क्रमिक अंकगणित

From Vigyanwiki

समुच्चय सिद्धांत के गणितीय क्षेत्र में, क्रमिक अंकगणित क्रमसूचक संख्याओं के योग, गुणन और घातांक पर तीन सामान्य संक्रियाओं का वर्णन करता है। प्रत्येक को अनिवार्य रूप से दो भिन्न-भिन्न विधियों द्वारा परिभाषित किया जा सकता है, या तो परिमित प्रत्यावर्तन का उपयोग करके अथवा स्पष्ट सुव्यवस्थित समुच्चय का निर्माण करके जो ऑपरेशन के परिणाम का प्रतिनिधित्व करता है। कैंटर सामान्य रूप क्रमसूचक संख्याओं को लिखने की मानकीकृत विधि प्रदान करता है। इन सामान्य क्रमसूचक संक्रियाओं के अतिरिक्त, क्रमसूचकों का "प्राकृतिक" अंकगणित और निम्बर संक्रियाएँ भी होती हैं।

जोड़

दो भिन्न-भिन्न सुव्यवस्थित समुच्चय S और T का संघ (समुच्चय सिद्धांत) व्यवस्थित हो सकता है। उस संघ का क्रम-प्रकार क्रमसूचक है जो S और T के क्रम-प्रकारों को जोड़ने से उत्पन्न होता है। यदि दो सुव्यवस्थित समुच्चय पूर्व से ही असंयुक्त नहीं हैं तो उन्हें क्रम-समरूपी असंयुक्त समुच्चय द्वारा प्रतिस्थापित किया जा सकता है, उदाहरण के लिए, S को {0} × S से और T को {1} × T से प्रतिस्थापित किया गया है। इस प्रकार सुव्यवस्थित समुच्चय S को सुव्यवस्थित समुच्चय T के बाईं ओर अंकित किया जाता है, जिसका अर्थ है कि S T पर क्रम परिभाषित किया गया है जिसमें S का प्रत्येक तत्व T के प्रत्येक तत्व से छोटा है। समुच्चय (गणित) S और T स्वयं उनके निकट उपस्थित पूर्व क्रम को बनाए रखते हैं।

योग α + β की परिभाषा, β पर परिमित प्रत्यावर्तन द्वारा प्राप्त की जा सकती है:

  • α + 0 = α
  • α + S(β) = S(α + β), जहाँ S उत्तराधिकारी क्रमसूचक फलन को दर्शाता है।
  • जब β सीमा क्रमसूचक है।

प्राकृतिक संख्याओं पर क्रमसूचक जोड़ मानक जोड़ के समान होता है। प्रथम पारसिमित क्रमसूचक ω सभी प्राकृतिक संख्याओं का समुच्चय है, जिसके पश्चात ω + 1, ω + 2, आदि हैं। क्रमसूचक ω + ω, प्राकृतिक संख्याओं के सामान्य क्रम में दो प्रतियों द्वारा प्राप्त किया जाता है और द्वितीय प्रति पूर्ण रूप से प्रथम प्रति के दाईं ओर होती है। द्वितीय प्रति के लिए 0' <1' < 2' <... अंकित करने पर ω + ω, 0 <1 <2 <3 <... <0' <1' <2' <... जैसा दिखता है।

यह ω से भिन्न होता है क्योंकि ω में केवल 0 का प्रत्यक्ष पूर्ववर्ती नहीं होता है यद्यपि ω + ω में दो तत्वों 0 और 0' का प्रत्यक्ष पूर्ववर्ती नहीं होता है।

गुण

साधारण जोड़ सामान्य रूप से क्रमविनिमेय नहीं है। उदाहरण के लिए 3 + ω = ω है, चूँकि 3 + ω के लिए क्रम संबंध 0 < 1 < 2 < 0 '< 1' < 2 ' <... होता है, जिसे ω में रिस्तरीय किया जा सकता है। इसके विपरीत ω + 3, ω के समान नहीं है क्योंकि क्रम संबंध 0 < 1 < 2 < ... < 0' < 1' < 2' में सबसे बड़ा तत्व (अर्थात्, 2') और ω नहीं है (ω और ω + 3 सामर्थ्यवान हैं, किन्तु क्रम-समरूपी नहीं हैं)।

साधारण जोड़ अभी भी साहचर्य है; जिसे निम्नलिखित उदाहरण द्वारा अवलोकित किया जा सकता है- (ω + 4) + ω = ω + (4 + ω) = ω + ω

जोड़ जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर है-

किन्तु समान संबंध बाएँ तर्क के लिए मान्य नहीं है; इसके अतिरिक्त हमारे निकट है-

यदि α + β = α + γ और β = γ है, तो क्रमसूचक योग बायाँ-निरस्त होता है। इसके अतिरिक्त, कोई क्रमसूचक β ≤ α के लिए बाएं विभाजन को परिभाषित कर सकता है: अद्वितीय γ उपस्थित है जैसे α = β + γ दूसरी ओर, उचित निरस्तीकरण कार्य नहीं होता है-

किन्तु है

β ≤ α के लिए उचित घटाव कार्य नहीं करता उदाहरण के लिए, तब γ उपस्थित नहीं होता है जैसे कि γ + 42 = ω

यदि α से अल्प क्रमांक योग के अंतर्गत संवृत और 0 होते हैं तो α को कभी-कभी γ संख्या कहा जाता है (जोड़ने योग्य अविभाज्य क्रमसूचक देखें)। ये पूर्णतः ωβ रूप के क्रमसूचक हैं।

गुणन

असंयुक्त संघ { (0,n) : n ∈ ℕ } { (1,n) : n ∈ ℕ } का क्रम प्रकार है।
लेक्सिकोग्राफिक क्रम के अंतर्गत, समुच्चय { (n,0), (n,1) : n ∈ ℕ } का क्रम प्रकार है।

कार्तीय गुणन S×T, दो सुव्यवस्थित समुच्चय S और T के लेक्सिकोग्राफिक क्रम विधि द्वारा उचित रूप से व्यवस्थित किये जा सकते है जो कम से कम महत्वपूर्ण स्थिति को प्रथम रखता है। प्रभावी रूप से, T के प्रत्येक तत्व को S की असंयुक्त प्रति द्वारा प्रतिस्थापित कर दिया जाता है। कार्तीय गुणन का क्रम-प्रकार क्रमसूचक है जो S और T के क्रम-प्रकारों को गुणा करने से उत्पन्न होता है।

गुणन की परिभाषा आगमनात्मक रूप से भी दी जा सकती है (निम्नलिखित प्रेरण β पर है)-

  • α·0 = 0.
  • α · S(β) = (α · β) + α, उत्तराधिकारी क्रमसूचक S(β) के लिए है।
  • , जब β सीमा क्रमसूचक है।

उदाहरण के रूप में, जहाँ ω·2 के लिए क्रम संबंध है-

00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 <...,

जिसका क्रम प्रकार ω + ω के समान है। इसके विपरीत, 2·ω इस प्रकार दिखता है-

00 < 10 < 01 < 11 < 02 < 12 < 03 < 13 <...

और पुनः स्तरीय करने के पश्चात, यह पूर्णतः ω जैसा दिखता है।

इस प्रकार, ω·2 = ω+ω ≠ ω = 2·ω, यह दर्शाता है कि क्रमांकों का गुणन सामान्य क्रमविनिमेय नहीं है।

प्राकृतिक संख्याओं पर पुनः क्रमसूचक गुणन मानक गुणन के समान है।

गुण

α·0 = 0·α = 0, और शून्य-उत्पाद गुण α·β = 0 α = 0 या β = 0 धारण करता है। क्रमसूचक 1, गुणक प्रमाण α·1 = 1·α = α है। गुणन संबद्ध (α·β)·γ = α·(β·γ) है। गुणन जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर (α < β और γ > 0) γ·α < γ·β है। बाएं तर्क में गुणन जटिलता से विस्तारित नहीं हो रहा है, उदाहरण के लिए, 1 < 2 किन्तु 1·ω = 2·ω = ω है। चूँकि, यह विस्तारित हो रहा है अर्थात α ≤ β α·γ ≤ β·γ.

क्रमसूचकों का गुणन सामान्य क्रमविनिमेय नहीं है। विशेष रूप से, 1 से अधिक प्राकृतिक संख्या कभी भी किसी भी अनंत क्रमसूचक के साथ नहीं चलती है और यदि αm = βn है तो कुछ धनात्मक प्राकृतिक संख्या m और n के लिए दो अनंत क्रमसूचक α, β के साथ चलती है। संबंध α, β के साथ संचार करता है, 1 से अधिक क्रमांक पर तुल्यता संबंध है, और सभी तुल्यता वर्ग अनगिनत रूप से अनंत हैं।

वितरणता, α(β + γ) = αβ + αγ में बाईं ओर होती है। चूँकि, दाईं ओर वितरण नियम (β + γ)α = βα+γα सामान्यतः सत्य नहीं है: (1 + 1)·ω = 2·ω = ω यद्यपि 1·ω + 1·ω = ω+ω, जो भिन्न है। यदि α > 0 और α·β = α·γ हैं तो β = γ होगा, यह बायां निरस्तीकरण नियम है। उचित निरस्तीकरण कार्य नहीं करता है, उदाहरण के लिए 1·ω = 2·ω = ω, किन्तु 1 और 2 भिन्न हैं। शेष गुण के साथ बाएँ विभाजन के लिए α और β मान्य है यदि β> 0, तब γ और δ अद्वितीय हैं जैसे कि α = β·γ + δ और δ < β, उचित विभाजन कार्य नहीं करते हैं: ऐसा α नहीं है जैसे कि α·ω ≤ ωω ≤ (α + 1)·ω.

क्रमसूचक संख्याएँ बाएँ निकट-सेमीरिंग बनाती हैं, किन्तु वलय (बीजगणित) नहीं बनाती हैं। इसलिए क्रमसूचकों यूक्लिडियन डोमेन नहीं हैं, क्योंकि वे वलय भी नहीं हैं – इसके अतिरिक्त, यूक्लिडियन मानदंड बाएं विभाजन का उपयोग करके क्रमसूचक-महत्वपूर्ण होता है।

δ-संख्या (गुणात्मक रूप से अविघटनीय क्रमसूचक देखें) 1 से बड़ा क्रमसूचक β है जैसे कि αβ=β, जब 0 < α < β होता है। इनमें क्रमसूचक 2 और β = ωωγ रूप के क्रमांक सम्मिलित हैं।

घातांक

क्रम प्रकार के माध्यम से परिभाषा को सबसे सरलता से वॉन न्यूमैन की क्रमसूचक परिभाषा का उपयोग करके सभी छोटे क्रमसूचकों के समुच्चय के रूप में अध्यन्न किया गया है। तत्पश्चात, क्रम प्रकार αβ का समुच्चय बनाने के लिए β से α तक सभी फलनों पर विचार करें जैसे कि डोमेन β के तत्वों की केवल 1 परिमित संख्या α के गैर शून्य तत्व के लिए विचार करती है (अनिवार्य रूप से, हम सीमित समर्थन (गणित) के साथ फलनों पर विचार करते हैं)। क्रम प्रथम अतिअल्प महत्वपूर्ण स्थिति के साथ लेक्सिकोग्राफ़िक है।

घातांक की परिभाषा भी आगमनात्मक रूप से प्राप्त की जा सकती है (निम्नलिखित प्रेरण β, घातांक पर है)-

  • α0 = 1
  • αS(β) = (αβ) · α, उत्तराधिकारी क्रमसूचक S(β) के लिए है।
  • , जब β सीमा क्रमसूचक है।

परिमित घातांक के लिए क्रमसूचक घातांक की परिभाषा सरल है। यदि घातांक परिमित संख्या है, तो घात पुनरावृत्त गुणन का परिणाम है। उदाहरण के लिए, ω2 = ω·ω क्रमसूचक गुणन की संक्रिया का प्रयोग करें। ध्यान दें कि ω·ω को 2 = {0,1} से ω = {0,1,2,...} तक के फलनों के सेट का उपयोग करके परिभाषित किया जा सकता है, महत्वपूर्ण स्थिति के साथ लेक्सिकोग्राफ़िक क्रम है-

(0,0) <(1,0) <(2,0) <(3,0) <... <(0,1) <(1,1) <(2,1) <(3, 1) <... <(0,2) <(1,2) <(2,2) <...

जहाँ संक्षिप्तता के लिए, हमने फलन {(0,k), (1,m)} को क्रमित जोड़ी (k, m) से प्रतिस्थापित कर दिया है।

इसी प्रकार, किसी परिमित घातांक n के लिए, को n (डोमेन) से प्राकृतिक संख्याओं (कोडोमेन) तक के फलनों के समुच्चय का उपयोग करके परिभाषित किया जा सकता है। इन फलनों को प्राकृतिक संख्याओं के n-टपल्स के रूप में संक्षिप्त किया जा सकता है।

किन्तु अपरिमित घातांकों के लिए, परिभाषा स्पष्ट नहीं हो सकती है। सीमा क्रमसूचक, जैसे ωω, सभी छोटे क्रमांकों का सर्वोच्च है। प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों के समुच्चय का उपयोग करके ωω को परिभाषित करना स्वाभाविक प्रतीत हो सकता है। चूँकि, हम प्राप्त करते हैं कि इस समुच्चय पर निरपेक्षता (गणितीय तर्क) से परिभाषित क्रम सुव्यवस्थित नहीं है।[1] इस समस्या के समाधान के लिए परिभाषा समुच्चय को अनुक्रमों तक सीमित करती है जो केवल तर्कों की सीमित संख्या के लिए अशून्य होते हैं। यह स्वाभाविक रूप से आधार की परिमित घातों की सीमा के रूप में प्रेरित होता है (बीजगणित में प्रतिफल की अवधारणा के समान)। इसे अपरिमित संघ भी माना जा सकता है।

उनमें से प्रत्येक अनुक्रम जैसे , से अल्प क्रमसूचक से युग्मित होता है और छोटे क्रमसूचकों का सर्वोच्च है।

इस समुच्चय पर लेक्सिकोोग्राफ़िकल क्रम उत्तम क्रम है जो दशमलव अंकन में लिखी गई प्राकृतिक संख्याओं के क्रम के समान होता है, अतिरिक्त इसके कि अंकों की स्थिति को परिवर्तित कर दिया जाए और केवल 0-9 अंकों के साथ आर्बिटरी प्राकृतिक संख्याएँ हैं:

(0,0,0,...) <(1,0,0,0,...) <(2,0,0,0,...) <... <
(0,1,0,0,0,...) <(1,1,0,0,0,...) <(2,1,0,0,0,...) <। .. <
(0,2,0,0,0,...) <(1,2,0,0,0,...) <(2,2,0,0,0,...)
<... <
(0,0,1,0,0,0,...) <(1,0,1,0,0,0,...) <(2,0,1,0,0,0, ...)
<...

सामान्यतः, αβ प्राप्त करने के लिए क्रमसूचक α को दूसरे क्रमसूचक β की घात तक विस्तारित किया जा सकता है।

हम देखतें है,

  • 1ω = 1,
  • 2ω = ω,
  • 2ω+1 = ω·2 = ω+ω.

चूँकि समान संकेतन का उपयोग क्रमसूचक घातांक और कार्डिनल घातांक के लिए किया जाता है, क्रमसूचक घातांक कार्डिनल घातांक से अत्याधिक भिन्न होता है। उदाहरण के लिए, क्रमसूचक घातांक के साथ , किन्तु के लिए (एलेफ संख्याओं की प्रमुखता ), है। जहाँ, प्राकृतिक संख्याओं के समुच्चय से लेकर दो तत्वों वाले समुच्चय तक सभी फलनों के समुच्चय की प्रमुखता है। (यह प्राकृतिक संख्याओं के समुच्चय के पावरसेट की कार्डिनैलिटी है और कॉन्टिनम की कार्डिनैलिटी के समान है।) क्रमसूचक घातांक को कार्डिनल घातांक के साथ भ्रमित करने से बचने के लिए, क्रमसूचक प्रतीकों (जैसे ω) का उपयोग कर सकता है और उसके पश्चात कार्डिनल प्रतीकों (जैसे ) का उपयोग कर सकता है।

गुण

  • α0 = 1
  • यदि 0 <α, तब 0α = 0
  • 1α = 1
  • α1 = α
  • αβ·αγ = αβ + γ
  • (αβ)γ = αβ·γ
  • α, β, और γ हैं जिसके लिए (α·β)γ ≠ αγ·βγ हैं। उदाहरण के लिए, (ω·2)2 = ω·2·ω·2 = ω2·2 ≠ ω2·4
  • क्रमसूचक घातांक जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर है: यदि γ> 1 और α < β, तब γα < γβ है।
  • यदि α < β, तब αγ ≤ βγ, उदाहरण के लिए ध्यान दें कि 2 < 3 और 2ω = 3ω = ω है।
  • यदि α> 1 और αβ = αγ, तब β = γ है। यदि α = 1 या α = 0 तब यह स्थिति नहीं है।
  • यदि β > 1 और α > 0 है, तब α और β के लिए अद्वितीय γ, δ, और ρ उपस्थित हैं जैसे कि α = βγ·δ + ρ, 0 < δ < β और ρ < βγ

अर्न्स्ट जैकबस्टल ने दिखाया कि αβ = βα का α ≤ β के साथ एकमात्र समाधान α = β, या α = 2 और β = 4 द्वारा दिया जाता है, या α सीमा क्रमसूचक है और β = εα जहाँ ε, α से बड़ी ε-संख्या है।[2]


घातांक से परे

ऐसे क्रमसूचक संचालन होते हैं जो जोड़, गुणन और घातांक द्वारा प्रारम्भ किए गए अनुक्रम को निरंतर रखते हैं, जिसमें टेट्रेशन, पेंटेशन और हेक्सेशन के क्रमसूचक संस्करण सम्मिलित हैं। वेब्लेन फलन भी देखें।

कैंटर सामान्य रूप

प्रत्येक क्रमसूचक संख्या α को विशिष्ट रूप से के रूप में लिखा जा सकता है, जहाँ k प्राकृत संख्या है, धनात्मक पूर्णांक हैं, और क्रमसूचक संख्याएँ हैं। अपकृष्ट स्तिथि α = 0 तब होती है जब k = 0 होता है और कोई βs और cs नहीं होता है। Α के इस अपघटन को α का 'कैंटर सामान्य रूप' कहा जाता है, और इसे आधार-ω की स्थितीय अंक प्रणाली माना जा सकता है। उच्चतम घातांक को की डिग्री कहा जाता है, और यह संतुष्ट करता है। यदि है, समानता क्रियान्वित होती है। उस स्थिति में कैंटर सामान्य रूप क्रमसूचक को छोटे संदर्भ में व्यक्त नहीं करता है।

कैंटर सामान्य रूप का साधारण परिवर्तन, जिसके साथ कार्य करना सामान्यतः सरल होता है, जिसमें संख्या ci को 1 के समान सेट करना और घातांकों को समान करने की अनुमति देना है। अन्य शब्दों में, प्रत्येक क्रमसूचक संख्या α को विशिष्ट रूप से लिखा जा सकता है, जहाँ k प्राकृतिक संख्या है, और क्रमसूचक संख्याएँ हैं।

कैंटर सामान्य रूप की अन्य भिन्नता "आधार δ विस्तार" है, जहां ω को क्रमसूचक δ>1 द्वारा प्रतिस्थापित किया जाता है, और संख्या ci,δ से अल्प धनात्मक क्रमांक हैं।

कैंटर सामान्य रूप हमें विशिष्ट रूप से अभिव्यक्त और व्यवस्थित करने की अनुमति देता है। क्रमसूचक α जो कि प्राकृतिक संख्याओं से जोड़, गुणा और घातांक आधार- के अंकगणितीय संचालन की सीमित संख्या से निर्मित होते हैं: अन्य शब्दों में, मानकर हम घातांक को कैंटर सामान्य रूप में भी व्यक्त कर सकते हैं और के लिए α के समान धारणा बना सकते हैं और इसी प्रकार पुनरावर्ती रूप से, हम इन क्रमसूचकों के लिए संकेतन की प्रणाली प्राप्त करते हैं (उदाहरण के लिए,

जो क्रमसूचक को दर्शाता है)।

क्रमसूचक ε0 (एप्सिलॉन शून्य) कैंटर सामान्य रूप की परिमित-लंबाई अंकगणितीय अभिव्यक्तियों के क्रमिक मानों α का समुच्चय है जो आनुवंशिक रूप से गैर-तुच्छ हैं जहां गैर-तुच्छ का अर्थ β1<α जब 0<α है। यह सबसे छोटा क्रमसूचक है जिसमें ω के संदर्भ में परिमित अंकगणितीय अभिव्यक्ति नहीं है, उदाहरण के लिए , अर्थात कैंटर सामान्य रूप में घातांक स्वयं क्रमसूचक से छोटा नहीं होता है। यह क्रम की सीमा है-

क्रमसूचक ε0 अंकगणित में विभिन्न कारणों से महत्वपूर्ण है (अनिवार्य रूप से क्योंकि यह प्रथम-क्रम तर्क की प्रूफ-सैद्धांतिक शक्ति को मापता है: पियानो के अभिगृहीत ε0 से अल्प किसी भी क्रमसूचक तक परिमित प्रवेश दिखा सकते हैं)

कैंटर सामान्य रूप, क्रमसूचकों के योग और गुणनफलों की गणना करने की अनुमति देता है: योग की गणना करने के लिए, उदाहरण के लिए, केवल यह ज्ञात करने की आवश्यकता है (§ Addition और § Multiplication में सूचीबद्ध गुणों को देखें)

यदि (यदि , वितरण नियम को बाईं ओर प्रयुक्त कर सकता है और इसे पुनः के रूप में लिख सकता है, और यदि अभिव्यक्ति पूर्व ही कैंटर सामान्य रूप में है) और गुणनफलों की गणना करने के लिए, आवश्यक तथ्य यह हैं कि जब कैंटर सामान्य रूप में होता है और , तब

और

यदि n अशून्य प्राकृतिक संख्या है।

कैंटर सामान्य रूप में लिखे गए दो क्रमसूचकों की तुलना करने के लिए, प्रथम की तुलना करें, उसके पश्चात , तत्पश्चात , तत्पश्चात , आदि की तुलना करें, प्रथम अंतर पर, जिस क्रमसूचक का बड़ा घटक होता है वह बड़ा क्रमसूचक होता है। यदि वे तब तक समान हैं जब तक एक दूसरे से पूर्व समाप्त नहीं हो जाते है, तो जो पूर्व समाप्त होता है वह छोटा होता है।

अभाज्यों में गुणनखंड

अर्न्स्ट जैकबस्टल ने प्रस्तुत किया कि क्रमसूचक अद्वितीय गुणनखंड प्रमेय के रूप को संतुष्ट करते हैं: प्रत्येक अशून्य क्रमसूचक को परिमित संख्याओं के गुणनफल के रूप में अंकित किया जा सकता है। मुख्य क्रमसूचकों में यह गुणनखंड सामान्य रूप से अद्वितीय नहीं है, किन्तु अभाज्यों में न्यूनतम गुणनखंड है जो परिमित प्रमुख कारकों के क्रम को परिवर्तित करने के लिए अद्वितीय है (Sierpiński 1958)।

प्रमुख क्रमसूचक 1 से अधिक क्रमसूचक है जिसे दो छोटे क्रमसूचकों के गुणनफल के रूप में अंकित नहीं किया जा सकता है। कुछ प्रथम अभाज्य संख्याएँ हैं- 2, 3, 5, ... , ω, ω+1, ω2+1, ω3+1, ..., ωω, ωω+1, ωω+1+1, ... प्रमुख क्रमसूचकों के तीन प्रकार होते हैं:

  • परिमित अभाज्य संख्याएँ- 2, 3, 5, ...
  • किसी भी क्रमसूचक α के लिए, ωωα रूप के क्रमसूचक हैं। ये प्रमुख क्रमसूचकों की सीमाएँ और डेल्टा संख्याएँ हैं, जो परिमित क्रमसूचक गुणन के अंतर्गत संवृत हैं।
  • किसी भी क्रमसूचक α>0 के लिए, ωα+1 रूप के क्रमसूचक हैं। ये अनंत उत्तराधिकारी अभाज्य संख्याएँ हैं, और योगात्मक रूप से अविघटनीय क्रमसूचकों के उत्तराधिकारी हैं, योज्य रूप से अविघटनीय क्रमसूचक हैं।

अभाज्य संख्याओं में गुणनखंड अद्वितीय नहीं है, उदाहरण के लिए, 2×3=3×2, 2×ω=ω, (ω+1)×ω=ω×ω और ω×ωω = ωω है। चूँकि, निम्नलिखित अतिरिक्त स्तिथियों को पूर्ण करने वाले अभाज्यों में अद्भुत गुणनखंड है-

  • प्रत्येक मुख्य सीमा उत्तराधिकारी से पूर्व उपयोग किये जाते हैं  
  • यदि अभाज्य गुणनखंडन के दो क्रमागत अभाज्य, दोनों सीमाएँ हैं या दोनों परिमित हैं तो दूसरा अधिक से अधिक प्रथम है।

कैंटर सामान्य रूप का उपयोग करके इस अभाज्य गुणनखंडन का सरलता से अध्यन्न किया जा सकता है:

  • प्रथम क्रमसूचक को गुणनफल αβ के रूप में अंकित करें जहाँ α कैंटर सामान्य रूप में ω की सबसे छोटी घात है और β उत्तराधिकारी है।
  • यदि α=ωγ, तब कैंटर सामान्य रूप में γ लिखने से लिमिट अभाज्यों के गुणनफल के रूप में α का विस्तार होता है।
  • अब β के कैंटर सामान्य रूप को देखें। यदि β = ωλm + ωμn + छोटे पद, तब β = (ωμn + छोटे पद) (ωλμ + 1) m, जो छोटे क्रमसूचक, अभाज्य और पूर्णांक m का गुणनफल है। इसका पुनरावलोकन करते हुए और पूर्णांकों को अभाज्य संख्याओं में गुणनखंडित करने से β का अभाज्य गुणनखंड प्राप्त होता है।

तो कैंटर सामान्य रूप का गुणन क्रमसूचक है-

(साथ )

अनंत अभाज्यों और पूर्णांकों के न्यूनतम गुणनफल में है-

जहाँ प्रत्येक ni परिमित अभाज्यों के अविस्तृत अनुक्रम में इसके गुणनखंड द्वारा प्रतिस्थापित किया जाना चाहिए और

साथ .

बड़े गणनीय क्रमसूचक

जिस प्रकार ऊपर विचार किया गया है, के नीचे के क्रमसूचकों के कैंटर सामान्य रूप को वर्ण-क्रम में व्यक्त किया जा सकता है जिसमें केवल जोड़, गुणन और घातांक के लिए फलन प्रतीक होते हैं, साथ ही प्रत्येक प्राकृतिक संख्या और के लिए स्थिर प्रतीक भी होते हैं। हम केवल स्थिर प्रतीक 0 और उत्तराधिकारी के संचालन का उपयोग करके असीमित रूप से कई अंकों से दूर हो सकते हैं, (उदाहरण के लिए, पूर्णांक 4 को के रूप में व्यक्त किया जा सकता है)। यह क्रमसूचक संकेतन का वर्णन करता है, जो परिमित वर्ण-क्रम पर क्रमसूचकों के नामकरण के लिए प्रणाली है। क्रमसूचक संकेतन की इस विशेष प्रणाली को अंकगणितीय क्रमसूचक अभिव्यक्तियों का संग्रह कहा जाता है, और यह के नीचे सभी क्रमसूचकों को व्यक्त कर सकता है किन्तु को व्यक्त नहीं कर सकता है। अन्य क्रमसूचक संकेतन हैं जो से पूर्व क्रमसूचकों को कैप्चर करने में सक्षम हैं, किन्तु क्योंकि किसी भी क्रमसूचक संकेतन के लिए परिमित वर्ण-क्रम पर केवल गणना के लिए कई क्रम हैं, इसलिए के नीचे क्रमसूचक होते हैं (प्रथम अगणित क्रमसूचक) जो व्यक्त नहीं किये जा सकते हैं। ऐसे क्रमसूचकों को बड़े गणनीय क्रमसूचकों के रूप में जाना जाता है।

जोड़, गुणन और घातांक के संचालन अत्यंत पुनरावर्ती क्रमसूचक फलनों के उदाहरण हैं, और अधिक सामान्य अत्यंत पुनरावर्ती क्रमसूचक फलनों का उपयोग बड़े क्रमसूचकों का वर्णन करने के लिए किया जा सकता है।

प्राकृतिक संक्रियाएं

क्रमसूचकों पर प्राकृतिक योग और प्राकृतिक गुणन संक्रियाओं को 1906 में गेरहार्ड हेसनबर्ग द्वारा परिभाषित किया गया था, और इसे कभी-कभी हेसेनबर्ग योग कहा जाता है। गेरहार्ड हेसनबर्ग द्वारा परिभाषित किया गया था (Sierpiński 1958)। ये वास्तविक संख्याओं के जॉन कॉनवे क्षेत्र (गणित) के जोड़ और गुणन (क्रमसूचकों तक सीमित) के समान हैं। उनके निकट यह लाभ है कि वे साहचर्य और क्रमविनिमेय हैं, और गुणनफल प्राकृतिक योग पर वितरित होते हैं। इन संक्रियाओं को क्रमविनिमेय बनाने का व्यय यह है कि वे उचित तर्क में संतता लुप्त कर देते हैं, जो साधारण योग और गुणन का गुण है। α और β के प्राकृतिक योग को अधिकांशतः α ⊕ β या α # β, और प्राकृतिक गुणन को α ⊗ β या α ⨳ β द्वारा दर्शाया जाता है।

प्राकृतिक संक्रियाएँ उचित आंशिक क्रमों के सिद्धांत के अंतर्गत आती हैं; जिन्हें दो पूर्ण आंशिक क्रम S और T प्रकार के o(S) और o(T) दिए गए हैं और असंयुक्त संघ का प्रकार o(S) ⊕ o(T) है, जबकि प्रत्यक्ष गुणन का प्रकार o(S) ⊗ o(T) है।[3] S और T को क्रमसूचकों α और β का चयन करके इस संबंध को प्राकृतिक संक्रियाओं की परिभाषा के रूप में लिया जा सकता है; इसलिए α ⊕ β कुल क्रम का अधिकतम क्रम प्रकार है जो α और β के असंयुक्त संघ (आंशिक क्रम के रूप में) को विस्तारित करता है; जबकि α ⊗ β, α और β के प्रत्यक्ष गुणन को विस्तारित करने वाले कुल क्रम का अधिकतम क्रम प्रकार है।[4] इस अनुप्रयोग का उपयोग तब होता है जब α और β दोनों बड़े कुल क्रम के उपसमुच्चय होते हैं; तब उनके संघ का क्रम प्रकार अधिकतम α ⊕ β होता है। यदि वे दोनों किसी क्रमित समूह के उपसमुच्चय हैं, तो उनके योग का क्रम प्रकार α ⊗ β होता है।

हम α और β के प्राकृतिक योग को आगमनात्मक रूप से भी परिभाषित कर सकते हैं (α और β पर साथ प्रेरण द्वारा) γ < β के लिए α और γ के प्राकृतिक योग और γ < α के लिए γ और β के प्राकृतिक योग से अधिक सबसे छोटा क्रमसूचक योग है। प्राकृतिक गुणन (पारस्परिक प्रेरण द्वारा) की आगमनात्मक परिभाषा होती है, किन्तु इसे अंकित करना कठिन होता है (उस संदर्भ में परिभाषा के लिए वास्तविक संख्याओं पर लेख देखें)।

प्राकृतिक योग साहचर्य और क्रमविनिमेय है। यह सदैव सामान्य योग से अधिक या समतुल्य होता है, किन्तु यह जटिलता से अधिक हो सकता है। उदाहरण के लिए, ω और 1 का प्राकृतिक योग ω+1 (सामान्य योग) है, किन्तु यह 1 और ω का प्राकृतिक योग भी है। प्राकृतिक गुणन साहचर्य और क्रमविनिमेय है और प्राकृतिक योग पर वितरित करता है। प्राकृतिक गुणन सदैव सामान्य गुणन से बड़ा या समतुल्य होता है, किन्तु यह जटिलता से बड़ा हो सकता है। उदाहरण के लिए, ω और 2 का प्राकृतिक गुणन ω·2 (सामान्य उत्पाद) है, किन्तु यह 2 और ω का प्राकृतिक गुणन भी है।

तब भी दो क्रमसूचकों α और β के प्राकृतिक योग और गुणन को परिभाषित करने की अन्य विधि कैंटर सामान्य रूप का उपयोग करना है: क्रमसूचक γ1 > ... > γn और प्राकृतिक संख्याओं के दो अनुक्रमों (k1, ..., kn) और (j1, ..., jn) के क्रम का शोधन किया सकता है (शून्य सहित, किन्तु संतोषजनक ki + ji > 0 सभी के लिए i) जैसे कि

और

प्राकृतिक योग के अंतर्गत, गामा संख्या ωα द्वारा उत्पन्न मुक्त क्रमविनिमय मोनॉयड के तत्वों के साथ क्रमसूचकों को प्रमाणित किया जा सकता है। प्राकृतिक योग और गुणन के अंतर्गत, डेल्टा संख्या ωωα द्वारा उत्पन्न मुक्त क्रमविनिमय सेमिरिंग के तत्वों के साथ क्रमसूचकों को प्रमाणित किया जा सकता है।

क्रमसूचकों में प्राकृतिक गुणन के अंतर्गत अभाज्यों में अद्वितीय गुणनखंड नहीं होते हैं। चूँकि पूर्ण बहुपद वलय में अद्वितीय गुणनखंड होता है, किन्तु गैर-ऋणात्मक गुणांक वाले बहुपदों का उपसमुच्चय नहीं होता है: उदाहरण के लिए, यदि x कोई डेल्टा संख्या है, तो

गैर-ऋणात्मक गुणांक वाले बहुपदों के प्राकृतिक गुणन के रूप में दो असंगत अभिव्यक्तियाँ हैं जिन्हें अग्र विघटित नहीं किया जा सकता है।

नम्बर अंकगणित

क्रमसूचकों और निम्बर्स के मध्य पत्राचार के आधार पर क्रमसूचकों पर अंकगणितीय संक्रियाएं होती हैं। निम्बरों पर तीन सामान्य संक्रियाएँ निम्बर जोड़, निंबर गुणन और मेक्स (गणित) होती हैं। निम्बर जोड़ प्राकृतिक संख्याओं पर बिटवाइज़ संचालन का सामान्यीकरण है। वह mex क्रमसूचकों के समुच्चय में सबसे छोटा क्रमसूचक है जो समुच्चय में उपस्थित नहीं होता है।

टिप्पणियाँ

  1. Feferman, S. (1964). "जबरदस्ती और सामान्य सेटों की धारणाओं के कुछ अनुप्रयोग". Fundamenta Mathematicae. 56 (3): 325–345. doi:10.4064/fm-56-3-325-345.
  2. Ernst Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen, Mathematische Annalen, Bd 64 (1907), 475-488. Available here
  3. D. H. J. De Jongh and R. Parikh, Well-partial orderings and hierarchies, Indag. Math. 39 (1977), 195–206. Available here
  4. Philip W. Carruth, Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262–271. See Theorem 1. Available here


संदर्भ


बाहरी संबंध