अवमुख फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 58: Line 58:
}}
}}


* एक फलन एक अंतराल पर मध्यबिंदु उत्तल होता है <math>C</math> यदि सभी के लिए <math>x_1, x_2 \in C</math> <math display=block>f\left(\frac{x_1 + x_2}{2}\right) \leq \frac{f(x_1) + f(x_2)}{2}.</math> यह स्थिति उत्तलता की तुलना में थोड़ी ही कमजोर है। उदाहरण के लिए, एक वास्तविक-मूल्यवान लेबेस्ग मापन योग्य फ़ंक्शन जो मध्यबिंदु-उत्तल है, उत्तल है: यह वाक्ला सिएरपिंस्की|सिएरपिंस्की का एक प्रमेय है।<ref>{{cite book|last=Donoghue|first=William F.| title= वितरण और फूरियर रूपांतरण|year=1969|publisher=Academic Press | isbn=9780122206504 |url= https://books.google.com/books?id=P30Y7daiGvQC&pg=PA12|access-date=August 29, 2012|page=12}}</ref> विशेष रूप से, एक सतत फलन जो मध्यबिंदु उत्तल है, उत्तल होगा।
* फ़ंक्शन एक अंतराल <math>C</math> पर मध्यबिंदु उत्तल होता है सभी के लिए <math>x_1, x_2 \in C</math> <math display=block>f\left(\frac{x_1 + x_2}{2}\right) \leq \frac{f(x_1) + f(x_2)}{2}.</math> यह स्थिति उत्तलता की तुलना में थोड़ी ही कमजोर है। उदाहरण के लिए, एक वास्तविक-मूल्यवान लेबेस्ग मापने योग्य फ़ंक्शन जो मध्यबिंदु-उत्तल, उत्तल है: यह सिएरपिंस्की का एक प्रमेय है।<ref>{{cite book|last=Donoghue|first=William F.| title= वितरण और फूरियर रूपांतरण|year=1969|publisher=Academic Press | isbn=9780122206504 |url= https://books.google.com/books?id=P30Y7daiGvQC&pg=PA12|access-date=August 29, 2012|page=12}}</ref> विशेष रूप से एक सतत फलन जो मध्यबिंदु उत्तल है, उत्तल होगा।


=== अनेक चरों के कार्य ===
=== अनेक चरों के कार्य ===

Revision as of 12:37, 13 July 2023

एक अंतराल पर उत्तल कार्य.
एक फ़ंक्शन (काले रंग में) उत्तल होता है यदि और केवल तभी जब किसी फ़ंक्शन के ग्राफ़ (हरे रंग में) के ऊपर का क्षेत्र उत्तल सेट हो।
बहुपद का ग्राफ#चरों की संख्या उत्तल फलन x2 + xy + y2.
उत्तल बनाम उत्तल नहीं

गणित में, एक वास्तविक-मूल्य वाले फ़ंक्शन को उत्तल कहा जाता है यदि किसी फ़ंक्शन के ग्राफ़ पर किन्हीं दो अलग-अलग बिंदुओं के बीच का रेखा खंड दो बिंदुओं के बीच ग्राफ़ के ऊपर स्थित होता है। समान रूप से एक फ़ंक्शन उत्तल होता है यदि उसका एपिग्राफ (गणित) (फ़ंक्शन के ग्राफ़ पर या उसके ऊपर बिंदुओं का सेट) एक उत्तल सेट है। एक एकल चर का दो बार विभेदित फलन उत्तल होता है केवल तभी जब इसका दूसरा व्युत्पन्न इसके संपूर्ण डोमेन पर गैर-ऋणात्मक हो।[1] एकल चर के उत्तल कार्यों के प्रसिद्ध उदाहरणों में एक रैखिक फलन सम्मिलित है (जहाँ एक वास्तविक संख्या है) एक द्विघात फलन ( एक गैरऋणात्मक वास्तविक संख्या के रूप में) और एक घातांकीय फलन ( एक गैरऋणात्मक वास्तविक संख्या के रूप में)। सरल शब्दों में उत्तल फलन एक ऐसे फलन को संदर्भित करता है जिसका ग्राफ एक कप के आकार का होता है (या एक रैखिक फ़ंक्शन की तरह एक सीधी रेखा) जबकि एक अवतल फ़ंक्शन का ग्राफ़ एक टोपी के आकार का होता है .

उत्तल फलन गणित के कई क्षेत्रों में महत्वपूर्ण भूमिका निभाते हैं। वे अनुकूलन समस्याओं के अध्ययन में विशेष रूप से महत्वपूर्ण हैं जहां उन्हें कई सुविधाजनक गुणों द्वारा अलग किया जाता है। उदाहरण के लिए, एक खुले सेट पर सख्ती से उत्तल फ़ंक्शन में एक न्यूनतम से अधिक नहीं होता है। यहां तक ​​कि अनंत-आयामी स्थानों में भी, उपयुक्त अतिरिक्त परिकल्पनाओं के तहत, उत्तल फ़ंक्शन ऐसे गुणों को संतुष्ट करना जारी रखते हैं और परिणामस्वरूप, वे विविधताओं की गणना में सबसे अच्छी तरह से समझे जाने वाले फ़ंक्शनल हैं। संभाव्यता सिद्धांत में, एक यादृच्छिक चर के अपेक्षित मान पर लागू उत्तल फ़ंक्शन हमेशा यादृच्छिक चर के उत्तल फ़ंक्शन के अपेक्षित मान से ऊपर घिरा होता है। यह परिणाम, जिसे जेन्सेन की असमानता के रूप में जाना जाता है, का उपयोग अंकगणित ज्यामितीय माध्य की असमानता, अंकगणित-ज्यामितीय माध्य असमानता और होल्डर की असमानता जैसी असमानताओं को कम करने के लिए किया जा सकता है।

परिभाषा

उत्तल फ़ंक्शन और जेन्सेन की असमानता की कल्पना करना

माना एक वास्तविक सदिश समष्टि का उत्तल समुच्चय बनें और एक फलन हो.

तब उत्तल कहा जाता हैconvex यदि निम्नलिखित समकक्ष शर्तों में से कोई भी लागू हो:

  1. सभी के लिए और के लिए:

    1. ाद
  2. दाहिना हाथ बीच की सीधी रेखा को दर्शाता है और के ग्राफ में के एक समारोह के रूप में की बढ़ती से को या घट रहा है से को इस लाइन को साफ़ करता है. इसी प्रकार, फ़ंक्शन का तर्क बाएँ हाथ की ओर बीच की सीधी रेखा को दर्शाता है और में या -के ग्राफ का अक्ष तो, इस शर्त के लिए आवश्यक है कि वक्र पर बिंदुओं के किसी भी जोड़े के बीच सीधी रेखा हो ऊपर होना या बस ग्राफ़ से मिलना।[2]
  3. सभी के लिए और सभी ऐसा है कि :
    उपरोक्त पहली स्थिति के संबंध में इस दूसरी स्थिति का अंतर यह है कि इस स्थिति में प्रतिच्छेदन बिंदु शामिल नहीं हैं (उदाहरण के लिए, और ) के वक्र पर बिंदुओं की एक जोड़ी से गुजरने वाली सीधी रेखा के बीच (सीधी रेखा को इस स्थिति के दाहिनी ओर दर्शाया गया है) और वक्र पहली शर्त में प्रतिच्छेदन बिंदु शामिल होते हैं या पर या या वास्तव में, उत्तल उपयोग की स्थिति में प्रतिच्छेदन बिंदुओं पर विचार करने की आवश्यकता नहीं है
    क्योंकि और हमेशा सत्य होते हैं (इसलिए किसी शर्त का हिस्सा बनने के लिए उपयोगी नहीं हैं)।

उत्तल कार्यों को दर्शाने वाला दूसरा कथन, जिसका मान वास्तविक रेखा में है, वह कथन भी उत्तल कार्यों को परिभाषित करने के लिए उपयोग किया जाता है, जिनका मान विस्तारित वास्तविक संख्या रेखा में होता है जहां ऐसा फलन लेने को मान के रूप में लेने की अनुमति है, पहले कथन का उपयोग नहीं किया गया है क्योंकि यह अनुमति देता है या लेने की अनुमति देता है, इस स्थिति में, यदि या क्रमशः, फिर अपरिभाषित होगा (क्योंकि गुणन और अपरिभाषित हैं)। योग यह भी अपरिभाषित है इसलिए एक उत्तल विस्तारित वास्तविक-मूल्यवान फ़ंक्शन को सामान्यतौर पर केवल और एक मूल्य के रूप में लेने की अनुमति होती है।

सख्त उत्तलता की परिभाषा प्राप्त करने के लिए दूसरे कथन को भी संशोधित किया जा सकता है strict convexity, जहां बाद वाले सख्त असमानता के साथ प्रतिस्थापित करके प्राप्त किया जाता है सख्त असमानता के साथ स्पष्ट रूप से, मानचित्र को कड़ाई से उत्तल कहा जाता है strictly convex यदि सभी वास्तविक के लिए और सभी ऐसा है कि :

एक सख्ती से उत्तल कार्य एक फलन है जो वक्र पर बिंदुओं की किसी भी जोड़ी के बीच सीधी रेखा वक्र के ऊपर है सीधी रेखा और वक्र के बीच प्रतिच्छेदन बिंदुओं को छोड़कर। फलन का एक उदाहरण जो उत्तल है लेकिन सख्ती से उत्तल नहीं है . हैं, फलन सख्ती से उत्तल नहीं है क्योंकि x निर्देशांक साझा करने वाले किन्हीं दो बिंदुओं के बीच एक सीधी रेखा होगी, जबकि x समन्वय साझा नहीं करने वाले किन्हीं दो बिंदुओं के बीच फलन का मान उनके बीच के बिंदुओं की तुलना में अधिक होगा।

फलन को [[Concave function|अवतल] बताया गया (सम्मानपूर्वक सख्ती से अवतल(strictly concave) कहा जाता है यदि ( −1 से गुणा किया जाता है) उत्तल (सम्मानपूर्वक सख्ती से उत्तल) होता है।

वैकल्पिक नामकरण

उत्तल शब्द को अक्सर उत्तल नीचे या अवतल ऊपर की ओर कहा जाता है, और अवतल फ़ंक्शन शब्द को अक्सर अवतल नीचे या उत्तल ऊपर की ओर कहा जाता है।[3][4][5] यदि "उत्तल" शब्द का उपयोग "ऊपर" या "नीचे" कीवर्ड के बिना किया जाता है, तो यह कड़ाई से कप के आकार के ग्राफ .को संदर्भित करता है। उदाहरण के तौर पर, जेन्सेन की असमानता एक उत्तल या उत्तल-(नीचे), फ़ंक्शन से जुड़ी असमानता को संदर्भित करती है।[6]


गुण

उत्तल कार्यों के कई गुणों में कई चर के कार्यों के लिए वही सरल सूत्रीकरण होता है जो एक चर के कार्यों के लिए होता है। कई चर के मामले के लिए गुणों के नीचे देखें, क्योंकि उनमें से कुछ एक चर के कार्यों के लिए सूचीबद्ध नहीं हैं।

एक चर के कार्य

  • मान लीजिए एक अंतराल पर परिभाषित वास्तविक संख्या चर का एक कार्य है, माना
    (ध्यान दें कि उपरोक्त चित्र में बैंगनी रेखा का ढलान है, फलन में सममित है इसका मतलब कि आदान-प्रदान से नहीं बदलता और ) उत्तल है यदि में नीरस रूप से गैर-घटता हुआ है, प्रत्येक निश्चित के लिए (या विपरीत)। उत्तलता का यह लक्षण वर्णन निम्नलिखित परिणामों को सिद्ध करने के लिए अधिक उपयोगी है।
  • कुछ खुले अंतराल CC पर परिभाषित एक वास्तविक चर का उत्तल कार्य निरंतर है, जो बाएं और दाएं अर्ध-विभेदीकरण को स्वीकार करता है, और ये नीरस रूप से गैर-घटते हैं। परिणामस्वरूप बिल्कुल अलग-अलग है, अधिकांश गणनीय बिंदुओं को छोड़कर सभी जिस पर समुच्चय भिन्न नहीं है फिर भी सघन हो सकता है। अगर बंद हैं तो के अंतिम बिंदु पर निरंतर बने रहने में विफल हो सकता है (उदाहरण अनुभाग में एक उदाहरण दिखाया गया है)।
  • चर का अवकलनीय फलन एक अंतराल पर उत्तल होता है केवल तभी जब इसका व्युत्पन्न उस अंतराल पर नीरस रूप से गैर-घटता हुआ हो। यदि कोई फ़ंक्शन अवकलनीय और उत्तल है तो यह निरंतर अवकलनीय भी है।
  • चर का अवकलनीय फलन एक अंतराल पर उत्तल होता है केवल तभी जब इसका ग्राफ इसके सभी स्पर्शरेखाओं से ऊपर हो:[7]: 69 
    अंतराल में सभी xx और yy के लिए
  • एक चर का दो बार अवकलनीय फलन एक अंतराल पर उत्तल होता है यदि इसका दूसरा व्युत्पन्न वहां गैर-नकारात्मक है, यह उत्तलता के लिए एक व्यावहारिक परीक्षण देता है। दृश्यमान रूप से, एक दो बार विभेदित उत्तल फ़ंक्शन "वक्र ऊपर" होता है, बिना किसी अन्य दिशा (विभक्ति बिंदु)के झुकता है। यदि इसका दूसरा व्युत्पन्न सभी बिंदुओं पर सकारात्मक है तो फ़ंक्शन सख्ती से उत्तल है, लेकिन प्रमेय वार्तालाप मान्य नहीं है। उदाहरण के लिए, का दूसरा व्युत्पन्न है जो कि शून्य है लेकिन सख्ती से उत्तल है।
    • यह गुण और उपरोक्त गुण ... इसका व्युत्पन्न के संदर्भ में नीरस रूप से गैर-घटती हुआ है..." के संदर्भ में समान नहीं हैं क्योंकि यदि एक अंतराल पर गैर-नकारात्मक है तो एकरस रूप से घटता नहीं है पर गैर-घट रहा है जबकि इसका विपरीत सत्य नहीं है, उदाहरण के लिए पर नीरस रूप से गैर-घट रहा जबकि यह व्युत्पन्न पर कुछ बिंदुओं पर परिभाषित नहीं है।
  • अगर एक वास्तविक चर का उत्तल कार्य है और , तब सकारात्मक वास्तविकताओं पर सुपरएडिटिविटी है, अर्थात सकारात्मक वास्तविक संख्याओं और के लिए
Proof

Since is convex, by using one of the convex function definitions above and letting it follows that for all real

From this it follows that

  • फ़ंक्शन एक अंतराल पर मध्यबिंदु उत्तल होता है सभी के लिए
    यह स्थिति उत्तलता की तुलना में थोड़ी ही कमजोर है। उदाहरण के लिए, एक वास्तविक-मूल्यवान लेबेस्ग मापने योग्य फ़ंक्शन जो मध्यबिंदु-उत्तल, उत्तल है: यह सिएरपिंस्की का एक प्रमेय है।[8] विशेष रूप से एक सतत फलन जो मध्यबिंदु उत्तल है, उत्तल होगा।

अनेक चरों के कार्य

  • एक समारोह विस्तारित वास्तविक संख्याओं में मूल्यांकित उत्तल है यदि और केवल यदि इसका एपिग्राफ (गणित)
    एक उत्तल समुच्चय है.
  • एक भिन्न कार्य उत्तल डोमेन पर परिभाषित उत्तल है यदि और केवल यदि सभी के लिए धारण करता है डोमेन में.
  • कई चरों का एक दो बार विभेदित कार्य उत्तल सेट पर उत्तल होता है यदि और केवल यदि इसके दूसरे आंशिक डेरिवेटिव का हेस्सियन मैट्रिक्स उत्तल सेट के इंटीरियर पर सकारात्मक-निश्चित मैट्रिक्स है।
  • उत्तल फलन के लिए उपस्तर सेट और साथ उत्तल समुच्चय हैं। एक फ़ंक्शन जो इस संपत्ति को संतुष्ट करता है उसे a कहा जाता हैquasiconvex function और उत्तल फलन बनने में विफल हो सकता है।
  • परिणामस्वरूप, उत्तल फलन के Arg min का समुच्चय एक उत्तल समुच्चय है: - उत्तल.
  • उत्तल फलन का कोई भी स्थानीय न्यूनतम भी एक वैश्विक न्यूनतम होता है। ए strictly उत्तल फ़ंक्शन में अधिकतम एक वैश्विक न्यूनतम होगा।[9]
  • जेन्सेन की असमानता प्रत्येक उत्तल फलन पर लागू होती है . अगर के क्षेत्र में मान लेने वाला एक यादृच्छिक चर है तब कहाँ अपेक्षित मूल्य को दर्शाता है। वास्तव में, उत्तल फलन बिल्कुल वही हैं जो जेन्सेन की असमानता की परिकल्पना को संतुष्ट करते हैं।
  • दो सकारात्मक चर का प्रथम-क्रम सजातीय कार्य और (अर्थात, एक कार्य संतोषजनक है सभी सकारात्मक वास्तविक के लिए ) जो एक चर में उत्तल है, उसे दूसरे चर में उत्तल होना चाहिए।[10]


संचालन जो उत्तलता को संरक्षित करते हैं

  • अवतल है यदि और केवल यदि उत्तल है.
  • अगर तो क्या कोई वास्तविक संख्या है? उत्तल है यदि और केवल यदि उत्तल है.
  • अऋणात्मक भारित योग:
    • अगर और सभी उत्तल हैं, तो ऐसा है विशेष रूप से, दो उत्तल फलनों का योग उत्तल होता है।
    • यह संपत्ति अनंत योगों, अभिन्नों और अपेक्षित मूल्यों तक भी फैली हुई है (बशर्ते कि वे मौजूद हों)।
  • तत्ववार अधिकतम: चलो उत्तल कार्यों का एक संग्रह बनें। तब उत्तल है. का डोमेन उन बिंदुओं का संग्रह है जहां अभिव्यक्ति सीमित है। महत्वपूर्ण विशेष मामले:
    • अगर उत्तल फलन हैं तो वैसा ही है
    • डैन्स्किन का प्रमेय: यदि में उत्तल है तब में उत्तल है भले ही उत्तल समुच्चय नहीं है.
  • संघटन:
    • अगर और उत्तल कार्य हैं और तो, एक अविभाज्य डोमेन पर गैर-घटता नहीं है उत्तल है. उदाहरण के लिए, यदि उत्तल है, तो वैसा है क्योंकि उत्तल और नीरस रूप से बढ़ रहा है।
    • अगर अवतल है और तो, एक अविभाज्य डोमेन पर उत्तल और गैर-वृद्धि है उत्तल है.
    • एफ़िन मानचित्रों के अंतर्गत उत्तलता अपरिवर्तनीय है: अर्थात, यदि डोमेन के साथ उत्तल है , तो ऐसा ही है , कहाँ डोमेन के साथ
  • न्यूनीकरण: यदि में उत्तल है तब में उत्तल है उसे उपलब्ध कराया एक उत्तल समुच्चय है और वह
  • अगर उत्तल है, तो इसका परिप्रेक्ष्य डोमेन के साथ उत्तल है.
  • होने देना एक सदिश स्थान बनें. उत्तल है और संतुष्ट करता है अगर और केवल अगर किसी के लिए और कोई भी गैर-नकारात्मक वास्तविक संख्या जो संतुष्ट करता है


दृढ़ता से उत्तल फलन

मजबूत उत्तलता की अवधारणा सख्त उत्तलता की धारणा को विस्तारित और पैरामीट्रिज करती है। एक दृढ़ता से उत्तल फ़ंक्शन भी सख्ती से उत्तल होता है, लेकिन इसके विपरीत नहीं।

एक भिन्न कार्य पैरामीटर के साथ दृढ़ता से उत्तल कहा जाता है यदि निम्नलिखित असमानता सभी बिंदुओं के लिए लागू होती है इसके डोमेन में:[11]

या, अधिक सामान्यतः,
कहाँ कोई आंतरिक उत्पाद है, और संगत नॉर्म (गणित) है। कुछ लेखक, जैसे [12] इस असमानता को संतुष्ट करने वाले कार्यों को अण्डाकार संचालिका फ़ंक्शन के रूप में देखें।

एक समतुल्य शर्त निम्नलिखित है:[13]

किसी फ़ंक्शन के दृढ़ता से उत्तल होने के लिए उसका अवकलनीय होना आवश्यक नहीं है। तीसरी परिभाषा[13]पैरामीटर के साथ, दृढ़ता से उत्तल फ़ंक्शन के लिए क्या वह सभी के लिए है डोमेन में और
ध्यान दें कि यह परिभाषा सख्त उत्तलता की परिभाषा के करीब पहुंचती है और उत्तल फ़ंक्शन की परिभाषा के समान है जब इसके बावजूद, ऐसे फ़ंक्शन मौजूद हैं जो सख्ती से उत्तल हैं लेकिन किसी के लिए दृढ़ता से उत्तल नहीं हैं (नीचे उदाहरण देखें)।

यदि फ़ंक्शन दो बार लगातार भिन्न होता है, फिर यह पैरामीटर के साथ दृढ़ता से उत्तल होता है अगर और केवल अगर सभी के लिए डोमेन में, कहाँ पहचान है और हेसियन मैट्रिक्स और असमानता है मतलब कि सकारात्मक-निश्चित मैट्रिक्स है|सकारात्मक अर्ध-निश्चित। यह न्यूनतम स्वदेशी मान की आवश्यकता के बराबर है कम से कम हो सभी के लिए यदि डोमेन केवल वास्तविक रेखा है, तो बस दूसरा व्युत्पन्न है तो हालत बन जाती है . अगर तो इसका मतलब है कि हेसियन सकारात्मक अर्धनिश्चित है (या यदि डोमेन वास्तविक रेखा है, तो इसका मतलब है कि ), जिसका अर्थ है कि फ़ंक्शन उत्तल है, और शायद सख्ती से उत्तल है, लेकिन दृढ़ता से उत्तल नहीं है।

यह मानते हुए भी कि फ़ंक्शन दो बार लगातार भिन्न होता है, कोई यह दिखा सकता है कि इसकी निचली सीमा तात्पर्य यह है कि यह दृढ़ता से उत्तल है। टेलर की प्रमेय का उपयोग करना|टेलर की प्रमेय मौजूद है

ऐसा है कि
तब
eigenvalues ​​​​के बारे में धारणा से, और इसलिए हम ऊपर दिए गए दूसरे मजबूत उत्तलता समीकरण को पुनर्प्राप्त करते हैं।

एक समारोह यदि और केवल यदि फ़ंक्शन पैरामीटर m के साथ दृढ़ता से उत्तल है

उत्तल है.

उत्तल, सख्ती से उत्तल और दृढ़ता से उत्तल के बीच का अंतर पहली नज़र में सूक्ष्म हो सकता है। अगर दो बार निरंतर अवकलनीय है और डोमेन वास्तविक रेखा है, तो हम इसे निम्नानुसार चित्रित कर सकते हैं:

  • उत्तल यदि और केवल यदि सभी के लिए
  • सख्ती से उत्तल अगर सभी के लिए (ध्यान दें: यह पर्याप्त है, लेकिन आवश्यक नहीं है)।
  • दृढ़ता से उत्तल यदि और केवल यदि सभी के लिए

उदाहरण के लिए, चलो सख्ती से उत्तल हो, और मान लीजिए कि बिंदुओं का एक क्रम है ऐसा है कि . चाहे , फ़ंक्शन दृढ़ता से उत्तल नहीं है क्योंकि मनमाने ढंग से छोटा हो जाएगा.

दो बार लगातार भिन्न होने वाला फ़ंक्शन एक कॉम्पैक्ट डोमेन पर जो संतुष्ट करता है सभी के लिए दृढ़ता से उत्तल है. इस कथन का प्रमाण चरम मूल्य प्रमेय से होता है, जो बताता है कि एक कॉम्पैक्ट सेट पर एक सतत फ़ंक्शन में अधिकतम और न्यूनतम होता है।

उत्तल या सख्ती से उत्तल कार्यों की तुलना में दृढ़ता से उत्तल कार्यों के साथ काम करना आम तौर पर आसान होता है, क्योंकि वे एक छोटे वर्ग होते हैं। सख्ती से उत्तल कार्यों की तरह, दृढ़ता से उत्तल कार्यों में कॉम्पैक्ट सेट पर अद्वितीय मिनीमा होता है।

समान रूप से उत्तल कार्य

एक समान रूप से उत्तल कार्य,[14][15] मापांक के साथ , एक फ़ंक्शन है वह, सभी के लिए डोमेन में और संतुष्ट

कहाँ एक फ़ंक्शन है जो गैर-नकारात्मक है और केवल 0 पर गायब हो जाता है। यह दृढ़ता से उत्तल फ़ंक्शन की अवधारणा का सामान्यीकरण है; ले कर हम मजबूत उत्तलता की परिभाषा को पुनर्प्राप्त करते हैं।

यह ध्यान देने योग्य है कि कुछ लेखकों को मापांक की आवश्यकता होती है एक बढ़ता हुआ कार्य होना,[15] लेकिन यह शर्त सभी लेखकों के लिए आवश्यक नहीं है।[14]


उदाहरण

एक चर के कार्य

  • कार्यक्रम है , इसलिए f एक उत्तल फलन है. यह दृढ़ता से उत्तल भी है (और इसलिए सख्ती से उत्तल भी है), मजबूत उत्तलता स्थिरांक 2 के साथ।
  • कार्यक्रम है , इसलिए f एक उत्तल फलन है. यह सख्ती से उत्तल है, भले ही दूसरा व्युत्पन्न सभी बिंदुओं पर सख्ती से सकारात्मक नहीं है। यह दृढ़ता से उत्तल नहीं है.
  • निरपेक्ष मान फ़ंक्शन उत्तल है (जैसा कि त्रिभुज असमानता में परिलक्षित होता है), भले ही बिंदु पर इसका कोई व्युत्पन्न नहीं है यह सख्ती से उत्तल नहीं है.
  • कार्यक्रम के लिए उत्तल है.
  • घातांकीय फलन उत्तल है. चूँकि, यह सख्ती से उत्तल भी है , लेकिन यह दृढ़ता से उत्तल नहीं है क्योंकि दूसरा व्युत्पन्न मनमाने ढंग से शून्य के करीब हो सकता है। अधिक सामान्यतः, फ़ंक्शन लघुगणकीय रूप से उत्तल कार्य है यदि एक उत्तल फलन है. इसके स्थान पर कभी-कभी सुपरकॉनवेक्स शब्द का प्रयोग किया जाता है।[16]
  • कार्यक्रम डोमेन [0,1] द्वारा परिभाषित के साथ के लिए उत्तल है; यह खुले अंतराल पर निरंतर है लेकिन 0 और 1 पर निरंतर नहीं।
  • कार्यक्रम दूसरा व्युत्पन्न है ; इस प्रकार यह सेट पर उत्तल है और सेट पर अवतल कार्य जहां
  • ऐसे कार्यों के उदाहरण जो मोनोटोनिक फ़ंक्शन हैं लेकिन उत्तल नहीं हैं, उनमें शामिल हैं और .
  • ऐसे कार्यों के उदाहरण जो उत्तल हैं लेकिन मोनोटोनिक फ़ंक्शन नहीं हैं, उनमें शामिल हैं और .
  • कार्यक्रम है जो 0 से अधिक है यदि इसलिए अंतराल पर उत्तल है . यह अंतराल पर अवतल होता है .
  • कार्यक्रम साथ , अंतराल पर उत्तल है और अंतराल पर उत्तल , लेकिन अंतराल पर उत्तल नहीं है , विलक्षणता के कारण


n चर के कार्य

  • LogSumExp फ़ंक्शन, जिसे सॉफ्टमैक्स फ़ंक्शन भी कहा जाता है, एक उत्तल फ़ंक्शन है।
  • कार्यक्रम सकारात्मक-निश्चित मैट्रिक्स के डोमेन पर | सकारात्मक-निश्चित मैट्रिक्स उत्तल है।[7]: 74 
  • प्रत्येक वास्तविक-मूल्यवान रैखिक परिवर्तन उत्तल है, लेकिन कड़ाई से उत्तल नहीं है, क्योंकि यदि तो, रैखिक है . यदि हम उत्तल को अवतल से प्रतिस्थापित करते हैं तो यह कथन भी लागू होता है।
  • प्रत्येक वास्तविक-मूल्यवान एफ़िन फ़ंक्शन, अर्थात, प्रपत्र का प्रत्येक फ़ंक्शन एक साथ उत्तल और अवतल है।
  • त्रिभुज असमानता और सजातीय फ़ंक्शन#सकारात्मक समरूपता द्वारा प्रत्येक मानदंड (गणित) एक उत्तल फ़ंक्शन है।
  • एक गैर-नकारात्मक मैट्रिक्स का वर्णक्रमीय त्रिज्या उसके विकर्ण तत्वों का उत्तल कार्य है।[17]


यह भी देखें

टिप्पणियाँ

  1. "Lecture Notes 2" (PDF). www.stat.cmu.edu. Retrieved 3 March 2017.
  2. "अवतल ऊपर और नीचे". Archived from the original on 2013-12-18.
  3. Stewart, James (2015). गणना (8th ed.). Cengage Learning. pp. 223–224. ISBN 978-1305266643.
  4. W. Hamming, Richard (2012). कैलकुलस, संभाव्यता और सांख्यिकी पर लागू गणित की विधियाँ (illustrated ed.). Courier Corporation. p. 227. ISBN 978-0-486-13887-9. Extract of page 227
  5. Uvarov, Vasiliĭ Borisovich (1988). गणितीय विश्लेषण. Mir Publishers. p. 126-127. ISBN 978-5-03-000500-3.
  6. Prügel-Bennett, Adam (2020). इंजीनियरिंग और कंप्यूटर विज्ञान के लिए संभाव्यता साथी (illustrated ed.). Cambridge University Press. p. 160. ISBN 978-1-108-48053-6. Extract of page 160
  7. 7.0 7.1 Boyd, Stephen P.; Vandenberghe, Lieven (2004). उत्तल अनुकूलन (pdf). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 15, 2011.
  8. Donoghue, William F. (1969). वितरण और फूरियर रूपांतरण. Academic Press. p. 12. ISBN 9780122206504. Retrieved August 29, 2012.
  9. "यदि उत्तल सेट में एफ सख्ती से उत्तल है, तो दिखाएं कि इसमें 1 न्यूनतम से अधिक नहीं है". Math StackExchange. 21 Mar 2013. Retrieved 14 May 2016.
  10. Altenberg, L., 2012. Resolvent positive linear operators exhibit the reduction phenomenon. Proceedings of the National Academy of Sciences, 109(10), pp.3705-3710.
  11. Dimitri Bertsekas (2003). उत्तल विश्लेषण और अनुकूलन. Contributors: Angelia Nedic and Asuman E. Ozdaglar. Athena Scientific. p. 72. ISBN 9781886529458.
  12. Philippe G. Ciarlet (1989). संख्यात्मक रैखिक बीजगणित और अनुकूलन का परिचय. Cambridge University Press. ISBN 9780521339841.
  13. 13.0 13.1 Yurii Nesterov (2004). Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers. pp. 63–64. ISBN 9781402075537.
  14. 14.0 14.1 C. Zalinescu (2002). सामान्य वेक्टर रिक्त स्थान में उत्तल विश्लेषण. World Scientific. ISBN 9812380671.
  15. 15.0 15.1 H. Bauschke and P. L. Combettes (2011). हिल्बर्ट स्पेस में उत्तल विश्लेषण और मोनोटोन ऑपरेटर सिद्धांत. Springer. p. 144. ISBN 978-1-4419-9467-7.
  16. Kingman, J. F. C. (1961). "सकारात्मक मैट्रिक्स की एक उत्तलता संपत्ति". The Quarterly Journal of Mathematics. 12: 283–284. doi:10.1093/qmath/12.1.283.
  17. Cohen, J.E., 1981. Convexity of the dominant eigenvalue of an essentially nonnegative matrix. Proceedings of the American Mathematical Society, 81(4), pp.657-658.


संदर्भ

  • Bertsekas, Dimitri (2003). Convex Analysis and Optimization. Athena Scientific.
  • Borwein, Jonathan, and Lewis, Adrian. (2000). Convex Analysis and Nonlinear Optimization. Springer.
  • Donoghue, William F. (1969). Distributions and Fourier Transforms. Academic Press.
  • Hiriart-Urruty, Jean-Baptiste, and Lemaréchal, Claude. (2004). Fundamentals of Convex analysis. Berlin: Springer.
  • Krasnosel'skii M.A., Rutickii Ya.B. (1961). Convex Functions and Orlicz Spaces. Groningen: P.Noordhoff Ltd.
  • Lauritzen, Niels (2013). Undergraduate Convexity. World Scientific Publishing.
  • Luenberger, David (1984). Linear and Nonlinear Programming. Addison-Wesley.
  • Luenberger, David (1969). Optimization by Vector Space Methods. Wiley & Sons.
  • Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
  • Thomson, Brian (1994). Symmetric Properties of Real Functions. CRC Press.
  • Zălinescu, C. (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing  Co., Inc. pp. xx+367. ISBN 981-238-067-1. MR 1921556.


बाहरी संबंध