सामान्य फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
== गुण ==
== गुण ==
यदि f सामान्य है, तो किसी भी क्रमिक α के लिए,
यदि f सामान्य है, तो किसी भी क्रमिक α के लिए,
: एफ (α) ≥ α।<ref>{{harvnb|Johnstone|1987|loc=Exercise 6.9, p. 77}}</ref>
: ''f''(''α'') ≥ ''α'' <ref>{{harvnb|Johnstone|1987|loc=Exercise 6.9, p. 77}}</ref>
सबूत: यदि नहीं, तो ''γ'' न्यूनतम चुनें जैसे कि ''f''(''γ'') <''γ''चूँकि ''f'' कड़ाई से नीरस रूप से बढ़ रहा है, ''f''(''f''(''γ'')) <'f''(''γ''), ''γ की न्यूनतमता के विपरीत ''।
प्रमाण: यदि नहीं, तो ''γ'' न्यूनतम चयन किये गए, जैसे कि ''f''(''γ'') <''γ'', चूँकि ''f'' जटिलता से नीरस रूप से बढ़ रहा है, ''f''(''f''(''γ'')) <'f''(''γ''), ''γ की न्यूनतमता के विपरीत है।


इसके अलावा, किसी भी गैर-खाली सेट ''S'' के लिए, हमारे पास है
इसके अतिरिक्त, किसी भी गैर-रिक्त समुच्चय ''S'' के लिए, हमारे निकट होता है।
:''f''(sup ''S'') = sup ''f''(''S'').
:''f''(sup ''S'') = sup ''f''(''S'')
प्रमाण: ≥ '''' की एकरसता एवं सर्वोच्चता की परिभाषा से अनुसरण करता है। ≤ के लिए, ''δ'' = sup ''S'' सेट करें एवं तीन मामलों पर विचार करें:
प्रमाण: ≥ ''f'' की एकरसता एवं सर्वोच्चता की परिभाषा से अनुसरण करता है। ≤ के लिए, ''δ'' = sup ''S'' उपसमुच्चय करें एवं तीन विषयो पर विचार करें।
* अगर ''δ'' = 0, तो ''S'' = {0} एवं sup ''f''(''S'') = ''f''(0);
* अगर ''δ'' = 0, तो ''S'' = {0} एवं sup ''f''(''S'') = ''f''(0);
* यदि ''δ'' = ''ν'' + 1 एक [[उत्तराधिकारी क्रमसूचक]] है, तो ''S'' में ν <'s'' के साथ ''s'' मौजूद है, ताकि ''δ'' ≤ ''स''। इसलिए, ''f''(''δ'') ≤ ''f''(''s''), जिसका अर्थ है ''f''(δ) ≤ sup ''f''(''S' ');
* यदि ''δ'' = ''ν'' + 1 एक [[उत्तराधिकारी क्रमसूचक]] है, तो ''S'' में ν <'s'' के साथ ''s'' मौजूद है, ताकि ''δ'' ≤ ''स''। इसलिए, ''f''(''δ'') ≤ ''f''(''s''), जिसका अर्थ है ''f''(δ) ≤ sup ''f''(''S' ');

Revision as of 17:22, 23 May 2023

स्वयंसिद्ध समुच्चय सिद्धांत में, फलन f क्रमसूचक संख्या → Ord को 'सामान्य' (या 'सामान्य फलन') कहा जाता है यदि एवं केवल यदि यह निरंतर फलन है, (आदेश टोपोलॉजी के संबंध में) एवं जटिलता से नीरस रूप से बढ़ रहा है। यह निम्नलिखित दो स्थितियों के समान है।

  1. प्रत्येक सीमा क्रमसूचक γ के लिए (अर्थात γ न तो शून्य है एवं न ही उत्तराधिकारी), यह स्थिति है कि f(γ) = sup {f(ν): ν < γ}।
  2. सभी अध्यादेश α < β के लिए, यह विषय है कि f (α) < f (β)।

उदाहरण

सामान्य फलन f(α) = 1 + α (क्रमिक अंकगणित देखें) द्वारा दिया जाता है । किन्तु f(α) = α + 1 सामान्य नहीं है क्योंकि यह किसी भी सीमा क्रमसूचक पर सतत नहीं है; अर्थात् बिंदु विवृत समुच्चय {λ + 1} की व्युत्क्रम छवि समुच्चय {λ} है, जो तब विवृत नहीं है जब λ सीमा क्रमसूचक है। यदि β निश्चित क्रमसूचक है, तो कार्य f(α) = β + α, f(α) = β × α के लिए) एवं f(α) = βα (β ≥ 2 के लिए) सभी सामान्य हैं।

सामान्य कार्यों के अधिक महत्वपूर्ण उदाहरण एलेफ संख्या द्वारा दिए गए हैं , जो क्रमवाचक एवं कार्डिनल संख्याओं एवं बेथ संख्याओं से जुड़ते हैं।

गुण

यदि f सामान्य है, तो किसी भी क्रमिक α के लिए,

f(α) ≥ α [1]

प्रमाण: यदि नहीं, तो γ न्यूनतम चयन किये गए, जैसे कि f(γ) <γ, चूँकि f जटिलता से नीरस रूप से बढ़ रहा है, f(f(γ)) <'f(γ), γ की न्यूनतमता के विपरीत है।

इसके अतिरिक्त, किसी भी गैर-रिक्त समुच्चय S के लिए, हमारे निकट होता है।

f(sup S) = sup f(S)

प्रमाण: ≥ f की एकरसता एवं सर्वोच्चता की परिभाषा से अनुसरण करता है। ≤ के लिए, δ = sup S उपसमुच्चय करें एवं तीन विषयो पर विचार करें।

  • अगर δ = 0, तो S = {0} एवं sup f(S) = f(0);
  • यदि δ = ν + 1 एक उत्तराधिकारी क्रमसूचक है, तो S में ν <'s के साथ s मौजूद है, ताकि δ। इसलिए, f(δ) ≤ f(s), जिसका अर्थ है f(δ) ≤ sup f(S' ');
  • यदि δ एक गैर-शून्य सीमा है, तो कोई भी ν <δ, एवं S में एक s चुनें, जैसे कि ν <'s (संभव चूँकि δ = सुपर S)। इसलिए, f(ν) <'f(s) ताकि f(ν) < sup f(' 'S), उपज f(δ) = sup {f(ν) : ν < δ} ≤ sup f (एस), इच्छानुसार।

हर सामान्य कार्य 'एफ' में मनमाने ढंग से बड़े निश्चित बिंदु होते हैं; सबूत के लिए सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा देखें। कोई एक सामान्य कार्य 'एफ' बना सकता है: ऑर्ड → ऑर्ड, जिसे एफ का व्युत्पन्न कहा जाता है, जैसे एफ ( α ) α है - 'एफ' का वें निश्चित बिंदु।[2] सामान्य कार्यों के पदानुक्रम के लिए, वेब्लेन कार्य देखें।

टिप्पणियाँ

  1. Johnstone 1987, Exercise 6.9, p. 77
  2. Johnstone 1987, Exercise 6.9, p. 77


संदर्भ

  • Johnstone, Peter (1987), Notes on Logic and Set Theory, Cambridge University Press, ISBN 978-0-521-33692-5.