सहउत्पाद: Difference between revisions
(Created page with "{{Short description|Category-theoretic construction}} {{About|coproducts in categories|"coproduct" in the sense of comultiplication|Coalgebra}} श्रेणी सिद...") |
No edit summary |
||
| (6 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Category-theoretic construction}} | {{Short description|Category-theoretic construction}} | ||
{{About| | {{About|श्रेणियों में उत्पाद|सहगुणन के अर्थ में "प्रतिउत्पाद"|कोलजेब्रा}} | ||
[[श्रेणी सिद्धांत]] में | [[श्रेणी सिद्धांत]] में सह-उत्पाद या श्रेणीबद्ध योग एक निर्माण है जिसमें उदाहरण के रूप में [[सेट (गणित)|समुच्चय (गणित)]] और असम्बद्ध संघ (टोपोलॉजी) [[समूह (गणित)]] का मुक्त उत्पाद और [[मॉड्यूल (गणित)]] का [[प्रत्यक्ष योग]] सम्मिलित है।) और सदिश रिक्त स्थान वस्तुओं के एक वर्ग का प्रतिफल अनिवार्य रूप से कम से कम विशिष्ट वस्तु है जिसके लिए वर्ग में प्रत्येक वस्तु एक आकारिकी को स्वीकार करती है। यह [[उत्पाद (श्रेणी सिद्धांत)]] के लिए श्रेणी-सैद्धांतिक [[दोहरी (श्रेणी सिद्धांत)]] है, जिसका अर्थ है कि परिभाषा उत्पाद के समान है किंतु सभी रूपवाद के साथ उलट है। नाम और संकेतन में इस प्रतीत होने वाले सहज परिवर्तन के अतिरिक्त उत्पाद हो सकते हैं और सामान्यतः उत्पादों से नाटकीय रूप से भिन्न होते हैं। | ||
== परिभाषा == | == परिभाषा == | ||
<math>C</math> को एक श्रेणी होने दें और <math>X_1</math> और <math>X_2</math> को <math>C.</math> की वस्तु होने दें। एक वस्तु को <math>X_1</math>और <math>X_2,</math> लिखित <math>X_1 \sqcup X_2,</math> या <math>X_1 \oplus X_2,</math> या कभी-कभी बस <math>X_1 + X_2,</math> यदि आकारिकी उपस्थित है <math>i_1 : X_1 \to X_1 \sqcup X_2</math> और <math>i_2 : X_2 \to X_1 \sqcup X_2</math> निम्नलिखित [[सार्वभौमिक संपत्ति|सार्वभौमिक]] गुण को संतुष्ट करना: किसी भी वस्तु <math>Y</math> और किसी भी आकारिकी के लिए <math>f_1 : X_1 \to Y</math>और <math>f_2 : X_2 \to Y,</math> उपस्थित है अद्वितीय आकारिकी <math>f : X_1 \sqcup X_2 \to Y</math> जैसे कि <math>f_1 = f \circ i_1</math>और <math>f_2 = f \circ i_2.</math>अर्थात्, निम्नलिखित आरेख आवागमन करता है: | |||
[[Image:Coproduct-03.svg|280px|center]] | [[Image:Coproduct-03.svg|280px|center]] | ||
[[Image:Coproduct-01.svg|160px|center]] | इस आरेख को बनाने वाले अद्वितीय तीर <math>f</math> को <math>f_1 \sqcup f_2,</math><math>f_1 \oplus f_2,</math> <math>f_1 + f_2,</math>या <math>\left[f_1, f_2\right].</math> या <math>i_1</math> और <math>i_2</math> को कैनोनिकल इंजेक्शन कहा जाता है, चूँकि उन्हें इंजेक्शन या यहां तक कि [[मोनोमोर्फिज्म]] भी नहीं होना चाहिए। | ||
कभी-कभी | |||
एक उत्पाद की परिभाषा को एक समुच्चय <math>J.</math> द्वारा अनुक्रमित वस्तुओं के एक मनमाने वर्ग तक बढ़ाया जा सकता है। वर्ग <math>\left\{ X_j : j \in J \right\}</math> का सह-उत्पाद एक वस्तु <math>X</math> है, जो एक साथ आकारिकी {<math>i_j : X_j \to X</math>} के संग्रह के साथ है, जैसे कि, किसी भी वस्तु <math>Y</math> के लिए और आकारिकी {<math>f_j : X_j \to Y</math>} के किसी भी संग्रह में एक अद्वितीय आकारिकी <math>f : X \to Y</math> उपस्थित है जैसे कि <math>f_j = f \circ i_j.</math> अर्थात, निम्न आरेख प्रत्येक <math>j \in J</math> के लिए यात्रा करता है। | |||
[[Image:Coproduct-01.svg|160px|center]] | |||
<math>\left\{ X_j \right\}</math> वर्ग के सहउत्पाद <math>X</math> को अधिकांशतः <math>\coprod_{j\in J}X_j</math> या <math>\bigoplus_{j \in J} X_j.</math> के रूप में दर्शाया जाता है। | |||
कभी-कभी आकृतिवाद<math>f : X \to Y</math> को <math>\coprod_{j \in J} f_j</math> के रूप में दर्शाया जा सकता है, जो व्यक्ति <math>f_j</math>s पर इसकी निर्भरता को इंगित करता है। | |||
== उदाहरण == | == उदाहरण == | ||
समुच्चयों की श्रेणी में सहउत्पाद केवल असम्बद्ध संघ | समुच्चयों की श्रेणी में सहउत्पाद केवल असम्बद्ध संघ या समुच्चय सिद्धांत की परिभाषा नक्शों के साथ i<sub>j</sub> समावेशन मानचित्र होने के नाते [[प्रत्यक्ष उत्पाद]] के विपरीत अन्य श्रेणियों में सह-उत्पाद सभी स्पष्ट रूप से समुच्चय की धारणा पर आधारित नहीं होते हैं, क्योंकि संघ संचालन को संरक्षित करने के संबंध में अच्छा व्यवहार नहीं करते हैं (उदाहरण के लिए दो समूहों के संघ को एक समूह नहीं होना चाहिए) और इसलिए अलग-अलग उत्पाद श्रेणियां नाटकीय रूप से एक दूसरे से भिन्न हो सकती हैं। उदाहरण के लिए, [[समूहों की श्रेणी]] में सह-उत्पाद, जिसे 'मुक्त उत्पाद' कहा जाता है अधिक जटिल है। दूसरी ओर एबेलियन समूहों (और समान रूप से [[वेक्टर रिक्त स्थान|सदिश रिक्त स्थान]] के लिए) की श्रेणी में 'प्रत्यक्ष योग' नामक सह-उत्पाद में प्रत्यक्ष उत्पाद के तत्व होते हैं जिनके पास केवल परिमित कई गैर-शून्य शब्द होते हैं। (इसलिए यह निश्चित रूप से कई कारकों के स्थिति में प्रत्यक्ष उत्पाद के साथ मेल खाता है।) | ||
क्रमविनिमेय वलय R दिया गया है, क्रमविनिमेय बीजगणित की श्रेणी में सहउत्पाद क्रमविनिमेय R-बीजगणित की श्रेणी [[बीजगणित का टेंसर उत्पाद]] है। रिंग्स या R-बीजगणित (नॉनकम्यूटेटिव) R-बीजगणित की श्रेणी में सहउत्पाद टेन्सर बीजगणित का भागफल है (साहचर्य बीजगणित का मुफ्त उत्पाद देखें)। | |||
[[टोपोलॉजिकल स्पेस]] के स्थिति में सहोत्पाद अपने अलग संघ (टोपोलॉजी) के साथ संघ को अलग कर देते हैं। यही है यह अंतर्निहित समुच्चय का एक अलग संघ है, और विवर्त समुच्चय प्रत्येक रिक्त स्थान में एक स्पष्ट अर्थ में विवर्त समुच्चय हैं। [[ नुकीला स्थान |बिंदु स्थान]] की श्रेणी में [[ होमोटॉपी सिद्धांत |होमोटॉपी सिद्धांत]] में मौलिक सहोत्पाद वेज योग है (जो एक सामान्य आधार बिंदु पर आधार बिंदुओं के साथ रिक्त स्थान के संग्रह में सम्मिलित होने के समान है)। | |||
असंयुक्त संघ की अवधारणा गुप्त रूप से उपरोक्त उदाहरणों को रेखांकित करती है: एबेलियन समूहों का प्रत्यक्ष योग लगभग असंयुक्त संघ द्वारा उत्पन्न समूह है (एक सामान्य शून्य के साथ मिलकर सभी गैर-शून्य तत्वों का असंबद्ध संघ) इसी तरह सदिश रिक्त स्थान के लिए: अंतरिक्ष [[रैखिक अवधि]] लगभग असम्बद्ध संघ द्वारा; समूहों के लिए मुफ्त उत्पाद समान लगभग असम्बद्ध संघ से सभी अक्षरों के समुच्चय द्वारा उत्पन्न होता है जहां विभिन्न समुच्चय से दो तत्वों को आवागमन की अनुमति नहीं होती है। यह पैटर्न किसी भी प्रकार (सार्वभौमिक बीजगणित) के लिए है। | |||
छोटे नक्शों के साथ बानाच रिक्त स्थान की श्रेणी में सह-उत्पाद {{math|''l''<sup>1</sup>}} योग है जिसे इतनी आसानी से "लगभग असम्बद्ध" राशि के रूप में अवधारणा नहीं किया जा सकता है, किंतु इसमें एक इकाई बॉल होती है जो इकाई बॉल द्वारा सहकारकों द्वारा लगभग-असंबद्ध रूप से उत्पन्न होती है।।<ref name=Ban1Cat>{{cite web|website=Annoying Precision|title=Banach रिक्त स्थान (और Lawvere मेट्रिक्स, और बंद श्रेणियां)|date=June 23, 2012|author=Qiaochu Yuan|url=https://qchu.wordpress.com/2012/06/23/banach-spaces-and-lawvere-metrics-and-closed-categories/}}</ref> | |||
एक [[पोसेट श्रेणी]] का प्रतिफल ज्वाइन (गणित) है। | एक [[पोसेट श्रेणी]] का प्रतिफल ज्वाइन (गणित) है। | ||
== चर्चा == | == चर्चा == | ||
ऊपर दिया गया सह-उत्पाद निर्माण वास्तव में श्रेणी सिद्धांत में एक [[कोलिमिट]] का एक विशेष | ऊपर दिया गया सह-उत्पाद निर्माण वास्तव में श्रेणी सिद्धांत में एक [[कोलिमिट]] का एक विशेष स्थिति है। एक श्रेणी <math>C</math> में प्रतिउत्पाद को [[असतत श्रेणी]] <math>J</math> से <math>C</math> में किसी भी कारक के कोलिमिट के रूप में परिभाषित किया जा सकता है। प्रत्येक वर्ग <math>\lbrace X_j\rbrace</math> में सामान्य रूप से एक सहउत्पाद नहीं होगा किंतु यदि ऐसा होता है, तो प्रतिफल एक शसक्त अर्थ में अद्वितीय है: यदि <math>i_j:X_j\rightarrow X</math>और <math>k_j:X_j\rightarrow Y</math> वर्ग के दो सह-उत्पाद हैं <math>\lbrace X_j\rbrace</math> तब (उत्पादों की परिभाषा के अनुसार) एक अद्वितीय समाकृतिकता <math>f:X\rightarrow Y</math> उपस्थित होती है जैसे कि <math>f \circ i_j = k_j</math> प्रत्येक <math>j \in J</math> के लिए है | ||
जैसा कि किसी भी सार्वभौमिक | जैसा कि किसी भी सार्वभौमिक गुण के साथ होता है, उत्पाद को एक सार्वभौमिक आकारिकी के रूप में समझा जा सकता है। चलो <math>\Delta : C\rightarrow C\times C</math> विकर्ण फ़ैक्टर बनें जो प्रत्येक वस्तु <math>X</math> को आदेशित जोड़ी <math>\left(X, X\right)</math> और प्रत्येक रूपवाद<math>f : X\rightarrow Y</math> को असाइन करता है जोड़ी <math>\left(f, f\right)</math>. फिर C में सहउत्पाद <math>X + Y</math> को <math>C\times C</math> में वस्तु <math>\left(X, Y\right)</math> से प्रकार्यक <math>\Delta</math> को एक सार्वभौमिक आकारिकी द्वारा दिया जाता है। | ||
[[खाली सेट]] ( | [[खाली सेट|खाली समुच्चय]] (अर्थात, एक खाली उत्पाद) द्वारा अनुक्रमित सह-उत्पाद <math>C</math> में एक [[प्रारंभिक वस्तु]] के समान है . | ||
यदि <math>J</math> ऐसा समुच्चय है कि <math>J</math> के साथ अनुक्रमित वर्गों के लिए सभी सह-उत्पाद उपस्थित हैं, तो उत्पादों को एक संगत फैशन में चुनना संभव है जिससे उत्पाद एक प्रकार्यक <math>C^J\rightarrow C</math> में बदल जाए। वर्ग <math>\lbrace X_j\rbrace</math> को अधिकांशतः इसके द्वारा निरूपित किया जाता है | |||
:<math>\coprod_{j\in J} X_j</math> | :<math>\coprod_{j\in J} X_j</math> | ||
और नक्शे <math>i_j</math> समावेशन मानचित्र के रूप में जाना जाता है। | और नक्शे <math>i_j</math> समावेशन मानचित्र के रूप में जाना जाता है। | ||
<math>\operatorname{Hom}_C\left(U, V\right)</math> को <math>U</math> से <math>V</math> तक <math>C</math> में सभी आकारिकी के समुच्चय को दर्शाने दें (अर्थात, <math>C</math> में एक होम-[[ होम सेट |समुच्चय]] ) हमारे पास एक प्राकृतिक समाकृतिकता है | |||
:<math>\operatorname{Hom}_C\left(\coprod_{j\in J}X_j,Y\right) \cong \prod_{j\in J}\operatorname{Hom}_C(X_j,Y)</math> | :<math>\operatorname{Hom}_C\left(\coprod_{j\in J}X_j,Y\right) \cong \prod_{j\in J}\operatorname{Hom}_C(X_j,Y)</math> | ||
[[द्विभाजन]] द्वारा दिया गया है जो आकारिकी के हर [[टपल]] को मैप करता है | [[द्विभाजन]] द्वारा दिया गया है जो आकारिकी के हर [[टपल]] को मैप करता है | ||
:<math>(f_j)_{j\in J} \in \prod_{j \in J}\operatorname{Hom}(X_j,Y)</math> | :<math>(f_j)_{j\in J} \in \prod_{j \in J}\operatorname{Hom}(X_j,Y)</math> | ||
( | (समुच्चय में एक उत्पाद समुच्चय की श्रेणी जो कार्टेशियन उत्पाद है इसलिए यह आकारिकी का एक टपल है) रूपवाद के लिए | ||
:<math>\coprod_{j\in J} f_j \in \operatorname{Hom}\left(\coprod_{j\in J}X_j,Y\right).</math> | :<math>\coprod_{j\in J} f_j \in \operatorname{Hom}\left(\coprod_{j\in J}X_j,Y\right).</math> | ||
यह नक्शा आरेख की क्रमविनिमेयता से अनुसरण करता है: कोई आकारिकी <math>f</math> टपल का प्रतिफल है | यह नक्शा आरेख की क्रमविनिमेयता से अनुसरण करता है: कोई आकारिकी <math>f</math> टपल का प्रतिफल है | ||
:<math>(f\circ i_j)_{j \in J}.</math> | :<math>(f\circ i_j)_{j \in J}.</math> | ||
यह एक इंजेक्शन है जो सार्वभौमिक निर्माण से अनुसरण करता है जो ऐसे मानचित्रों की विशिष्टता को निर्धारित करता है। समरूपता की स्वाभाविकता भी आरेख का एक परिणाम है। इस प्रकार प्रतिपरिवर्ती होम- | यह एक इंजेक्शन है जो सार्वभौमिक निर्माण से अनुसरण करता है जो ऐसे मानचित्रों की विशिष्टता को निर्धारित करता है। समरूपता की स्वाभाविकता भी आरेख का एक परिणाम है। इस प्रकार प्रतिपरिवर्ती होम-प्रकार्यक सह-उत्पादों को उत्पादों में बदल देता है। दूसरे विधि से कहा गया[[ आदमी-संचालक | होम-प्रकार्यक,]] [[विपरीत श्रेणी]] <math>C^\operatorname{op}</math> से एक प्रकार्यक के रूप में देखा गया समुच्चय करना निरंतर है; यह सीमाओं को संरक्षित करता है (<math>C</math>में एक सह-उत्पाद <math>C^\operatorname{op}</math> में एक उत्पाद है।) | ||
यदि <math>J</math> एक परिमित समुच्चय है, कहते हैं <math>J = \lbrace 1,\ldots,n\rbrace</math>, फिर वस्तुओं का प्रतिफल <math>X_1,\ldots,X_n</math> द्वारा अधिकांशतः दर्शाया जाता है <math>X_1\oplus\ldots\oplus X_n</math>. मान लीजिए कि सभी परिमित सह-उत्पाद C में उपस्थित हैं, सह-उत्पाद कारको को ऊपर के रूप में चुना गया है और 0 खाली उत्पाद के अनुरूप C की प्रारंभिक वस्तु को दर्शाता है। हमारे पास तब प्राकृतिक समरूपताएं हैं | |||
:<math>X\oplus (Y \oplus Z)\cong (X\oplus Y)\oplus Z\cong X\oplus Y\oplus Z</math> | :<math>X\oplus (Y \oplus Z)\cong (X\oplus Y)\oplus Z\cong X\oplus Y\oplus Z</math> | ||
:<math>X\oplus 0 \cong 0\oplus X \cong X</math> | :<math>X\oplus 0 \cong 0\oplus X \cong X</math> | ||
| Line 54: | Line 61: | ||
ये गुण औपचारिक रूप से एक कम्यूटेटिव [[मोनोइड]] के समान हैं; परिमित उत्पाद वाली श्रेणी एक सममित [[मोनोइडल श्रेणी]] का एक उदाहरण है। | ये गुण औपचारिक रूप से एक कम्यूटेटिव [[मोनोइड]] के समान हैं; परिमित उत्पाद वाली श्रेणी एक सममित [[मोनोइडल श्रेणी]] का एक उदाहरण है। | ||
यदि श्रेणी में | यदि श्रेणी में शून्य वस्तु <math>Z</math> है, तो हमारे पास एक अद्वितीय रूपवाद <math>X\rightarrow Z</math> (चूंकि <math>Z</math> टर्मिनल है) और इस प्रकार एक आकारिकी <math>X\oplus Y\rightarrow Z\oplus Y</math> है। चूँकि <math>Z</math> भी आरंभिक है, हमारे पास पिछले पैराग्राफ की तरह एक विहित समरूपता <math>Z\oplus Y\cong Y</math> है। इस प्रकार हमारे पास रूपवाद<math>X\oplus Y\rightarrow X</math> और <math>X\oplus Y\rightarrow Y</math> है, जिसके द्वारा हम एक विहित आकारिकी का अनुमान लगाते हैं <math>X\oplus Y\rightarrow X\times Y</math> यह किसी भी परिमित उत्पाद से संबंधित उत्पाद तक एक विहित आकारिकी में प्रेरण द्वारा बढ़ाया जा सकता है। यह आकारिकी सामान्य रूप से एक तुल्याकारिता नहीं होनी चाहिए; जीआरपी में यह एक उचित रूपवाद है जबकि समुच्चय * (बिंदु समुच्चय की श्रेणी) में यह एक उचित मोनोमोर्फिज्म है। किसी भी पूर्ववर्ती श्रेणी में, यह आकृतिवाद एक समरूपता है और संबंधित वस्तु को द्वि-उत्पाद के रूप में जाना जाता है। सभी परिमित बाइप्रोडक्ट वाली श्रेणी को योगात्मक श्रेणी के रूप में जाना जाता है। | ||
यदि | यदि <math>J</math> द्वारा अनुक्रमित वस्तुओं के सभी परिवारों के <math>C</math> में सह-उत्पाद हैं, तो सह-उत्पाद में एक <math>C^J\rightarrow C</math> सम्मिलित है। ध्यान दें कि उत्पाद की तरह, यह प्रकार्यक सहसंयोजक है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*उत्पाद (श्रेणी सिद्धांत) | *उत्पाद (श्रेणी सिद्धांत) | ||
* [[सीमा (श्रेणी सिद्धांत)]] | * [[सीमा (श्रेणी सिद्धांत)]] | ||
| Line 70: | Line 78: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
*[https://web.archive.org/web/20080916162345/http://www.j-paine.org/cgi-bin/webcats/webcats.php Interactive Web page ] which generates examples of coproducts in the category of finite sets. Written by [https://web.archive.org/web/20081223001815/http://www.j-paine.org/ Jocelyn Paine]. | *[https://web.archive.org/web/20080916162345/http://www.j-paine.org/cgi-bin/webcats/webcats.php Interactive Web page] which generates examples of coproducts in the category of finite sets. Written by [https://web.archive.org/web/20081223001815/http://www.j-paine.org/ Jocelyn Paine]. | ||
{{Category theory}} | {{Category theory}} | ||
{{Authority control}} | {{Authority control}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:सीमाएं (श्रेणी सिद्धांत)]] | |||
Latest revision as of 15:39, 15 June 2023
श्रेणी सिद्धांत में सह-उत्पाद या श्रेणीबद्ध योग एक निर्माण है जिसमें उदाहरण के रूप में समुच्चय (गणित) और असम्बद्ध संघ (टोपोलॉजी) समूह (गणित) का मुक्त उत्पाद और मॉड्यूल (गणित) का प्रत्यक्ष योग सम्मिलित है।) और सदिश रिक्त स्थान वस्तुओं के एक वर्ग का प्रतिफल अनिवार्य रूप से कम से कम विशिष्ट वस्तु है जिसके लिए वर्ग में प्रत्येक वस्तु एक आकारिकी को स्वीकार करती है। यह उत्पाद (श्रेणी सिद्धांत) के लिए श्रेणी-सैद्धांतिक दोहरी (श्रेणी सिद्धांत) है, जिसका अर्थ है कि परिभाषा उत्पाद के समान है किंतु सभी रूपवाद के साथ उलट है। नाम और संकेतन में इस प्रतीत होने वाले सहज परिवर्तन के अतिरिक्त उत्पाद हो सकते हैं और सामान्यतः उत्पादों से नाटकीय रूप से भिन्न होते हैं।
परिभाषा
को एक श्रेणी होने दें और और को की वस्तु होने दें। एक वस्तु को और लिखित या या कभी-कभी बस यदि आकारिकी उपस्थित है और निम्नलिखित सार्वभौमिक गुण को संतुष्ट करना: किसी भी वस्तु और किसी भी आकारिकी के लिए और उपस्थित है अद्वितीय आकारिकी जैसे कि और अर्थात्, निम्नलिखित आरेख आवागमन करता है:
इस आरेख को बनाने वाले अद्वितीय तीर को या या और को कैनोनिकल इंजेक्शन कहा जाता है, चूँकि उन्हें इंजेक्शन या यहां तक कि मोनोमोर्फिज्म भी नहीं होना चाहिए।
एक उत्पाद की परिभाषा को एक समुच्चय द्वारा अनुक्रमित वस्तुओं के एक मनमाने वर्ग तक बढ़ाया जा सकता है। वर्ग का सह-उत्पाद एक वस्तु है, जो एक साथ आकारिकी {} के संग्रह के साथ है, जैसे कि, किसी भी वस्तु के लिए और आकारिकी {} के किसी भी संग्रह में एक अद्वितीय आकारिकी उपस्थित है जैसे कि अर्थात, निम्न आरेख प्रत्येक के लिए यात्रा करता है।
वर्ग के सहउत्पाद को अधिकांशतः या के रूप में दर्शाया जाता है।
कभी-कभी आकृतिवाद को के रूप में दर्शाया जा सकता है, जो व्यक्ति s पर इसकी निर्भरता को इंगित करता है।
उदाहरण
समुच्चयों की श्रेणी में सहउत्पाद केवल असम्बद्ध संघ या समुच्चय सिद्धांत की परिभाषा नक्शों के साथ ij समावेशन मानचित्र होने के नाते प्रत्यक्ष उत्पाद के विपरीत अन्य श्रेणियों में सह-उत्पाद सभी स्पष्ट रूप से समुच्चय की धारणा पर आधारित नहीं होते हैं, क्योंकि संघ संचालन को संरक्षित करने के संबंध में अच्छा व्यवहार नहीं करते हैं (उदाहरण के लिए दो समूहों के संघ को एक समूह नहीं होना चाहिए) और इसलिए अलग-अलग उत्पाद श्रेणियां नाटकीय रूप से एक दूसरे से भिन्न हो सकती हैं। उदाहरण के लिए, समूहों की श्रेणी में सह-उत्पाद, जिसे 'मुक्त उत्पाद' कहा जाता है अधिक जटिल है। दूसरी ओर एबेलियन समूहों (और समान रूप से सदिश रिक्त स्थान के लिए) की श्रेणी में 'प्रत्यक्ष योग' नामक सह-उत्पाद में प्रत्यक्ष उत्पाद के तत्व होते हैं जिनके पास केवल परिमित कई गैर-शून्य शब्द होते हैं। (इसलिए यह निश्चित रूप से कई कारकों के स्थिति में प्रत्यक्ष उत्पाद के साथ मेल खाता है।)
क्रमविनिमेय वलय R दिया गया है, क्रमविनिमेय बीजगणित की श्रेणी में सहउत्पाद क्रमविनिमेय R-बीजगणित की श्रेणी बीजगणित का टेंसर उत्पाद है। रिंग्स या R-बीजगणित (नॉनकम्यूटेटिव) R-बीजगणित की श्रेणी में सहउत्पाद टेन्सर बीजगणित का भागफल है (साहचर्य बीजगणित का मुफ्त उत्पाद देखें)।
टोपोलॉजिकल स्पेस के स्थिति में सहोत्पाद अपने अलग संघ (टोपोलॉजी) के साथ संघ को अलग कर देते हैं। यही है यह अंतर्निहित समुच्चय का एक अलग संघ है, और विवर्त समुच्चय प्रत्येक रिक्त स्थान में एक स्पष्ट अर्थ में विवर्त समुच्चय हैं। बिंदु स्थान की श्रेणी में होमोटॉपी सिद्धांत में मौलिक सहोत्पाद वेज योग है (जो एक सामान्य आधार बिंदु पर आधार बिंदुओं के साथ रिक्त स्थान के संग्रह में सम्मिलित होने के समान है)।
असंयुक्त संघ की अवधारणा गुप्त रूप से उपरोक्त उदाहरणों को रेखांकित करती है: एबेलियन समूहों का प्रत्यक्ष योग लगभग असंयुक्त संघ द्वारा उत्पन्न समूह है (एक सामान्य शून्य के साथ मिलकर सभी गैर-शून्य तत्वों का असंबद्ध संघ) इसी तरह सदिश रिक्त स्थान के लिए: अंतरिक्ष रैखिक अवधि लगभग असम्बद्ध संघ द्वारा; समूहों के लिए मुफ्त उत्पाद समान लगभग असम्बद्ध संघ से सभी अक्षरों के समुच्चय द्वारा उत्पन्न होता है जहां विभिन्न समुच्चय से दो तत्वों को आवागमन की अनुमति नहीं होती है। यह पैटर्न किसी भी प्रकार (सार्वभौमिक बीजगणित) के लिए है।
छोटे नक्शों के साथ बानाच रिक्त स्थान की श्रेणी में सह-उत्पाद l1 योग है जिसे इतनी आसानी से "लगभग असम्बद्ध" राशि के रूप में अवधारणा नहीं किया जा सकता है, किंतु इसमें एक इकाई बॉल होती है जो इकाई बॉल द्वारा सहकारकों द्वारा लगभग-असंबद्ध रूप से उत्पन्न होती है।।[1]
एक पोसेट श्रेणी का प्रतिफल ज्वाइन (गणित) है।
चर्चा
ऊपर दिया गया सह-उत्पाद निर्माण वास्तव में श्रेणी सिद्धांत में एक कोलिमिट का एक विशेष स्थिति है। एक श्रेणी में प्रतिउत्पाद को असतत श्रेणी से में किसी भी कारक के कोलिमिट के रूप में परिभाषित किया जा सकता है। प्रत्येक वर्ग में सामान्य रूप से एक सहउत्पाद नहीं होगा किंतु यदि ऐसा होता है, तो प्रतिफल एक शसक्त अर्थ में अद्वितीय है: यदि और वर्ग के दो सह-उत्पाद हैं तब (उत्पादों की परिभाषा के अनुसार) एक अद्वितीय समाकृतिकता उपस्थित होती है जैसे कि प्रत्येक के लिए है
जैसा कि किसी भी सार्वभौमिक गुण के साथ होता है, उत्पाद को एक सार्वभौमिक आकारिकी के रूप में समझा जा सकता है। चलो विकर्ण फ़ैक्टर बनें जो प्रत्येक वस्तु को आदेशित जोड़ी और प्रत्येक रूपवाद को असाइन करता है जोड़ी . फिर C में सहउत्पाद को में वस्तु से प्रकार्यक को एक सार्वभौमिक आकारिकी द्वारा दिया जाता है।
खाली समुच्चय (अर्थात, एक खाली उत्पाद) द्वारा अनुक्रमित सह-उत्पाद में एक प्रारंभिक वस्तु के समान है .
यदि ऐसा समुच्चय है कि के साथ अनुक्रमित वर्गों के लिए सभी सह-उत्पाद उपस्थित हैं, तो उत्पादों को एक संगत फैशन में चुनना संभव है जिससे उत्पाद एक प्रकार्यक में बदल जाए। वर्ग को अधिकांशतः इसके द्वारा निरूपित किया जाता है
और नक्शे समावेशन मानचित्र के रूप में जाना जाता है।
को से तक में सभी आकारिकी के समुच्चय को दर्शाने दें (अर्थात, में एक होम-समुच्चय ) हमारे पास एक प्राकृतिक समाकृतिकता है
द्विभाजन द्वारा दिया गया है जो आकारिकी के हर टपल को मैप करता है
(समुच्चय में एक उत्पाद समुच्चय की श्रेणी जो कार्टेशियन उत्पाद है इसलिए यह आकारिकी का एक टपल है) रूपवाद के लिए
यह नक्शा आरेख की क्रमविनिमेयता से अनुसरण करता है: कोई आकारिकी टपल का प्रतिफल है
यह एक इंजेक्शन है जो सार्वभौमिक निर्माण से अनुसरण करता है जो ऐसे मानचित्रों की विशिष्टता को निर्धारित करता है। समरूपता की स्वाभाविकता भी आरेख का एक परिणाम है। इस प्रकार प्रतिपरिवर्ती होम-प्रकार्यक सह-उत्पादों को उत्पादों में बदल देता है। दूसरे विधि से कहा गया होम-प्रकार्यक, विपरीत श्रेणी से एक प्रकार्यक के रूप में देखा गया समुच्चय करना निरंतर है; यह सीमाओं को संरक्षित करता है (में एक सह-उत्पाद में एक उत्पाद है।)
यदि एक परिमित समुच्चय है, कहते हैं , फिर वस्तुओं का प्रतिफल द्वारा अधिकांशतः दर्शाया जाता है . मान लीजिए कि सभी परिमित सह-उत्पाद C में उपस्थित हैं, सह-उत्पाद कारको को ऊपर के रूप में चुना गया है और 0 खाली उत्पाद के अनुरूप C की प्रारंभिक वस्तु को दर्शाता है। हमारे पास तब प्राकृतिक समरूपताएं हैं
ये गुण औपचारिक रूप से एक कम्यूटेटिव मोनोइड के समान हैं; परिमित उत्पाद वाली श्रेणी एक सममित मोनोइडल श्रेणी का एक उदाहरण है।
यदि श्रेणी में शून्य वस्तु है, तो हमारे पास एक अद्वितीय रूपवाद (चूंकि टर्मिनल है) और इस प्रकार एक आकारिकी है। चूँकि भी आरंभिक है, हमारे पास पिछले पैराग्राफ की तरह एक विहित समरूपता है। इस प्रकार हमारे पास रूपवाद और है, जिसके द्वारा हम एक विहित आकारिकी का अनुमान लगाते हैं यह किसी भी परिमित उत्पाद से संबंधित उत्पाद तक एक विहित आकारिकी में प्रेरण द्वारा बढ़ाया जा सकता है। यह आकारिकी सामान्य रूप से एक तुल्याकारिता नहीं होनी चाहिए; जीआरपी में यह एक उचित रूपवाद है जबकि समुच्चय * (बिंदु समुच्चय की श्रेणी) में यह एक उचित मोनोमोर्फिज्म है। किसी भी पूर्ववर्ती श्रेणी में, यह आकृतिवाद एक समरूपता है और संबंधित वस्तु को द्वि-उत्पाद के रूप में जाना जाता है। सभी परिमित बाइप्रोडक्ट वाली श्रेणी को योगात्मक श्रेणी के रूप में जाना जाता है।
यदि द्वारा अनुक्रमित वस्तुओं के सभी परिवारों के में सह-उत्पाद हैं, तो सह-उत्पाद में एक सम्मिलित है। ध्यान दें कि उत्पाद की तरह, यह प्रकार्यक सहसंयोजक है।
यह भी देखें
- उत्पाद (श्रेणी सिद्धांत)
- सीमा (श्रेणी सिद्धांत)
- समतुल्य
- सीधी सीमा
संदर्भ
- ↑ Qiaochu Yuan (June 23, 2012). "Banach रिक्त स्थान (और Lawvere मेट्रिक्स, और बंद श्रेणियां)". Annoying Precision.
- Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). New York, NY: Springer-Verlag. ISBN 0-387-98403-8. Zbl 0906.18001.
बाहरी संबंध
- Interactive Web page which generates examples of coproducts in the category of finite sets. Written by Jocelyn Paine.