Grammophon 477 5377 2004 82:34[68]
Chopin & Schumann Etudes Valentina Lisitsa Decca 478 7697 2014 85:16[69]
So80s Presents Alphaville Alphaville Curated By Blank & Jones Soulfood 2014 85:10 and 85:57[70]
Mozart Violin Concertos (Mozart 225 Box Set, CD75) Various Artists Decca / Deutsche Grammophon 478 9864 2016 86:30[71]
Bäst of Die Ärzte Hot Action Records – 930 003 – 2 2006 88:41 on disc 1, 89:07 on disc 2[72]


तकनीकी विनिर्देश

डेटा एन्कोडिंग

प्रत्येक ऑडियो नमूना साइन्डनेस 16-बिट टू का पूरक इंटीजर (कंप्यूटर विज्ञान) है, जिसमें नमूना मान −32768 से +32767 तक हैं। स्रोत ऑडियो डेटा को फ्रेम में विभाजित किया जाता है, जिसमें प्रति फ्रेम कुल 192 बिट्स (24 बाइट्स) ऑडियो डेटा के लिए बारह नमूनाकरण (सिग्नल प्रोसेसिंग) प्रत्येक (छह बाएं और छह दाएं नमूने, बारी-बारी से) होते हैं।

ऑडियो फ्रेम की यह धारा, समग्र रूप से, क्रॉस-इंटरलीव्ड रीड-सोलोमन कोडिंग एन्कोडिंग के अधीन है, जो डेटा को सेगमेंट और पुनर्व्यवस्थित करती है और इसे त्रुटि सुधार कोड के साथ इस तरह से विस्तारित करती है जिससे कभी-कभी पढ़ने की त्रुटियों का पता लगाया जा सके और ठीक किया जा सके। CIRC एन्कोडिंग लगातार कई फ़्रेमों पर पूरे डिस्क में ऑडियो फ़्रेम को इंटरलीव करती है ताकि सूचना फट त्रुटि यों के लिए अधिक प्रतिरोधी हो। इसलिए, डिस्क पर एक भौतिक फ्रेम में वास्तव में कई तार्किक ऑडियो फ्रेम से जानकारी होगी। यह प्रक्रिया प्रत्येक फ्रेम में 64 बिट त्रुटि सुधार डेटा जोड़ती है। इसके बाद, इनमें से प्रत्येक एन्कोडेड फ्रेम में कॉम्पैक्ट डिस्क सबकोड के 8 बिट जोड़े जाते हैं, जो सीडी चलाते समय नियंत्रण और एड्रेसिंग के लिए उपयोग किया जाता है।

सीआईआरसी एन्कोडिंग प्लस सबकोड बाइट 33-बाइट लंबे फ्रेम उत्पन्न करते हैं, जिन्हें चैनल-डेटा फ्रेम कहा जाता है। फिर इन फ़्रेमों को आठ-से-चौदह मॉड्यूलेशन (EFM) के माध्यम से संशोधित किया जाता है, जहाँ प्रत्येक 8-बिट शब्द को संबंधित 14-बिट शब्द से बदल दिया जाता है, जिसे 0 और 1 के बीच संक्रमणों की संख्या को कम करने के लिए डिज़ाइन किया गया है। यह कॉम्पैक्ट डिस्क के घनत्व को कम करता है। #डिस्क पर भौतिक विवरण और त्रुटि सहनशीलता की एक अतिरिक्त डिग्री प्रदान करता है। असंबद्धता और तुल्यकालन के लिए प्रत्येक 14-बिट शब्द से पहले तीन विलय बिट्स जोड़े जाते हैं। कुल मिलाकर 33 × (14 + 3) = 561 बिट हैं। एक 27-बिट शब्द (एक 24-बिट पैटर्न प्लस 3 मर्जिंग बिट्स) सिंक्रनाइज़ेशन में सहायता के लिए प्रत्येक फ्रेम की शुरुआत में जोड़ा जाता है, ताकि रीडिंग डिवाइस आसानी से फ्रेम का पता लगा सके। इसके साथ, एक फ्रेम समाप्त होता है जिसमें 588 बिट चैनल डेटा होता है (जो केवल 192 बिट संगीत के लिए डीकोड किया जाता है)।

चैनल डेटा के फ्रेम अंततः कॉम्पैक्ट डिस्क # भौतिक विवरण के रूप में भौतिक रूप से डिस्क पर लिखे जाते हैं, प्रत्येक गड्ढे या भूमि शून्य की एक श्रृंखला का प्रतिनिधित्व करते हैं, और संक्रमण बिंदुओं के साथ- प्रत्येक गड्ढे के किनारे-एक 1 का प्रतिनिधित्व करते हैं। एक रेड बुक-संगत सीडी-आर में वास्तविक गड्ढों और भूमि के बजाय कार्बनिक डाई की एक परत पर गड्ढे और जमीन के आकार के धब्बे होते हैं; एक लेज़र डाई के परावर्तक गुणों को बदलकर धब्बे बनाता है।

डेटा डिस्क (मोड 1 या मोड 2 फॉर्म 1) की तुलना में ऑडियो सीडी और वीडियो सीडी (सीडी-रोम # मोड 2 फॉर्म 2) पर कमजोर त्रुटि सुधार सीडी-रोम # सेक्टर संरचना के कारण, सी 2 त्रुटियां सुधार योग्य नहीं हैं और संकेत देती हैं डेटा हानि।[73][74] यहां तक ​​​​कि अपरिवर्तनीय त्रुटियों के साथ, एक कॉम्पैक्ट डिस्क प्लेयर क्षति को असहनीय बनाने के उद्देश्य से डेटा हानि को प्रक्षेपित करता है।[75]


डेटा संरचना

लीड-इन, प्रोग्राम क्षेत्र और लीड-आउट सहित ऑडियो सीडी की कुछ दृश्यमान विशेषताएं। डिजिटल जानकारी का एक सूक्ष्म सर्पिल डिस्क के केंद्र के पास शुरू होता है और किनारे की ओर बढ़ता है।

एक ऑडियो सीडी में ऑडियो डेटा स्ट्रीम निरंतर होती है, लेकिन इसके तीन भाग होते हैं। मुख्य भाग, जिसे आगे बजाने योग्य ऑडियो ट्रैक्स में विभाजित किया गया है, कार्यक्रम क्षेत्र है। इस खंड से पहले एक लीड-इन ट्रैक होता है और उसके बाद एक लीड-आउट ट्रैक होता है। लीड-इन और लीड-आउट ट्रैक केवल मूक ऑडियो को एन्कोड करते हैं, लेकिन सभी तीन अनुभागों में सबकोड डेटा स्ट्रीम होते हैं।

लीड-इन के सबकोड में डिस्क की सामग्री तालिका (टीओसी) की दोहराई गई प्रतियां होती हैं, जो प्रोग्राम क्षेत्र और लीड-आउट में ट्रैक की प्रारंभिक स्थिति का एक सूचकांक प्रदान करती है। ट्रैक स्थिति को एमएसएफ प्रारूप में कार्यक्रम क्षेत्र की शुरुआत के सापेक्ष निरपेक्ष timecode द्वारा संदर्भित किया जाता है: मिनट, सेकंड और आंशिक सेकंड जिन्हें फ्रेम कहा जाता है। प्रत्येक टाइमकोड फ्रेम एक सेकंड का पचहत्तरवां हिस्सा होता है, और 98 चैनल-डेटा फ्रेम के ब्लॉक से मेल खाता है-आखिरकार, बाएं और दाएं ऑडियो नमूनों के 588 जोड़े का एक ब्लॉक। सबचैनल डेटा में निहित टाइमकोड रीडिंग डिवाइस को डिस्क के उस क्षेत्र का पता लगाने की अनुमति देता है जो टीओसी में टाइमकोड से मेल खाता है। डिस्क पर टीओसी हार्ड ड्राइव पर विभाजन तालिका के अनुरूप है। गैर-मानक या दूषित टीओसी रिकॉर्ड का सीडी/डीवीडी कॉपी सुरक्षा के रूप में दुरुपयोग किया जाता है, उदा। key2ऑडियो योजना।

ट्रैक

सीडी पर सबसे बड़ी इकाई को ट्रैक कहा जाता है। एक सीडी में अधिकतम 99 ट्रैक हो सकते हैं (मिश्रित मोड सीडी के लिए छिपा ट्रैक सहित)। बदले में प्रत्येक ट्रैक में 100 इंडेक्स तक हो सकते हैं, हालांकि खिलाड़ी जो अभी भी इस सुविधा का समर्थन करते हैं, वे समय के साथ दुर्लभ हो गए हैं। अधिकांश गानों को इंडेक्स 1 के तहत रिकॉर्ड किया जाता है, जिसमें पूर्व की खाई इंडेक्स 0 होता है। कभी-कभी छिपे हुए ट्रैक डिस्क के आखिरी ट्रैक के अंत में रखे जाते हैं, अक्सर इंडेक्स 2 या 3 का उपयोग करते हैं, या प्री-गैप का उपयोग करते हैं इंडेक्स 0 (इस बाद के उपयोग के परिणामस्वरूप ट्रैक चल रहा है क्योंकि ट्रैक की शुरुआत में टाइम काउंटर 0:00 समय तक गिना जाता है, इंडेक्स 1.) यह कुछ डिस्क के मामले में भी है जो 101 ध्वनि प्रभाव पेश करते हैं, 100 के साथ और 101 को ट्रैक 99 पर दो और तीन के रूप में अनुक्रमित किया जा रहा है। इंडेक्स, यदि उपयोग किया जाता है, तो कभी-कभी ट्रैक नंबर के दशमलव भाग के रूप में ट्रैक लिस्टिंग पर रखा जाता है, जैसे कि 99.2 या 99.3। (सूचना समाज (बैंड) बैंड) का हैक (एल्बम) ऐसा करने के लिए बहुत कम सीडी रिलीज में से एक था, एक समान रूप से अस्पष्ट सीडी + जी फीचर के साथ रिलीज के बाद।) सीडी के ट्रैक और इंडेक्स संरचना को डीवीडी में आगे बढ़ाया गया था। क्रमशः शीर्षक और अध्याय के रूप में प्रारूप।

ट्रैक, बदले में, टाइमकोड फ़्रेम (या सेक्टर) में विभाजित होते हैं, जिन्हें आगे चैनल-डेटा फ़्रेम में उप-विभाजित किया जाता है।

फ्रेम्स और टाइमकोड फ्रेम्स

सीडी में सबसे छोटी इकाई एक चैनल-डेटा फ्रेम है, जिसमें 33 बाइट्स होते हैं और इसमें छह पूर्ण 16-बिट स्टीरियो नमूने होते हैं: ऑडियो के लिए 24 बाइट्स (दो बाइट्स × दो चैनल × छह नमूने = 24 बाइट्स), आठ सीआईआरसी त्रुटि -सुधार बाइट्स, और एक कॉम्पैक्ट डिस्क सबकोड बाइट। जैसा कि डेटा एन्कोडिंग सेक्शन में बताया गया है, EFM मॉडुलन के बाद एक फ्रेम में बिट्स की संख्या 588 हो जाती है।

रेड बुक ऑडियो सीडी पर, डेटा को एमएसएफ योजना का उपयोग करके संबोधित किया जाता है, मिनट, सेकंड और अन्य प्रकार के फ्रेम (मिमी: एसएस: एफएफ) में व्यक्त किए गए टाइमकोड के साथ, जहां एक फ्रेम ऑडियो के एक सेकंड के 1/75 से मेल खाता है: 588 बाएँ और दाएँ नमूने के जोड़े। यह टाइमकोड फ्रेम ऊपर वर्णित 33-बाइट चैनल-डेटा फ्रेम से अलग है, और समय प्रदर्शन और रीडिंग लेजर की स्थिति के लिए उपयोग किया जाता है। सीडी ऑडियो को संपादित और निकालते समय, यह टाइमकोड फ्रेम एक ऑडियो सीडी के लिए सबसे छोटा पता योग्य समय अंतराल है; इस प्रकार, ट्रैक की सीमाएँ केवल इन फ़्रेम सीमाओं पर होती हैं। इनमें से प्रत्येक संरचना में 98 चैनल-डेटा फ़्रेम होते हैं, कुल 98 × 24 = 2,352 बाइट्स संगीत। सीडी प्रति सेकंड 75 फ्रेम (या सेक्टर) की गति से खेली जाती है, इस प्रकार प्रति सेकंड 44,100 नमूने या 176,400 बाइट्स।

1990 के दशक में, सीडी-रोम और संबंधित रिपिंग (डीएई) तकनीक ने प्रत्येक टाइमकोड फ्रेम को संदर्भित करने के लिए सीडी-रोम # सीडी-रोम प्रारूप की शुरुआत की, प्रत्येक क्षेत्र को एक अनुक्रमिक पूर्णांक संख्या द्वारा शून्य से शुरू करके, और ट्रैक के साथ संरेखित किया गया। सेक्टर की सीमाओं पर। एक ऑडियो सीडी सेक्टर 2,352 बाइट्स डीकोडेड डेटा से मेल खाता है। रेड बुक सेक्टरों को संदर्भित नहीं करता है, न ही यह डिस्क के डेटा स्ट्रीम के संबंधित अनुभागों को अलग करता है सिवाय MSF एड्रेसिंग स्कीम में फ्रेम के रूप में।

निम्न तालिका ट्रैक, टाइमकोड फ़्रेम (सेक्टर) और चैनल-डेटा फ़्रेम के बीच संबंध दिखाती है:

Track level Track N
Timecode frame or sector level Timecode frame or sector 1 (2,352 b of data) Timecode frame or sector 2 (2,352 b of data) ...
Channel-data frame level Channel-data frame 1 (24 b of data) ... Channel-data frame 98 (24 b of data) ... ...


बिट दर

रेड बुक ऑडियो सीडी के लिए ऑडियो बिट दर 1,411,200 बिट प्रति सेकंड (1,411 kbit/s) या 176,400 बाइट प्रति सेकंड है; 2 चैनल × 44,100 नमूने प्रति सेकंड प्रति चैनल × 16 बिट प्रति नमूना। सीडी से आने वाला ऑडियो डेटा सेक्टरों में समाहित है, प्रत्येक सेक्टर 2,352 बाइट्स है, और 75 सेक्टरों में 1 सेकंड ऑडियो है। तुलना के लिए, 1 × सीडी-रोम की बिट दर को 2,048 बाइट्स प्रति सेक्टर × 75 सेक्टर प्रति सेकंड = 153,600 बाइट्स प्रति सेकंड के रूप में परिभाषित किया गया है। एक सेक्टर में शेष 304 बाइट्स अतिरिक्त डेटा त्रुटि सुधार के लिए उपयोग किए जाते हैं।

कंप्यूटर से डेटा एक्सेस

डीवीडी या सीडी-रोम के विपरीत, रेड बुक ऑडियो सीडी पर कोई कम्प्यूटर फाइल नहीं होती है; एलपीसीएम ऑडियो डेटा की केवल एक सतत स्ट्रीम है, और 8 सबकोड डेटा स्ट्रीम का एक समानांतर, छोटा सेट है। हालाँकि, कंप्यूटर ऑपरेटिंग सिस्टम एक ऑडियो सीडी तक पहुँच प्रदान कर सकते हैं जैसे कि उसमें फाइलें हों। उदाहरण के लिए, माइक्रोसॉफ़्ट विंडोज़ सीडी की सामग्री तालिका को कॉम्पैक्ट डिस्क ऑडियो ट्रैक (सीडीए) फाइलों के एक सेट के रूप में प्रस्तुत करता है, प्रत्येक फाइल में इंडेक्सिंग जानकारी होती है, ऑडियो डेटा नहीं। हालांकि इसके विपरीत, macOS पर खोजक (सॉफ्टवेयर) ऑडियो इंटरचेंज फ़ाइल स्वरूप -एक्सटेंशन के साथ सीडी की सामग्री को फाइलों के वास्तविक सेट के रूप में प्रस्तुत करता है, जिसे सीधे, बेतरतीब ढंग से और व्यक्तिगत रूप से ट्रैक द्वारा कॉपी किया जा सकता है जैसे कि यह वास्तविक फाइलें हों। वास्तव में, macOS उपयोगकर्ता के लिए पूरी तरह से पारदर्शी पृष्ठभूमि में अपना आवश्यक-रिप्स करता है। कॉपी किए गए ट्रैक उपयोगकर्ता के कंप्यूटर पर पूरी तरह से चलने योग्य और संपादन योग्य हैं।

रिपिंग नामक एक प्रक्रिया में, सीडी-डीए ऑडियो डेटा को पढ़ने और इसे फाइलों में संग्रहीत करने के लिए डिजिटल ऑडियो निष्कर्षण सॉफ्टवेयर का उपयोग किया जा सकता है। इस उद्देश्य के लिए सामान्य ऑडियो फ़ाइल स्वरूपों में WAV और AIFF शामिल हैं, जो केवल LPCM डेटा को एक छोटे हेडर (कंप्यूटिंग) के साथ प्रस्तुत करते हैं; FLAC , Apple Lossless , और Windows Media Audio#Windows Media Audio Lossless, जो LPCM डेटा को इस तरह से संपीड़ित करता है कि अंतरिक्ष को संरक्षित करता है फिर भी इसे बिना किसी बदलाव के पुनर्स्थापित करने की अनुमति देता है; और विभिन्न हानिपूर्ण संपीड़न, एमपी 3, उन्नत ऑडियो कोडिंग , और ओपस (ऑडियो प्रारूप) जैसे अवधारणात्मक ऑडियो कोडर प्रारूप, जो ऑडियो डेटा को संशोधित और संपीड़ित करते हैं जो अपरिवर्तनीय रूप से ऑडियो को बदलते हैं, लेकिन जो परिवर्तनों को कठिन बनाने के लिए मानव श्रवण की सुविधाओं का फायदा उठाते हैं। विचार करने के लिए।

स्वरूप भिन्नताएं

रिकॉर्डिंग प्रकाशकों ने सीडी बनाई है जो रेड बुक मानक का उल्लंघन करती है। कुछ कॉपी नियंत्रण जैसे सिस्टम का उपयोग करके कॉपी सुरक्षा के उद्देश्य से ऐसा करते हैं। कुछ लोग ड्यूलडिस्क जैसी अतिरिक्त सुविधाओं के लिए ऐसा करते हैं, जिसमें एक सीडी परत और एक डीवीडी परत दोनों शामिल हैं जिससे सीडी परत बहुत पतली है, 0.9 मिमी, रेड बुक की आवश्यकता से, जो नाममात्र 1.2 मिमी, लेकिन कम से कम 1.1 मिमी निर्धारित करती है। . फिलिप्स और कई अन्य कंपनियों ने कहा है कि ऐसी गैर-अनुरूपता वाली डिस्क पर कॉम्पैक्ट डिस्क डिजिटल ऑडियो लोगो सहित ट्रेडमार्क उल्लंघन हो सकता है।

सुपर ऑडियो सीडी 1999 में प्रकाशित एक मानक था जिसका उद्देश्य सीडी में बेहतर ऑडियो गुणवत्ता प्रदान करना था। डीवीडी ऑडियो लगभग उसी समय उभरा।[76]प्रारूप को उच्च निष्ठा के ऑडियो को प्रदर्शित करने के लिए डिज़ाइन किया गया था। यह एक उच्च नमूना दर लागू करता है और 650 एनएम लेज़रों का उपयोग करता है। किसी भी प्रारूप को व्यापक रूप से स्वीकार नहीं किया गया था।

कॉपीराइट मुद्दे

संगीत की नकल को रोकने के लिए, रिकॉर्डिंग उद्योग द्वारा कंप्यूटर सीडी-रोम ड्राइव पर ऑडियो सीडी (कॉम्पैक्ट डिस्क डिजिटल ऑडियो) को चलाने योग्य बनाने के लिए कदम उठाए गए हैं। यह डिस्क पर जानबूझकर त्रुटियों को पेश करके किया जाता है, जो कि अधिकांश स्टैंड-अलोन ऑडियो प्लेयर पर एम्बेडेड सर्किट स्वचालित रूप से क्षतिपूर्ति कर सकते हैं, लेकिन जो सीडी-रोम ड्राइव को भ्रमित कर सकते हैं। अक्टूबर 2001 तक उपभोक्ता अधिकारों के अधिवक्ताओं ने उपभोक्ताओं को सूचित करने के लिए कॉम्पैक्ट डिस्क पर चेतावनी लेबल की आवश्यकता पर जोर दिया जो आधिकारिक कॉम्पैक्ट डिस्क डिजिटल ऑडियो मानक (जिसे अक्सर #Standard कहा जाता है) के अनुरूप नहीं है, जो डिस्क अपनी सामग्री के पूर्ण उचित उपयोग की अनुमति नहीं देते हैं।

2005 में, सोनी बीएमजी म्यूजिक एंटरटेनमेंट की आलोचना की गई थी, जब एक कॉपी प्रोटेक्शन मैकेनिज्म जिसे विस्तारित प्रतिलिपि सुरक्षा (एक्ससीपी) के रूप में जाना जाता है, का इस्तेमाल उनके कुछ ऑडियो सीडी पर स्वचालित रूप से और कंप्यूटर पर गुप्त रूप से स्थापित कॉपी-रोकथाम सॉफ्टवेयर (सोनी बीएमजी कॉपी प्रोटेक्शन रूटकिट स्कैंडल देखें) पर किया जाता है। ऐसी डिस्क को कानूनी रूप से सीडी या कॉम्पैक्ट डिस्क कहलाने की अनुमति नहीं है क्योंकि वे रेड बुक मानक गवर्निंग सीडी को तोड़ते हैं, और उदाहरण के लिए Amazon.com उन्हें कॉम्पैक्ट डिस्क या सीडी के बजाय कॉपी प्रोटेक्टेड डिस्क के रूप में वर्णित करता है।

यह भी देखें

संदर्भ

  1. Pohlmann, Ken C. (2000). Principles of Digital Audio. McGraw-Hill. p. 244. ISBN 9780071348195.
  2. Plambeck, Joseph (30 May 2010). "As CD Sales Wane, Music Retailers Diversify". The New York Times. Archived from the original on 1 May 2017.
  3. "IFPI publishes Digital Music Report 2015". 14 April 2015. Archived from the original on 14 April 2015. Retrieved 1 July 2016.
  4. "Vinyl Outsells CDs For the First Time in Decades". 10 September 2020. Archived from the original on 22 September 2020. Retrieved 22 September 2020.
  5. https://www.riaa.com/wp-content/uploads/2020/09/Mid-Year-2020-RIAA-Revenue-Statistics.pdf[bare URL PDF]
  6. "Das Photo als Schalplatte" (PDF) (in Deutsch). Archived (PDF) from the original on 4 April 2016. Retrieved 2 July 2020.
  7. U.S. Patent 3,501,586 Analog to digital to optical photographic recording and playback system, March 1970.
  8. Brier Dudley (29 November 2004). "Scientist's invention was let go for a song". The Seattle Times. Archived from the original on 10 August 2014. Retrieved 24 July 2014.
  9. "Inventor and physicist James Russell '53 will receive Vollum Award at Reed's convocation" (Press release). Reed College public affairs office. 2000. Archived from the original on 9 October 2013. Retrieved 24 July 2014.
  10. "Inventor of the Week – James T. Russell – The Compact Disc". MIT. December 1999. Archived from the original on 17 April 2003.
  11. "The History of the CD". Philips Research. Retrieved 7 June 2014.
  12. 12.0 12.1 12.2 12.3 K. Schouhamer Immink (2007). "Shannon, Beethoven, and the Compact Disc". IEEE Information Theory Society Newsletter. 57: 42–46. Retrieved 6 February 2018.
  13. 13.0 13.1 Straw, Will (2009). "The Music CD and Its Ends". Design and Culture. 1 (1): 79–91. doi:10.2752/175470709787375751. S2CID 191574354.
  14. Rasen, Edward (May 1985). "Compact Discs: Sound of the Future". Spin. Archived from the original on 16 December 2015. Retrieved 9 January 2016.
  15. Billboard (March 1992). "CD Unit Sales Pass Cassettes, Majors Say". Billboard.
  16. Kozinn, Allan (December 1988). "Have Compact Disks Become Too Much of a Good Thing?". The New York Times.
  17. Introducing the amazing Compact Disc (1982). Australian Broadcasting Corporation. 10 June 2015. Archived from the original on 23 November 2015. Retrieved 9 January 2016 – via YouTube.
  18. 18.0 18.1 18.2 18.3 18.4 18.5 K. Schouhamer Immink (1998). "Compact Disc Story". Journal of the Audio Engineering Society. 46 (5): 458–460. Retrieved 6 February 2018.
  19. Why CDs may actually sound better than vinyl Archived 9 April 2016 at the Wayback Machine, Chris Kornelis, 27 January 2015
  20. 20.0 20.1 Peek, Hans B. (January 2010). "The Emergence of the Compact Disc". IEEE Communications Magazine. 48 (1): 10–17. doi:10.1109/MCOM.2010.5394021. ISSN 0163-6804. S2CID 21402165.
  21. McClure, Steve (8 January 2000). "Heitaro Nakajima". Billboard. p. 68. Archived from the original on 19 March 2015. Retrieved 4 November 2014.
  22. 22.0 22.1 "A Long Play Digital Audio Disc System". AES. March 1979. Archived from the original on 25 July 2009. Retrieved 14 February 2009. {{cite journal}}: Cite journal requires |journal= (help)
  23. 23.0 23.1 "How the CD Was Developed". BBC News. 17 August 2007. Archived from the original on 22 December 2007. Retrieved 17 August 2007.
  24. "Philips Compact Disc". Philips. Archived from the original on 19 March 2009. Retrieved 14 February 2009.
  25. "Sony chairman credited with developing CDs dies", Fox News, 24 April 2011, archived from the original on 21 May 2013, retrieved 14 October 2012
  26. Knopper, Steve (7 January 2009). "Appetite for Self-Destruction: The Rise and Fall of the Record Industry in the Digital Age". Free Press/Simon & Schuster. {{cite journal}}: Cite journal requires |journal= (help)
  27. "The Inventor of the CD". Philips Research. Archived from the original on 29 January 2008. Retrieved 16 January 2009.
  28. Kelly, Heather (29 September 2012). "Rock on! The compact disc turns 30". CNN. Archived from the original on 28 August 2018. Retrieved 30 September 2012. The first test CD was Richard Strauss's Eine Alpensinfonie, and the first CD actually pressed at a factory was ABBA's The Visitors, but that disc wasn't released commercially until later.
  29. Bilyeu, Melinda; Hector Cook; Andrew Môn Hughes (2004). The Bee Gees:tales of the brothers Gibb. Omnibus Press. p. 519. ISBN 978-1-84449-057-8.
  30. "1985 News Story on Debut of the Compact Disc (CD)". www.youtube.com (in English). 20 July 2010. Retrieved 25 June 2022.{{cite web}}: CS1 maint: url-status (link)
  31. "Sony History: A Great Invention 100 Years On". Sony. Archived from the original on 2 August 2008. Retrieved 28 February 2012.
  32. Giles, Jeff (1 October 2012). "How Billy Joel's '52nd Street' Became the First Compact Disc released". Ultimate Classic Rock. Townsquare Media, LLC. Archived from the original on 6 July 2017. Retrieved 13 October 2017.
  33. "Philips celebrates 25th anniversary of the Compact Disc"Archived 17 August 2015 at Archive-It, Philips Media Release, 16 August 2007. Retrieved 6 October 2013.
  34. Kaptainis, Arthur (5 March 1983). "Sampling the latest sound: should last a lifetime". The Globe and Mail. Toronto. p. E11.
  35. Canale, Larry (1986). Digital Audio's Guide to Compact Discs. Bantam Books. p. 4. ISBN 9780553343564.
  36. Harlow, Oliva. "When Did the CD Replace the Cassette Tape?". artifact. Archived from the original on 13 October 2019. Retrieved 13 October 2019.
  37. Maxim, 2004
  38. The New Schwann Record & Tape Guide Volume 37 No. 2 February 1985
  39. JON PARELES (25 February 1987). "NOW ON CD'S, FIRST 4 BEATLES ALBUMS". New York Times. Archived from the original on 10 March 2017. Retrieved 6 February 2017.
  40. MAC Audio News. No. 178, November 1989. pp 19–21 Glenn Baddeley. November 1989 News Update. Melbourne Audio Club Inc.
  41. 41.0 41.1 41.2 41.3 van Willenswaard, Peter (1 May 1989). "PDM, PWM, Delta-Sigma, 1-Bit DACs". stereophile.com. Retrieved 30 January 2021.
  42. Atkinson, John (1989). "PDM, PWM, Delta-Sigma, 1-Bit DACs by John Atkinson". stereophile.com. Retrieved 30 January 2021.
  43. K. Schouhamer Immink and J. Braat (1984). "Experiments Toward an Erasable Compact Disc". J. Audio Eng. Soc. 32: 531–538. Retrieved 2 February 2018.
  44. The world's first CD-R was made by the Japanese firm Taiyo Yuden Co., Ltd. in 1988 as part of the joint Philips-Sony development effort.
  45. Richter, Felix. "The Rise and Fall of the Compact Disc". Statista. Archived from the original on 13 October 2019. Retrieved 13 October 2019.
  46. Williams, Stephen (4 February 2011). "For Car Cassette Decks, Play Time Is Over". New York Times. Archived from the original on 10 November 2012. Retrieved 18 July 2012.
  47. Ong, Thuy (6 February 2018). "Best Buy will stop selling CDs as digital music revenue continues to grow". The Verge. Archived from the original on 6 February 2018. Retrieved 6 February 2018.
  48. Owsinski, Bobby (7 July 2018). "Best Buy, Winding Down CD Sales, Pounds Another Nail Into The Format's Coffin". Forbes. Archived from the original on 6 August 2018. Retrieved 6 August 2018.
  49. Chris Morris (2 July 2018). "End of a Era: Best Buy Significantly Cuts Back on CDs". Fortune. Archived from the original on 14 July 2018. Retrieved 6 August 2018.
  50. "Technical Grammy Award". Archived from the original on 26 October 2014. Retrieved 5 November 2014.
  51. "IEEE CD Milestone". IEEE Global History Network. Archived from the original on 26 November 2009. Retrieved 14 October 2010.
  52. "How the CD was developed". BBC News. 17 August 2007. Retrieved 17 August 2007.
  53. "Philips Compact Disc". Philips Historical Products. Archived from the original on 25 April 2016. Retrieved 24 January 2016.
  54. IEC 60908:1987 Compact disc digital audio system
  55. IEC 60908:1999 Audio recording – Compact disc digital audio system (PDF)
  56. Approved Compact Disc Logo configurations
  57. Specs for Freeware Developers Archived 1 May 2012 at the Wayback Machine
  58. "CD Products". lscdweb.com. Retrieved 24 May 2013.
  59. 2–35] Why 44.1 kHz? Why not 48KHz?
  60. Philips. "Beethoven's Ninth Symphony of Greater Importance than Technology". Archived from the original on 2 February 2009. Retrieved 9 February 2007.
  61. AES. "AES Oral History Project: Kees A.Schouhamer Immink". Retrieved 29 July 2008.
  62. 62.0 62.1 Cassidy, Fergus (23 October 2005). "Great Lengths". Sunday Tribune. Archived from the original (reprint) on 12 October 2007. Retrieved 7 January 2017.
  63. Hoffmann, Frank; Ferstler, Howard (2005). Encyclopedia of Recorded Sound. CRC Press. p. 1289. ISBN 978-0-415-93835-8.
  64. Goldmark, Peter. Maverick inventor; My Turbulent Years at CBS. New York: Saturday Review Press, 1973.
  65. Andy McFadden (9 January 2010). "CD-Recordable FAQ". Retrieved 30 December 2010.
  66. "Mission of Burma 1988 Rykodisc compilation information". discogs.com. Retrieved 18 January 2011. This Rykodisc release was the first compact disc to contain 80 minutes of music; 78 minutes had previously been the longest length possible to encode on a CD.
  67. 67.0 67.1 "Ambisonic Info | Mirabilis Recordings".
  68. "BRUCKNER: Symphony No. 5 in B flat major (original version) — Munich Philharmonic/Christian Thielemann — DGG – Audiophile Audition". Audiophile Audition. 13 July 2005. Archived from the original on 16 May 2013.
  69. "Valentina Lisitsa – Études – Amazon.com Music". www.amazon.com. Retrieved 1 January 2017.
  70. "Alphaville Curated By Blank & Jones – So80s (Soeighties) Presents Alphaville". Discogs.
  71. McElhearn, Kirk (12 May 2017). "CDs Longer than 80 Minutes Are Becoming More Common". Kirkville (in English). Retrieved 12 May 2017.
  72. "Die Ärzte – Bäst Of". discogs.com (in English). Retrieved 31 January 2021.
  73. "Fehlerprotoll / Error Check CD" (in Deutsch).
  74. Wiethoff, Diplominformatiker, André (15 April 2011). "Exact Audio Copy – Audiodaten von optischen Speichermedien extrahieren" (PDF) (in Deutsch). Vortrag am 15 April 2011 an der Hochschule Rhein-Main. pp. 51–53. Retrieved 9 August 2020. {{cite web}}: Check |last1= value (help)CS1 maint: location (link)
  75. "CD". cs.stanford.edu (in English). Stanford.edu. Retrieved 9 August 2020. An added feature of audio CD's is that in the event of damage, the missing data can be interpolated; that is to say, the information follows a predictable pattern that allows the missing value to be guessed at. So if an audio CD is damaged by dirt or a scratch, the missing data can be averaged from a pattern with no noticeable difference to the listener. This is something the next technology in optical digital memory, CD-ROM, cannot do because an executable program's data doesn't follow a natural law. An interpolation-based guess isn't just slightly different; it's completely wrong. Because of this precision, CD-ROM drives for PC's came later and much more expensive than audio.
  76. Taylor, Jim. "DVD FAQ". DVD Demystified. Archived from the original on 22 August 2009. Retrieved 21 August 2012.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • आनंददायकता
  • ऑप्टिकल डिस्क रिकॉर्डिंग प्रौद्योगिकियां
  • पुरालेख संबंधी
  • प्रति मिनट धूर्णन
  • निरंतर रैखिक वेग
  • डिफ़्रैक्शन ग्रेटिंग
  • आप टिके रहेंगे
  • Phthalocyanine
  • शब्दशः (ब्रांड)
  • अज़ो गॉड
  • निजी कंप्यूटर
  • ऑप्टिकल स्टोरेज टेक्नोलॉजी एसोसिएशन
  • भयावह विफलता
  • यूएसबी हत्यारा
  • वीडियोडिस्क
  • एक बार लिखें कई पढ़ें
  • संख्यात्मक छिद्र
  • हाय एमडी
  • आधार - सामग्री संकोचन
  • व्यावसायिक डिस्क
  • फ्लोरोसेंट बहुपरत डिस्क
  • एक बार लिखें कई पढ़ें
  • डिस्क रोट
  • भविष्य कहनेवाला विफलता विश्लेषण
  • फोनोग्राफ रिकॉर्ड का उत्पादन
  • तरल वैकल्पिक रूप से स्पष्ट चिपकने वाला
  • आठ से चौदह मॉडुलन
  • Benq
  • सीडी राइटर
  • पैसा
  • नमूनाकरण दर
  • स्थिर कोणीय वेग
  • जूलियट (फाइल सिस्टम)
  • घूर्णन प्रति मिनट
  • आधा ऊंचाई
  • यूएसबी पोर्ट
  • लेंस (प्रकाशिकी)
  • सीरिज़ सर्किट
  • स्वत: नियंत्रण प्राप्त करें
  • रंग
  • प्रति मिनट धूर्णन
  • समानांतर एटीए
  • घंटे
  • उन्नत तकनीकी जोड़
  • रुको (कंप्यूटिंग)
  • लचीला सर्किट
  • हर कोई
  • आप टिके रहेंगे
  • आठ से चौदह मॉडुलन
  • अधिशुल्क भुगतान
  • सोना
  • प्रीग्रूव में निरपेक्ष समय
  • थोड़ा लिखो
  • सूचान प्रौद्योगिकी
  • जानकारी के सिस्टम
  • कंप्यूटिंग हार्डवेयर का इतिहास
  • प्रत्येक से अलग पत्राचार
  • बूलियन बीजगणित
  • फील्ड इफ़ेक्ट ट्रांजिस्टर
  • दावों कहंग
  • एकीकृत परिपथ
  • सेंट्रल प्रोसेसिंग यूनिट
  • जानकारी
  • समारोह (इंजीनियरिंग)
  • दस्तावेज़ फ़ाइल प्रारूप
  • लिनक्स गेमिंग
  • एंड्रॉइड (ऑपरेटिंग सिस्टम)
  • स्थानीय क्षेत्र अंतरजाल
  • जानकारी
  • सूचना अवसंरचना
  • अवधारणा का सबूत
  • सी++
  • पेशा
  • संगणक वैज्ञानिक
  • कार्यकारी प्रबंधक
  • कंसल्टेंसी
  • सॉफ्टवेयर की रखरखाव
  • सॉफ्टवेयर डेवलपमेंट
  • शैक्षिक अनुशासन
  • जटिल प्रणाली
  • सर्विस अटैक से इनकार
  • बड़ा डेटा
  • संगणक तंत्र संस्था
  • कंप्यूटर सेवाएं
  • एक सेवा के रूप में बुनियादी ढांचा
  • एक सेवा के रूप में मंच
  • पैमाने की अर्थव्यवस्थाएं
  • बहुत नाजुक स्थिति
  • सूचना की इकाइयाँ
  • मूल्य (कंप्यूटर विज्ञान)
  • सूचना की इकाई
  • तुलसी कैप
  • विद्युत सर्किट
  • राज्य (कंप्यूटर विज्ञान)
  • बिजली
  • सीरियल ट्रांसमिशन
  • चुंबकीय बुलबुला स्मृति
  • लिफ़्ट
  • चरित्र (कंप्यूटिंग)
  • योटा-
  • शैनन जानकारी
  • टॉर्कः
  • यह यहाँ जिराफ
  • अंधेरे शहर
  • दीदी काँग रेसिंग
  • शव (बैंड)
  • सेंटर ऑफ मास
  • परिवर्णी शब्द
  • रोशनी
  • प्रेरित उत्सर्जन
  • कानून स्थापित करने वाली संस्था
  • अस्थायी सुसंगतता
  • मुक्त अंतरिक्ष ऑप्टिकल संचार
  • फाइबर ऑप्टिक संचार
  • संगति (भौतिकी)
  • सुसंगतता लंबाई
  • परमाणु लेजर
  • सक्रिय लेजर माध्यम
  • प्रकाश किरण
  • रसायन विज्ञान
  • भौतिक विज्ञान
  • उत्साहित राज्य
  • अनिश्चित सिद्धांत
  • थर्मल उत्सर्जन
  • फोनोन
  • फोटोन
  • स्वत: उत्सर्जन
  • वस्तुस्थिति
  • कितना राज्य
  • जनसंख्या का ह्रास
  • फोटान संख्या
  • पॉसों वितरण
  • गाऊसी समारोह
  • टोफाट बीम
  • परावर्तन प्रसार
  • फोकस (प्रकाशिकी)
  • अल्ट्राफास्ट साइंस
  • फेमटोसेकंड केमिस्ट्री
  • दूसरी हार्मोनिक पीढ़ी
  • शारीरिक समीक्षा
  • कोलम्बिया विश्वविद्यालय
  • पैटेंट आवेदन
  • बेल टेलीफोन लेबोरेटरीज
  • शक्ति (भौतिकी)
  • कोलोराडो विश्वविद्यालय बोल्डर
  • आयन लेजर
  • व्युत्क्रम के बिना स्थायी
  • ऑप्टिकल विकिरण का आवृत्ति जोड़ स्रोत
  • राज्यों का घनत्व
  • क्वांटम वेल
  • ईण्डीयुम (III) फॉस्फाइड
  • रमन बिखरना
  • के आदेश पर
  • निउवेजिन
  • परमाणु समावयवी
  • मंगल ग्रह
  • लेजर दृष्टि (आग्नेयास्त्र)
  • मुंहासा
  • विकिरण उपचार
  • खून बह रहा है
  • फेफड़ों की छोटी कोशिकाओं में कोई कैंसर नहीं
  • योनि का कैंसर
  • लेज़र से बाल हटाना
  • परिमाण का क्रम
  • युग्मित उपकरण को चार्ज करें
  • मनुष्य की आंख
  • उस्तरा
  • विकिरण के उत्प्रेरित उत्सर्जन द्वारा ध्वनि प्रवर्धन
  • सुसंगत पूर्ण अवशोषक
  • Intellaser
  • बेरहमी
  • deprotonates
  • कांच पारगमन तापमान
  • मॉलिक्यूलर मास्स
  • ब्रेक (शीट मेटल बेंडिंग)
  • तनाव जंग खुर
  • स्पटर डिपोजिशन
  • बलवे या उपद्रवियों से निबट्ने के लिए पुलिस को उपलब्ध साज
  • रेडियो नियंत्रित हेलीकाप्टर
  • दंगा ढाल
  • बढ़ाया अपक्षय
  • शराब (रसायन विज्ञान)
  • जैविक द्रावक
  • बेलीज़
  • सेमीकंडक्टर
  • एलईडी
  • वाहक पीढ़ी और पुनर्संयोजन
  • ब्लू रे
  • प्रत्यक्ष और अप्रत्यक्ष बैंड अंतराल
  • प्रभारी वाहक
  • रिक्तीकरण क्षेत्र
  • चरण (लहरें)
  • ध्रुवीकरण (लहरें)
  • लेजर पम्पिंग
  • सुसंगतता (भौतिकी)
  • रासायनिक वाष्प निक्षेपन
  • राज्यों का घनत्व
  • तरंग क्रिया
  • ट्यून करने योग्य लेजर
  • स्थिरता अभियांत्रिकी
  • भयावह ऑप्टिकल क्षति
  • दरार (क्रिस्टल)
  • परावर्तक - विरोधी लेप
  • ईण्डीयुम (III) फॉस्फाइड
  • गैलियम (द्वितीय) एंटीमोनाइड
  • बेलगाम उष्म वायु प्रवाह
  • दृश्यमान प्रतिबिम्ब
  • हरा
  • पृथक करना
  • लाह
  • कोणीय गति
  • मिनी सीडी
  • रेखीय वेग
  • lacquerware
  • तोकुगावा को
  • या अवधि
  • एलएसी
  • चमक (सामग्री उपस्थिति)
  • कमज़ोर लाख
  • ऐक्रेलिक रेसिन
  • फ्रान्सीसी भाषा
  • उरुशीओल-प्रेरित संपर्क जिल्द की सूजन
  • तोरिहामा शैल टीला
  • शांग वंश
  • निओलिथिक
  • हान साम्राज्य
  • टैंग वंश
  • गीत राजवंश
  • हान साम्राज्य
  • मित्र ट्रुडे
  • मेलानोरिया सामान्य
  • गोद के समान चिपकनेवाला पीला रोगन
  • इनेमल रंग
  • चीनी मिटटी
  • डिजिटल डाटा
  • यूएसबी फ्लैश ड्राइव
  • विरासती तंत्र
  • संशोधित आवृत्ति मॉडुलन
  • कॉम्पैक्ट डिस्क
  • पश्च संगतता
  • परमाणु कमान और नियंत्रण
  • आईबीएम पीसी संगत
  • अंगूठी बांधने की मशीन
  • प्रयोज्य
  • A4 कागज का आकार
  • चक्रीय अतिरेक की जाँच
  • इजेक्ट (डॉस कमांड)
  • अमीगाओएस
  • तथा
  • शुगार्ट बस
  • माप की इकाइयां
  • बिलियन
  • प्राचीन यूनानी
  • सेमीकंडक्टर उद्योग
  • सीजेके संगतता
  • ओसीडी (डीसी)
  • लोहा
  • आवृति का उतार - चढ़ाव
  • प्रतिबिंब (भौतिकी)
  • गलन
  • पिछेड़ी संगतता
  • अमेरिका का संगीत निगम
  • तोशिदादा दोई
  • डेटा पूर्व
  • घातक हस्तक्षेप
  • इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
  • अंतरराष्ट्रीय मानकीकरण संगठन
  • लाल किताब (ऑडियो सीडी मानक)
  • एल टोरिटो (मानक सीडी-रोम)
  • आईएसओ छवि
  • द्विआधारी उपसर्ग
  • असर (यांत्रिक)
  • इसके रूप में व्यापार
  • चिकित्सीय इमेजिंग
  • दवाई
  • ललित कलाएं
  • ऑप्टिकल कोटिंग
  • प्रसाधन सामग्री
  • 1984 लॉस एंजिल्स ओलंपिक
  • कोविड-19 महामारी
  • सर्वश्रेष्ठ मेक्सिकन कंपनियां
  • ए पी एस सी
  • Fujinon
  • परमाणु क्रमांक
  • संक्रमण के बाद धातु
  • भाग प्रति दस लाख
  • अलकाली धातु
  • जिंक सल्फाइड
  • चमक (खनिज)
  • मोह कठोरता
  • टिन रो
  • क्रांतिक तापमान
  • चतुष्कोणीय क्रिस्टल प्रणाली
  • चेहरा केंद्रित घन
  • संरचनात्मक ताकत पर आकार प्रभाव
  • निष्क्रिय जोड़ी प्रभाव
  • वैलेंस (रसायन विज्ञान)
  • अपचायक कारक
  • उभयधर्मी
  • आइसोटोप
  • जन अंक
  • हाफ लाइफ
  • समावयवी संक्रमण
  • ईण्डीयुम (III) हाइड्रॉक्साइड
  • ईण्डीयुम (मैं) ब्रोमाइड
  • साइक्लोपेंटैडिएनिल इरिडियम (I)
  • साइक्लोपेंटैडेनिल कॉम्प्लेक्स
  • जिंक क्लोराइड
  • रंग अंधा
  • सार्वभौमिक प्रदर्शनी (1867)
  • उपोत्पाद
  • हवाई जहाज
  • जंग
  • फ्यूसिबल मिश्र धातु
  • पारदर्शिता (प्रकाशिकी)
  • दोपंत
  • सीआईजीएस सौर सेल
  • ईण्डीयुम फेफड़े
  • यह प्रविष्टि
  • प्रमुख
  • आग बुझाने की प्रणाली
  • क्षारीय बैटरी
  • सतह तनाव
  • नाभिकीय रिएक्टर्स
  • रंग
  • नाभिकीय औषधि
  • मांसपेशी
  • सीडी आरडब्ल्यू
  • बेढब
  • चरण-परिवर्तन स्मृति
  • DVD-RW
  • इलेक्ट्रिकल कंडक्टीविटी
  • सोना और चांदी दोनों का
  • ताँबा
  • बुलियन सिक्का
  • निस्संक्रामक
  • ओलिगोडायनामिक प्रभाव
  • पुरातनता की धातु
  • विद्युत कंडक्टर
  • पट्टी
  • कटैलिसीस
  • ऋणावेशित सूक्ष्म अणु का विन्यास
  • बढ़ने की योग्यता
  • सहसंयोजक बंधन
  • हीरा
  • शरीर केंद्रित घन
  • परमाण्विक भार
  • परमाण्विक भार इकाई
  • भारात्मक विश्लेषण
  • लोहे का उल्कापिंड
  • इलेक्ट्रान बन्धुता
  • कॉपर (आई) ऑक्साइड
  • रसायन बनानेवाला
  • रक्षा
  • अभिवर्तन
  • एल्काइल
  • क्लोराइड (डाइमिथाइल सल्फाइड) सोना (I)
  • बोरान
  • परमाणु रिऐक्टर
  • ओल्ड नोर्स
  • सजाति
  • ओल्ड हाई जर्मन
  • लिथुअनिअन की भाषा लिथुअनिअन की भाषा
  • बाल्टो-स्लाव भाषाएँ
  • पैसे
  • धातुकर्म
  • चौथी सहस्राब्दी ईसा पूर्व
  • एजियन समुद्र
  • 16वीं से 19वीं शताब्दी तक वैश्विक चांदी व्यापार
  • आदमी की उम्र
  • परियों का देश
  • पुराना वसीयतनामा
  • नए करार
  • सींग चांदी
  • केशिका की कार्रवाई
  • लेड (द्वितीय) ऑक्साइड
  • कार्षापण
  • एकाग्रता
  • डिसेलिनेशन
  • खून की कमी
  • गल जाना
  • हैवी मेटल्स
  • रक्त चाप
  • पारितोषिक
  • बीचवाला मिश्र धातु
  • ठोस उपाय
  • लाल स्वर्ण
  • स्टर्लिंग सिल्वर
  • बढ़ने की योग्यता
  • उष्मा उपचार
  • सामग्री की ताकत
  • घुलनशीलता
  • लोहा
  • संतृप्त घोल
  • चरण (मामला)
  • गलाने
  • अलॉय स्टील
  • उच्च गति स्टील
  • नरम इस्पात
  • मैग्निशियम मिश्रधातु
  • निष्कर्षण धातु विज्ञान
  • प्रवाह (धातु विज्ञान)
  • तन्यता ताकत
  • ऊष्मीय चालकता
  • ठोस (रसायन विज्ञान)
  • अल्फा आयरन
  • काम सख्त
  • प्लास्टिक विकृत करना
  • तेजी से सख्त होना
  • उल्कापिंड लोहा
  • उल्का पिंड
  • लोहे का उल्कापिंड
  • देशी लोहा
  • सोने का पानी
  • बुध (तत्व)
  • रंगीन सोना
  • कारण की उम्र
  • राइट ब्रदर्स
  • मिश्र धातु पहिया
  • विमान की त्वचा
  • धातु का कोना
  • कलफाद
  • भुना हुआ (धातु विज्ञान)
  • अर्धचालक युक्ति
  • आवंटन
  • सुरमा का विस्फोटक रूप
  • तिकोना
  • नाज़ुक
  • परमाणु समावयवी
  • धरती
  • नाइट्रिक एसिड
  • बोलांगेराइट
  • लुईस एसिड
  • पॉलीमर
  • गठन की गर्मी
  • ऑर्गेनोएंटिमोनी केमिस्ट्री
  • रासायनिक प्रतीक
  • पूर्व राजवंश मिस्र
  • छद्म एनकोडर
  • इलाके का प्रकार (भूविज्ञान)
  • एंटोन वॉन स्वाबा
  • फूलना
  • गिरोह
  • परावर्तक भट्टी
  • महत्वपूर्ण खनिज कच्चे माल
  • कांच का सुदृढ़ प्लास्टिक
  • समग्र सामग्री
  • उबकाई की
  • पशुचिकित्सा
  • जुगाली करनेवाला
  • चिकित्सकीय सूचकांक
  • अमास्टिगोटे
  • पालतु जानवर
  • कांच का तामचीनी
  • प्रकाश विघटन
  • ठंडा
  • अनुशंसित जोखिम सीमा
  • अनुमेय जोखिम सीमा
  • सरकारी उद्योग स्वच्छता पर अमेरिका का सेमिनार
  • जीवन या स्वास्थ्य के लिए तुरंत खतरनाक
  • रासायनिक तत्वों की प्रचुरता
  • धातु के रूप-रंग का एक अधातु पदार्थ
  • खनिज विद्या
  • परमाणु भार
  • ब्रह्मांड की आयु
  • क्रस्ट (भूविज्ञान)
  • पेट्ज़ाइट
  • सल्फ्यूरिक एसिड
  • मोलिब्डेनाईट
  • इंजन दस्तक
  • पोर्फिरी कॉपर डिपॉजिट
  • जाल (पैमाने)
  • वर्ग तलीय आणविक ज्यामिति
  • वर्ग प्रतिवाद
  • आवेश-घनत्व तरंग
  • चीनी मिट्टी
  • थाइरोइड
  • नीलम लेजर
  • कोरिनेबैक्टीरियम डिप्थीरिया
  • व्यावसायिक सुरक्षा और स्वास्थ्य प्रसाशन
  • लघुरूपण
  • आला बाजार
  • व्यक्तिगत अंकीय सहायक
  • यूनिवर्सल सीरियल बस
  • टक्कर मारना
  • सहेजा गया खेल
  • अस्थिरमति
  • मालिकाना प्रारूप
  • हाई डेफिनिशन वीडियो
  • डीवीडी फोरम
  • कीस शॉहामर इमिंक
  • इसके लिए
  • एक्सबॉक्स (कंसोल)
  • birefringence
  • गैर प्रकटीकरण समझौता
  • मामला रखो
  • डेटा बफर
  • इकाइयों की अंतर्राष्ट्रीय प्रणाली
  • निस्तो
  • पुस्तक का प्रकार
  • संयुक्त कंप्यूटर सम्मेलन गिरना
  • विलंबता (इंजीनियरिंग)
  • टार आर्काइव
  • फेज चेंजिंग फिल्म
  • एज़ो यौगिक
  • प्रकाश द्वारा सहज प्रभावित
  • प्रकाश रासायनिक प्रतिक्रिया
  • एम-डिस्क
  • सूचना प्रक्रम
  • कागज़
  • दिगपक
  • सेंचुरी (HiFi)
  • दुकानों से सामान चोरी
  • लिफ़ाफ़ा
  • संयुक्त राज्य अमेरिका पेटेंट और ट्रेडमार्क कार्यालय
  • चंद्रमा का अंधेरा पक्ष
  • बादलों से छिपा हुआ
  • मेरे पास एक मामला है
  • श्रिंक रैप पन्नी
  • डिजिटल रिफॉर्मेटिंग
  • पैदा हुआ डिजिटल
  • फंड
  • फ़ाइल का नाम
  • इंटरोऑपरेबिलिटी
  • मनमुटाव
  • हिरासत में लेने की कड़ी
  • सोर्स कोड
  • एम्यूलेटर
  • abandonware
  • बाइनरी (सॉफ्टवेयर)
  • वाणिज्यिक सॉफ्टवेयर
  • अनाथ काम
  • क्यूआर कोड
  • भूचुंबकीय तूफान
  • फाइल का प्रारूप
  • एमोरी विश्वविद्यालय पुस्तकालय
  • संघीय शिक्षा और अनुसंधान मंत्रालय (जर्मनी)
  • अनुसंधान और तकनीकी विकास के लिए रूपरेखा कार्यक्रम
  • अंतरिक्ष डेटा सिस्टम के लिए सलाहकार समिति
  • समुदाय के स्वामित्व वाली डिजिटल संरक्षण उपकरण रजिस्ट्री
  • राष्ट्रीय अभिलेखागार और रिकॉर्ड प्रशासन
  • ओपन एक्सेस जर्नल्स की निर्देशिका
  • दुनहुआंग पांडुलिपियां
  • उन्नत कंप्यूटिंग के विकास के लिए केंद्र
  • संस्थागत सहयोग समिति
  • चिरस्थायी पहुँच
  • डिजिटल आर्टिफिशियल वैल्यू
  • यूवीसी आधारित संरक्षण
  • क्रोमियम (चतुर्थ) ऑक्साइड
  • कैसेट सिंगल
  • सर्वाधिकार उल्लंघन
  • श्रुतलेख (व्यायाम)
  • प्रयोगात्मक संगीत
  • DIY पंक नैतिकता
  • गृह कम्प्यूटर
  • अगफा
  • अंशांकन स्वर
  • गतिशील सीमा
  • वीओआईपी
  • दृष्टि दोषरहित
  • डिजिटल चित्र
  • रंगीन स्थान
  • गिरना
  • ससम्मान पद अवनति
  • संभावना
  • पीढ़ी हानि
  • सौंदर्य संबंधी
  • वीडियो की स्ट्रीमिंग
  • स्ट्रीमिंग ऑडियो
  • हॉर्न (वाद्य यंत्र)
  • मानव मनोविज्ञान
  • संपीड़न विरूपण साक्ष्य
  • फ़्लिप की गई छवि
  • फ्लॉप छवि
  • वोरबिस कैसे
  • एक ताज रखो
  • आईट्यून्स स्टोर
  • भग्न संपीड़न
  • बनावट का मानचित्रण
  • तरंगिकाओं
  • जीएलटीएफ
  • एमपीईजी-1 ऑडियो परत II
  • आराम से कोड-उत्तेजित रैखिक भविष्यवाणी
  • कम विलंब CELP
  • प्राकृतिक भाषा पीढ़ी
  • गौस्सियन धुंधलापन
  • दशमलव (सिग्नल प्रोसेसिंग)
  • सर्वाधिक बिकने वाले गेम कंसोल की सूची
  • स्वतंत्र खेल विकास
  • प्लेस्टेशन वीटा
  • घड़ी की दर
  • उन्नत लघु उपकरण
  • उच्च गतिशील रेंज
  • और में
  • एक्सबॉक्स 360 नियंत्रक
  • प्लेस्टेशन कैमरा
  • प्लेस्टेशन मूव
  • भाप (सेवा)
  • देखने के क्षेत्र
  • 3 डी ऑडियो प्रभाव
  • गूगल क्रोम
  • प्लेस्टेशन नेटवर्क ट्राफियां
  • प्लेस्टेशन स्टोर
  • प्लेस्टेशन वीडियो
  • चिकोटी (सेवा)
  • स्थापना (कंप्यूटर प्रोग्राम)
  • बाहर की दुनिया
  • खेल प्रदर्शन
  • प्लेस्टेशन 4 फ्री-टू-प्ले गेम्स की सूची
  • इंडी गेम डेवलपमेंट
  • महाकाव्य खेल
  • मरो (एकीकृत सर्किट)
  • विकेंद्रीकृत प्रणाली
  • जलप्रलय (सॉफ्टवेयर)
  • गाना
  • अंतराजाल सेवा प्रदाता
  • बफ़ेलो में विश्वविद्यालय
  • द शेपिंग
  • फ़ाइल साझा करना
  • समुद्री डाकू खाड़ी
  • कर्नेल विश्वविद्यालय
  • जैसे को तैसा!
  • जलप्रलय (बिटटोरेंट क्लाइंट)
  • प्रसारण झंडा
  • आईपी ​​पता
  • क्लियरनेट (नेटवर्किंग)
  • तात्कालिक संदेशन
  • प्रतिनिधित्ववादी स्थिति में स्थानांतरण
  • संयुक्त राज्य अमेरिका में शुद्ध तटस्थता
  • यातायात विश्लेषण
  • प्रोग्रामिंग की भाषाएँ
  • बहादुर (वेब ​​ब्राउज़र)
  • रस (पॉडकास्टिंग)
  • द लिबर्टीनेस
  • वितरित अभिकलन
  • न्याय के उच्च न्यायालय
  • उड़ान ऊंचाई
  • विद्युतीय संभाव्यता
  • इलेक्ट्रोमैग्नेटिक इंडक्शन
  • सामान्य मोड संकेत
  • वृद्धि रक्षक
  • क्षणिक (बिजली)
  • बिजली चमकना
  • हिमस्खलन टूटना
  • विद्युत शक्ति वितरण
  • अधिष्ठापन
  • बिजली का टूटना
  • साइबर क्राइम
  • शून्य-दिन (कंप्यूटिंग)
  • संगणनीयता सिद्धांत (कंप्यूटर विज्ञान)
  • मस्तिष्क (कंप्यूटर वायरस)
  • एचटीएमएल ईमेल
  • सुनोस
  • सेवा का वितरित इनकार
  • ज़बरदस्ती वसूली
  • सहबद्ध विपणन
  • धोखाधड़ी पर क्लिक करें
  • ड्राइव-बाय डाउनलोड
  • एनएसए एएनटी कैटलॉग
  • विस्फ़ोटक (कंप्यूटर कीड़ा)
  • अस्पष्टता (सॉफ्टवेयर)
  • रचनात्मक गलती
  • सामान्य भेद्यताएं और जोखिम
  • अतिक्रमण संसूचन प्रणाली
  • मज़बूत पारण शब्द
  • Windows दुर्भावनापूर्ण सॉफ़्टवेयर निष्कासन उपकरण
  • खतरा (कंप्यूटर)
  • डोमेन जनरेशन एल्गोरिथम
  • कनाडा की राष्ट्रीयता कानून
  • वाग्मिता
  • वंशागति
  • ध्वनि-विज्ञान
  • मूक बधिर
  • विद्युतीय प्रतिरोध
  • शपथ पत्र
  • कंपोस्टिंग शौचालय
  • अलेक्जेंडर ग्राहम बेल सम्मान और श्रद्धांजलि
  • कनाडा की सेना
  • फ्रेंच फ़्रैंक
  • बधिरों के लिए अलेक्जेंडर ग्राहम बेल एसोसिएशन एंड हार्ड ऑफ हियरिंग
  • 100 महानतम ब्रितानी
  • विदेश महाविद्यालय
  • पब्लिक स्कूल (सरकारी वित्त पोषित)
  • शुक्र का पारगमन
  • अमेरिकी इतिहास का राष्ट्रीय संग्रहालय
  • श्रुतलेख (व्यायाम)
  • चचेरा भाई
  • सापेक्षता का सिद्धांत
  • पुराना क्वांटम सिद्धांत
  • तथ्य
  • ब्रम्हांड
  • समोसी के एरिस्टार्चस
  • लीनियर अलजेब्रा
  • गणना
  • क्वांटम जानकारी
  • डॉक्टर की डिग्री
  • ब्रह्माण्ड विज्ञान
  • पदार्थ विज्ञान
  • पोस्ट डॉक्टरल शोधकर्ता
  • भौतिकी में नोबेल पुरस्कार
  • भौतिक समाज (बहुविकल्पी)
  • शैक्षणिक सम्मेलन
  • सामरिक रक्षा पहल
  • नीदरलैंड में अरब
  • नीदरलैंड में 2019 यूरोपीय संसद चुनाव
  • नीदरलैंड की राजधानी
  • नीदरलैंड की कैबिनेट
  • एम्स्टर्डम एयरपोर्ट शिफोलो
  • यूरोपीय देशों का क्षेत्रफल और जनसंख्या
  • निर्यात करना
  • नीदरलैंड की दवा नीति
  • धनुष और बाण
  • मिट्टी के बरतन
  • ब्रिटिश द्कदृरप
  • हाथी दांत
  • बोर्नियो की लड़ाई
  • उट्रेच के बिशपरिक
  • हैनॉटो का काउंटी
  • डची ऑफ गेल्डरलैंड
  • निचले देशों में शहर के अधिकार
  • गेम्ब्लोक्स की लड़ाई (1578)
  • अभियोग का अधिनियम
  • इंग्लैंड की एलिजाबेथ प्रथम
  • डची ऑफ गेल्डरलैंड
  • कंफेडेरशन
  • गयाना का डच उपनिवेश
  • बसाना
  • परिसंपत्ति मूल्य मुद्रास्फीति
  • भालू छापे
  • बटावियन गणराज्य
  • पूर्वी मोर्चा (द्वितीय विश्व युद्ध)
  • द्वितीय विश्व युद्ध के दौरान धुरी शक्तियों के साथ सहयोग
  • पहला बख़्तरबंद डिवीजन (पोलैंड)
  • ड्रीस वैन एगटो
  • नीदरलैंड के राज्य के लिए चार्टर
  • आम बाज़ार
  • पर्यावरण के मुद्दें
  • नीदरलैंड्स एंटिलीज़ का विघटन
  • औसत समुद्र तल से ऊपर
  • बांध (निर्माण)
  • मुहाना
  • एओलियन प्रक्रियाएं
  • विज्ञापन
  • ड्यून
  • वृत्ताकार क्षेत्र
  • ईकोरियोजन
  • एबीसी द्वीप समूह (कम एंटिल्स)
  • हॉलैंड की भाषा
  • संघात्मक अवस्था
  • नीदरलैंड का संविधान
  • नीदरलैंड की आपराधिक न्याय प्रणाली
  • ईसाई संघ (नीदरलैंड)
  • 2021 नीदरलैंड आम चुनाव
  • अटलांटिसिज्म
  • भरती
  • दूसरा इन्फैंट्री डिवीजन (संयुक्त राज्य अमेरिका)
  • यूरो के सिक्के
  • डच बीमारी
  • ऊर्जा घनत्व
  • नगर-राज्यों
  • महानगर
  • क्षेत्रीय या अल्पसंख्यक भाषाओं के लिए यूरोपीय चार्टर
  • बुद्ध धर्म
  • नीदरलैंड के साम्राज्य में इवेंजेलिकल लूथरन चर्च
  • नीदरलैंड में बौद्ध धर्म
  • 1886 डच सुधार चर्च विभाजन
  • 1834 डच सुधार चर्च विभाजन
  • कलविनिज़म
  • आमर्सफ़ॉर्ट
  • कंटेनर पोर्ट
  • थोक सामग्री हैंडलिंग
  • बेटुवेरूटे
  • आइंडहोवन एयरपोर्ट
  • आर्ट नूवो
  • भांग (दवा)
  • ऐनी (गायक)
  • मौत
  • यूरोविज़न गाना प्रतियोगिता
  • संयुक्त राज्य अमेरिका का सिनेमा
  • एक मोस्ट वांटेड मैन (फिल्म)
  • फ़ीफ़ा वर्ल्ड कप
  • 2021 अबू धाबी ग्रांड प्रिक्स
  • 2016 स्पेनिश ग्रां प्री
  • एडम (करता है)
  • पीएसवी आइंडहोवेन
  • मकानों
  • नाज़ी प्रसारण
  • नीदरलैंड की लड़ाई
  • राष्ट्रों के बीच धर्मी
  • KZ Herzogenbusch . के उप शिविरों की सूची
  • श्रुतलेख मशीनें
  • मॉस स्टोरेज उपकरण
  • आंसरिंग मशीन
  • मुनाफे का अंतर
  • फिलिप्स हुए
  • लुमिलेड्स
  • एक्को
  • ADAC प्रयोगशालाएँ
  • औद्योगिक डिजाइनों के अंतर्राष्ट्रीय जमा के संबंध में हेग समझौता
  • एशिया प्रशांत
  • गुआंग्डोंग
  • एल्सिंटो
  • हाइफ़ा
  • सिंगापुर के नए शहर
  • टीवीई टेस्ट कार्ड
  • लोंगविक
  • लैमोटे बेउरोन
  • स्टॉकपोर्ट का मेट्रोपॉलिटन बरो
  • मौखिक हाइजीन
  • सॉलिड स्टेट लाइटिंग
  • एडीलेड
  • Varese . के प्रांत
  • विकिरण कैंसर विज्ञान
  • चुम्बकीय अनुनाद इमेजिंग
  • सी शाखा
  • ज्योफ बोडिने
  • राक्षस ऊर्जा NASCAR कप श्रृंखला
  • परिपत्र अर्थव्यवस्था में तेजी लाने के लिए मंच
  • गरमागरम प्रकाश बल्ब
  • गैरकानूनी संलेखन
  • ग्रीनहाउस गैस का उत्सर्जन
  • ब्रोमिनेटेड फ्लेम रिटार्डेंट
  • अमरीकी गृह युद्ध
  • 1996 ग्रीष्मकालीन ओलंपिक
  • चट्टाहूची नदी
  • 1956 चीनी का कटोरा
  • नागरिक अधिकारों के आंदोलन
  • 1996 ग्रीष्मकालीन ओलंपिक खेल
  • 1996 के ग्रीष्मकालीन ओलंपिक के लिए बोलियां
  • चट्टाहूची नदी राष्ट्रीय मनोरंजन क्षेत्र
  • अटलांटा में अफ्रीकी अमेरिकी
  • अफ़्रीकी-अमेरिकी अंग्रेज़ी
  • आप दो (फिल्म)
  • अटलांटा (टीवी श्रृंखला)
  • अमेरिकी फुटबॉल का गठबंधन
  • 2020 ग्रीष्मकालीन ओलंपिक
  • सिटी पार्क
  • बिल कैंपबेल (मेयर)
  • रोग नियंत्रण और रोकथाम के लिए केंद्र
  • अमेरिकी समुदाय सर्वेक्षण
  • अनुकूली रूपांतरण ध्वनिक कोडिंग
  • अंतरिक्ष में लेजर संचार
  • उच्च परिभाषा ऑप्टिकल डिस्क प्रारूप युद्ध
  • इलेक्ट्रॉनिक्स विनिर्माण सेवाएं
  • निकोनो
  • इल्लुमिना (कंपनी)
  • मित्सुबिशी इलेक्ट्रिक
  • सीएमओएस इमेज सेंसर
  • हार हुआ नेता
  • एआरसीसीओएस सुरक्षा
  • एनिमे
  • eVgo
  • कार में मनोरंजन
  • निवेश मे भरोसा
  • भूतापीय उर्जा
  • जैविक प्रकाश उत्सर्जक डायोड
  • हायपैक
  • आम तौर पर स्वीकृत लेखा सिद्धांत (संयुक्त राज्य अमेरिका)
  • दक्षिण - पूर्व एशिया
  • विशिष्टता (तकनीकी मानक)
  • पारदर्शिता और पारदर्शिता
  • लेजर डिस्क
  • पीसीएम अनुकूलक
  • त्रुटि सुधार
  • जीवित आंखें (बी गीज़ एल्बम)
  • 52 वीं स्ट्रीट (एल्बम)
  • पल्स चौड़ाई मॉडुलन
  • सीडी रॉम
  • पिछड़ा संगत
  • हानिपूर्ण संपीड़न
  • अंतर्राष्ट्रीय मानक
  • परिमाणीकरण (सिग्नल प्रोसेसिंग)
  • तेजस्वी
  • बेयरुथ महोत्सव
  • WHO
  • राजकुमार (संगीतकार)
  • पूर्णांक (कंप्यूटर विज्ञान)
  • C2 त्रुटि
  • ऑडियो फ़ाइल प्रारूप
  • कार्य (ऑडियो प्रारूप)
  • डुअलडिस्क

बाहरी संबंध