सामान्य फलन: Difference between revisions
m (Abhishek moved page सामान्य कार्य to सामान्य फलन without leaving a redirect) |
m (added Category:Vigyan Ready using HotCat) |
||
| Line 46: | Line 46: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Vigyan Ready]] | |||
Revision as of 09:02, 26 May 2023
स्वयंसिद्ध समुच्चय सिद्धांत में, फलन f क्रमसूचक संख्या → Ord को 'सामान्य' (या 'सामान्य फलन') कहा जाता है यदि केवल यह निरंतर फलन है, तो (आदेश टोपोलॉजी के संबंध में) एवं जटिलता से नीरस रूप से बढ़ रही है। यह निम्नलिखित दो स्थितियों के समान है।
- प्रत्येक सीमा क्रमसूचक γ के लिए (अर्थात γ न तो शून्य है एवं न ही उत्तराधिकारी), यह स्थिति है कि f(γ) = sup {f(ν): ν < γ}
- सभी अध्यादेश α < β के लिए, यह विषय है कि f (α) < f (β)
उदाहरण
सामान्य फलन f(α) = 1 + α (क्रमिक अंकगणित देखें) द्वारा दिया जाता है । किन्तु f(α) = α + 1 सामान्य नहीं है क्योंकि यह किसी भी सीमा क्रमसूचक पर सतत नहीं है; अर्थात् बिंदु विवृत समुच्चय {λ + 1} की व्युत्क्रम छवि समुच्चय {λ} है, जो तब विवृत नहीं है जब λ सीमा क्रमसूचक है। यदि β निश्चित क्रमसूचक है, तो कार्य f(α) = β + α, f(α) = β × α के लिए) एवं f(α) = βα (β ≥ 2 के लिए) सभी सामान्य हैं।
सामान्य कार्यों के अधिक महत्वपूर्ण उदाहरण एलेफ संख्या द्वारा दिए गए हैं , जो क्रमवाचक एवं कार्डिनल संख्याओं एवं बेथ संख्याओं से जुड़ते हैं।
गुण
यदि f सामान्य है, तो किसी भी क्रमिक α के लिए,
- f(α) ≥ α [1]
प्रमाण: यदि नहीं, तो γ न्यूनतम चयन किये गए, जैसे कि f(γ) <γ, चूँकि f जटिलता से नीरस रूप से बढ़ रहा है, f(f(γ)) <'f(γ), γ की न्यूनतमता के विपरीत है।
इसके अतिरिक्त, किसी भी गैर-रिक्त समुच्चय S के लिए, हमारे निकट होता है।
- f(sup S) = sup f(S)
प्रमाण: ≥ f की दिष्टता एवं सर्वोच्चता की परिभाषा से अनुसरण करता है। ≤ के लिए, δ = sup S उपसमुच्चय करें एवं तीन विषयो पर विचार करें।
- यदि δ = 0, तो S = {0} एवं sup f(S) = f(0);
- यदि δ = ν + 1 उत्तराधिकारी क्रमसूचक है, तो S में ν <'s के साथ उपस्थित है, जिससे δ ≤ s, इसलिए, f(δ) ≤ f(s), जिसका अर्थ f(δ) ≤ sup f(S' ') है।
- यदि δ शून्येतर सीमा है, तो इसमें ν < δ, और S में s चयन करे जिससे ν < s (संभव है क्योंकि δ = sup S) इसलिए, f(ν) < f(s) जिससे f(ν) < sup f(S), उपज देने वाला f(δ) = sup {f(ν) ν < δ} ≤ sup f(S), इच्छानुसार प्रत्येक सामान्य कार्य 'f' में इच्छानुसार रूप से बड़े निश्चित बिंदु होते हैं; प्रमाण के लिए सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा देखें। कोई सामान्य फलन "f' बना सकता है: Ord → Ord, जिसे f का व्युत्पन्न कहा जाता है, जैसे f ( α ) α का α-वाँ निश्चित बिंदु है।[2] सामान्य कार्यों के पदानुक्रम के लिए, वेब्लेन कार्य देखें।
टिप्पणियाँ
- ↑ Johnstone 1987, Exercise 6.9, p. 77
- ↑ Johnstone 1987, Exercise 6.9, p. 77