बाइनरी कोणीय माप: Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
Line 20: Line 20:
वैकल्पिक रूप से, समान n बिट्स को -2 श्रेणी में एक हस्ताक्षरित पूर्णांक के रूप में भी व्याख्या किया जा सकता है<sup>n−1</sup>, ..., 2<sup>n−1</sup>−1 दो के पूरक सम्मेलन में। उन्हें समान स्केलिंग कारक के साथ -0.5 (सम्मिलित) और +0.5 (अनन्य) के बीच एक पूर्ण मोड़ के अंश के रूप में हस्ताक्षरित निश्चित-बिंदु प्रारूप में भी समझा जा सकता है; या स्केलिंग फ़ैक्टर 1/2 के साथ -1.0 (सम्मिलित) और +1.0 (अनन्य) के बीच आधे-मोड़ का एक अंश<sup>n−1</sup>.
वैकल्पिक रूप से, समान n बिट्स को -2 श्रेणी में एक हस्ताक्षरित पूर्णांक के रूप में भी व्याख्या किया जा सकता है<sup>n−1</sup>, ..., 2<sup>n−1</sup>−1 दो के पूरक सम्मेलन में। उन्हें समान स्केलिंग कारक के साथ -0.5 (सम्मिलित) और +0.5 (अनन्य) के बीच एक पूर्ण मोड़ के अंश के रूप में हस्ताक्षरित निश्चित-बिंदु प्रारूप में भी समझा जा सकता है; या स्केलिंग फ़ैक्टर 1/2 के साथ -1.0 (सम्मिलित) और +1.0 (अनन्य) के बीच आधे-मोड़ का एक अंश<sup>n−1</sup>.


किसी भी तरह से, इन संख्याओं को -180° (सम्मिलित) और +180° (अनन्य) के बीच के कोणों के रूप में समझा जा सकता है, जिसमें -0.25 का अर्थ -90° और +0.25 का अर्थ +90° होता है। संख्यात्मक मानों को जोड़ने या घटाने के परिणाम में वही चिह्न होगा जो कोणों को जोड़ने या घटाने के परिणाम के रूप में होता है, एक बार इस सीमा तक कम हो जाता है। यह व्याख्या कोणों को सीमा तक कम करने की आवश्यकता को समाप्त करती है {{closed-closed|−π, +π}} [[त्रिकोणमितीय कार्य]]ों की गणना करते समय।
किसी भी तरह से, इन संख्याओं को -180° (सम्मिलित) और +180° (अनन्य) के बीच के कोणों के रूप में समझा जा सकता है, जिसमें -0.25 का अर्थ -90° और +0.25 का अर्थ +90° होता है। संख्यात्मक मानों को जोड़ने या घटाने के परिणाम में वही चिह्न होगा जो कोणों को जोड़ने या घटाने के परिणाम के रूप में होता है, एक बार इस सीमा तक कम हो जाता है। यह व्याख्या [[त्रिकोणमितीय कार्य|त्रिकोणमितीय कार्यों]] की गणना करते समय कोणों को सीमा {{closed-closed|−π, +π}} तक कम करने की आवश्यकता को समाप्त करती है


== यह भी देखें ==
== यह भी देखें ==

Revision as of 09:52, 23 May 2023

बाइनरी कोणीय माप (BAM) शब्द[1]और बाइनरी कोणीय माप प्रणाली (बीएएमएस)[2]बाइनरी संख्या (संख्या आधार 2) निश्चित-बिंदु अंकगणित का उपयोग करके कोण का प्रतिनिधित्व और हेरफेर करने के लिए कुछ पद्धतियों का संदर्भ लें। उन विधियों में प्रयुक्त कोणीय माप की माप की इकाई को बाइनरी रेडियन (ब्रैड) या बाइनरी डिग्री कहा जा सकता है।

कोणों के ये प्रतिनिधित्व अक्सर संख्यात्मक नियंत्रण और अंकीय संकेत प्रक्रिया अनुप्रयोगों में उपयोग किए जाते हैं, जैसे कि रोबोटिक्स, नेविगेशन,[3]कंप्यूटर गेम,[4]और डिजिटल सेंसर।[5] दूसरी ओर, यह प्रणाली उन स्थितियों के लिए पर्याप्त नहीं है जहां पूर्ण घुमावों (कोण) की संख्या मापी जानी चाहिए, उदाहरण के लिए, वाहन के पहियों या सीसे का पेंच के रोटेशन की निगरानी करने के लिए।

बाइनरी कोण माप प्रणाली। Black पारंपरिक डिग्री प्रतिनिधित्व है, green दशमलव संख्या के रूप में एक BAM है और red स्पैन> हेक्साडेसिमल 32-बिट BAM है। इस आंकड़े में 32-बिट बाइनरी पूर्णांकों को स्केलिंग कारक 2 के साथ हस्ताक्षरित बाइनरी फिक्स्ड-पॉइंट मान के रूप में व्याख्या किया गया है−31, -1.0 (सम्मिलित) और +1.0 (अनन्य) के बीच भिन्नों का प्रतिनिधित्व करता है।

प्रतिनिधित्व

बारी का अहस्ताक्षरित अंश

इस प्रणाली में, एक कोण को अनुक्रम 0, ..., 2n−1 में एक n-अंश अहस्ताक्षरित बाइनरी संख्या द्वारा दर्शाया गया है जिसे 1/2 के गुणक के रूप में समझा जाता हैn एक पूरा चक्कर; यानी 360/2n डिग्री या 2π/2n रेडियन। संख्या को 0 (सम्मिलित) और 1 (अनन्य) के बीच एक पूर्ण मोड़ के एक अंश के रूप में भी व्याख्या किया जा सकता है, जो बाइनरी फिक्स्ड-पॉइंट प्रारूप में 1/2 के स्केलिंग कारक के साथ दर्शाया गया है।एन. उस भिन्न को 360° या 2π से गुणा करने पर कोण 0 से 360 की सीमा में डिग्री (कोण)s में, या कांति में, क्रमशः 0 से 2π की श्रेणी में आता है।

उदाहरण के लिए, n = 8 के साथ, बाइनरी पूर्णांक (00000000)2 (अंश 0.00), (01000000)2 (0.25), (10000000)2 (0.50), और (11000000)2 (0.75) क्रमशः 0°, 90°, 180°, और 270° कोणीय मापों का प्रतिनिधित्व करते हैं।

इस प्रणाली का मुख्य लाभ यह है कि अधिकांश कंप्यूटरों में उपयोग किए जाने वाले एन-बिट अंकगणित के साथ पूर्णांक संख्यात्मक मानों का जोड़ या घटाव ऐसे परिणाम उत्पन्न करता है जो कोणों की ज्यामिति के अनुरूप होते हैं। अर्थात्, ऑपरेशन का पूर्णांक परिणाम स्वचालित रूप से मॉड्यूलर अंकगणित 2n कम हो जाता है, इस तथ्य से मेल खाते हुए कि पूर्ण घुमावों की पूर्णांक संख्या से भिन्न कोण समतुल्य होते हैं। इस प्रकार किसी परिवेष्टन को स्पष्ट रूप से परीक्षण या संभालने की आवश्यकता नहीं है, जैसा कि अन्य अभ्यावेदन (जैसे फ़्लोटिंग-पॉइंट में डिग्री या रेडियन की संख्या) का उपयोग करते समय करना चाहिए।[6]


बारी का हस्ताक्षरित अंश

वैकल्पिक रूप से, समान n बिट्स को -2 श्रेणी में एक हस्ताक्षरित पूर्णांक के रूप में भी व्याख्या किया जा सकता हैn−1, ..., 2n−1−1 दो के पूरक सम्मेलन में। उन्हें समान स्केलिंग कारक के साथ -0.5 (सम्मिलित) और +0.5 (अनन्य) के बीच एक पूर्ण मोड़ के अंश के रूप में हस्ताक्षरित निश्चित-बिंदु प्रारूप में भी समझा जा सकता है; या स्केलिंग फ़ैक्टर 1/2 के साथ -1.0 (सम्मिलित) और +1.0 (अनन्य) के बीच आधे-मोड़ का एक अंशn−1.

किसी भी तरह से, इन संख्याओं को -180° (सम्मिलित) और +180° (अनन्य) के बीच के कोणों के रूप में समझा जा सकता है, जिसमें -0.25 का अर्थ -90° और +0.25 का अर्थ +90° होता है। संख्यात्मक मानों को जोड़ने या घटाने के परिणाम में वही चिह्न होगा जो कोणों को जोड़ने या घटाने के परिणाम के रूप में होता है, एक बार इस सीमा तक कम हो जाता है। यह व्याख्या त्रिकोणमितीय कार्यों की गणना करते समय कोणों को सीमा [−π, +π] तक कम करने की आवश्यकता को समाप्त करती है

यह भी देखें

संदर्भ

  1. "Binary angular measurement". Archived from the original on 2009-12-21.
  2. "Binary Angular Measurement System". acronyms.thefreedictionary.
  3. LaPlante, Phillip A. (2004). "Chapter 7.5.3, Binary Angular Measure". Real-Time Systems Design and Analysis. {{cite book}}: |website= ignored (help)
  4. Sanglard, Fabien (2010-01-13). "Doom 1993 code review - Section "Walls"". fabiensanglard.net.
  5. "Hitachi HM55B Compass Module (#29123)" (PDF). www.hobbyengineering.com. Parallax Digital Compass Sensor (#29123). Parallax, Inc. May 2005. Archived from the original (PDF) on 2011-07-11 – via www.parallax.com.
  6. Hargreaves, Shawn [in polski]. "Angles, integers, and modulo arithmetic". blogs.msdn.com. Archived from the original on 2019-06-30. Retrieved 2019-08-05.