ऊष्मागतिकी का प्रथम नियम: Difference between revisions

From Vigyanwiki
Line 5: Line 5:
ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा संरक्षण के नियम का सूत्रीकरण है, जो ऊष्मप्रवैगिकी प्रक्रियाओं के लिए अनुकूलित है। एक सरल सूत्रीकरण है: "एक प्रणाली में कुल ऊर्जा स्थिर रहती है, यद्यपि इसे एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है।" एक अन्य सामान्य वाक्यांश यह है कि बंद प्रणाली में "ऊर्जा न तो बनाई जा सकती है और न ही नष्ट की जा सकती है"। जबकि अनेक सूक्ष्मताएं निहितार्थ हैं जो अधिक जटिल योगों में उपयुक्त रूप से अधिकृत जा सकते हैं, यह प्रथम नियम का आवश्यक सिद्धांत है।
ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा संरक्षण के नियम का सूत्रीकरण है, जो ऊष्मप्रवैगिकी प्रक्रियाओं के लिए अनुकूलित है। एक सरल सूत्रीकरण है: "एक प्रणाली में कुल ऊर्जा स्थिर रहती है, यद्यपि इसे एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है।" एक अन्य सामान्य वाक्यांश यह है कि बंद प्रणाली में "ऊर्जा न तो बनाई जा सकती है और न ही नष्ट की जा सकती है"। जबकि अनेक सूक्ष्मताएं निहितार्थ हैं जो अधिक जटिल योगों में उपयुक्त रूप से अधिकृत जा सकते हैं, यह प्रथम नियम का आवश्यक सिद्धांत है।


यह सैद्धांतिक रूप से ऊर्जा हस्तांतरण के दो रूपों को अलग करता है: पदार्थ की निरंतर मात्रा की प्रणाली के लिए ऊष्मा और ऊष्मप्रवैगिकी कार्य के लिए यह प्रणाली में ऊर्जा के संतुलन को बनाए रखने के लिएनियम   प्रणाली की [[आंतरिक ऊर्जा]] को  परिभाषित करता है।
यह सैद्धांतिक रूप से ऊर्जा हस्तांतरण के दो रूपों को अलग करता है: पदार्थ की निरंतर मात्रा की प्रणाली के लिए ऊष्मा और ऊष्मप्रवैगिकी कार्य के लिए यह प्रणाली में ऊर्जा के संतुलन को बनाए रखने के लिएनियम प्रणाली की [[आंतरिक ऊर्जा]] को  परिभाषित करता है।


ऊर्जा के संरक्षण का नियम बताता है कि किसी भी पृथक प्रणाली की कुल ऊर्जा, जो ऊर्जा या पदार्थ का आदान-प्रदान नहीं कर सकती है, क्योंकि स्थिर ऊर्जा को एक रूप से दूसरे रूप में रूपांतरित किया जा सकता है, लेकिन इसे न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है।                                                                                                                                                    आइन्सटाइन के सापेक्षता सिद्धांत E = mc<sup>2</sup> समीकरण में द्रव्यमान-ऊर्जा तुल्यता सिद्धांत द्वारा, प्रथमनियम   का उल्लंघन के अतिरिक्त, पदार्थ और ऊर्जा को एक दूसरे में परिवर्तित किया जा सकता है। अतः यह एक [[ आराम फ्रेम |स्थिर ढांचे]] को संदर्भित करता है। [[सापेक्षता]] को ध्यान में रखने के लिए, किसी भी [[संदर्भ फ्रेम|संदर्भ ढांचे]] को अंतर सापेक्ष गति,द्वारा ध्यान में रखा जा सकता है।
ऊर्जा के संरक्षण का नियम बताता है कि किसी भी पृथक प्रणाली की कुल ऊर्जा, जो ऊर्जा या पदार्थ का आदान-प्रदान नहीं कर सकती है, क्योंकि स्थिर ऊर्जा को एक रूप से दूसरे रूप में रूपांतरित किया जा सकता है, लेकिन इसे न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है।                                                                                                                                                    आइन्सटाइन के सापेक्षता सिद्धांत E = mc<sup>2</sup> समीकरण में द्रव्यमान-ऊर्जा तुल्यता सिद्धांत द्वारा, प्रथमनियम का उल्लंघन के अतिरिक्त, पदार्थ और ऊर्जा को एक दूसरे में परिवर्तित किया जा सकता है। अतः यह एक [[ आराम फ्रेम |स्थिर ढांचे]] को संदर्भित करता है। [[सापेक्षता]] को ध्यान में रखने के लिए, किसी भी [[संदर्भ फ्रेम|संदर्भ ढांचे]] को अंतर सापेक्ष गति,द्वारा ध्यान में रखा जा सकता है।


[[थर्मोडायनामिक प्रक्रिया|ऊष्मप्रवैगिकी प्रक्रिया]] का प्रथम नियम निम्नलिखित समीकरणों द्वारा संदर्भित किया जाता है<ref>{{harvnb|Mandl|1988}}</ref>
[[थर्मोडायनामिक प्रक्रिया|ऊष्मप्रवैगिकी प्रक्रिया]] का प्रथम नियम निम्नलिखित समीकरणों द्वारा संदर्भित किया जाता है<ref>{{harvnb|Mandl|1988}}</ref>
Line 30: Line 30:


:एक ऊष्मप्रवैगिकी  प्रक्रिया में एक बंद प्रणाली सम्मिलित होती है, आंतरिक ऊर्जा में वृद्धि प्रणाली द्वारा संचित ऊष्मा और इसके द्वारा किए गए कार्य के मध्य के अंतर के बराबर होती है। वृद्धि के संदर्भ में इसकी परिभाषा के कारण, एक प्रणाली की आंतरिक ऊर्जा का मूल्य विशिष्ट रूप से परिभाषित नहीं होता है। यह मात्र एकीकरण के यादृच्छिक योज्य स्थिरांक तक परिभाषित किया गया है, जिसे स्वैच्छिक संदर्भ शून्य स्तर देने के लिए समायोजित किया जा सकता है। यह गैर-विशिष्टता आंतरिक ऊर्जा की अमूर्त गणितीय प्रकृति को ध्यान में रखते हुए आंतरिक ऊर्जा को पारंपरिक रूप से प्रणाली के पारंपरिक रूप से चुने गए मानक संदर्भ स्थिति के सापेक्ष कहा जाता है।
:एक ऊष्मप्रवैगिकी  प्रक्रिया में एक बंद प्रणाली सम्मिलित होती है, आंतरिक ऊर्जा में वृद्धि प्रणाली द्वारा संचित ऊष्मा और इसके द्वारा किए गए कार्य के मध्य के अंतर के बराबर होती है। वृद्धि के संदर्भ में इसकी परिभाषा के कारण, एक प्रणाली की आंतरिक ऊर्जा का मूल्य विशिष्ट रूप से परिभाषित नहीं होता है। यह मात्र एकीकरण के यादृच्छिक योज्य स्थिरांक तक परिभाषित किया गया है, जिसे स्वैच्छिक संदर्भ शून्य स्तर देने के लिए समायोजित किया जा सकता है। यह गैर-विशिष्टता आंतरिक ऊर्जा की अमूर्त गणितीय प्रकृति को ध्यान में रखते हुए आंतरिक ऊर्जा को पारंपरिक रूप से प्रणाली के पारंपरिक रूप से चुने गए मानक संदर्भ स्थिति के सापेक्ष कहा जाता है।
:: ऐसे सभी विषयो में जिनमें ऊष्मा अभिकरण द्वारा कार्य का उत्पादन किया जाता है, जो किए गए कार्य के समानुपाती होता है, और इसके विपरीत,प्रबंध की समान मात्रा के व्यय से उतनी ही मात्रा में ऊष्मा उत्पन्न होता है।<ref>[[Rudolf Clausius|Clausius, R.]] (1850), page 373, translation here taken from Truesdell, C. A. (1980), pp. 188–189.</ref> क्लॉसियस नेनियम   को अन्य रूप में भी बताया कि, प्रणाली की स्थिति,आंतरिक ऊर्जा के एक कार्य के अस्तित्व का उल्लेख करते हुए, और ऊष्मप्रवैगिकी य प्रक्रिया की वृद्धि के लिए एक अंतर समीकरण के संदर्भ में इसे प्रस्तुत किया जा सकता है। आंतरिक ऊर्जा की अवधारणा को बेलीन द्वारा "अत्यधिक रुचि" के रूप में माना जाता है। इसकी मात्रा को तुरंत नहीं मापा जा सकता है, लेकिन वास्तविक तात्कालिक मापों को अलग करके केवल अनुमान लगाया जा सकता है। बेलीन इसकी तुलना एक परमाणु की ऊर्जा अवस्थाओं से करता है, जो बोह्र के ऊर्जा संबंध hν = En″ - En' से प्रकट हुई थीं। प्रत्येक विषय में, मापी गई मात्राओं (आंतरिक ऊर्जा में वृद्धि, उत्सर्जित या अवशोषित विकिरण ऊर्जा की मात्रा) के अंतर पर विचार करके एक अमापनीय मात्रा (आंतरिक ऊर्जा, परमाणु ऊर्जा स्तर) का पता चलता है।
:: ऐसे सभी विषयो में जिनमें ऊष्मा अभिकरण द्वारा कार्य का उत्पादन किया जाता है, जो किए गए कार्य के समानुपाती होता है, और इसके विपरीत,प्रबंध की समान मात्रा के व्यय से उतनी ही मात्रा में ऊष्मा उत्पन्न होता है।<ref>[[Rudolf Clausius|Clausius, R.]] (1850), page 373, translation here taken from Truesdell, C. A. (1980), pp. 188–189.</ref> क्लॉसियस ने इस नियम   को अन्य रूप में भी बताया कि, प्रणाली की स्थिति,आंतरिक ऊर्जा के एक कार्य के अस्तित्व का उल्लेख करते हुए, और ऊष्मप्रवैगिकी य प्रक्रिया की वृद्धि के लिए एक अंतर समीकरण के संदर्भ में इसे प्रस्तुत किया जा सकता है। आंतरिक ऊर्जा की अवधारणा को बेलीन द्वारा "अत्यधिक रुचि" के रूप में माना जाता है। इसकी मात्रा को तुरंत नहीं मापा जा सकता है, लेकिन वास्तविक तात्कालिक मापों को अलग करके मात्र अनुमान लगाया जा सकता है। बेलीन इसकी तुलना एक परमाणु की ऊर्जा अवस्थाओं से करता है, जो बोह्र के ऊर्जा संबंध hν = En″ - En' से प्रकट हुई थीं। प्रत्येक विषय में, मापी गई मात्राओं (आंतरिक ऊर्जा में वृद्धि, उत्सर्जित या अवशोषित विकिरण ऊर्जा की मात्रा) के अंतर पर विचार करके एक अमापनीय मात्रा (आंतरिक ऊर्जा, परमाणु ऊर्जा स्तर) का पता चलता है।




=== वैचारिक संशोधन: यांत्रिक प्रस्ताव ===
=== वैचारिक संशोधन: यांत्रिक प्रस्ताव ===
1907 में, जॉर्ज एच. ब्रायन ने उन प्रणालियों के बारे में लिखा, जिनके बीच पदार्थ का कोई स्थानांतरण नहीं होता है। "परिभाषा<nowiki>''</nowiki> जब ऊर्जा यांत्रिक कार्य के प्रदर्शन के अतिरिक्त एक प्रणाली या प्रणाली के भाग से दूसरे में प्रवाहित होता है, तो इस ऊर्जा को स्थानांतरित ऊष्मा कहा जाता है। इस परिभाषा को एक वैचारिक संशोधन को व्यक्त करने के रूप में माना जा सकता है, निम्नानुसार यह 1909 में कॉन्स्टेंटिन कैराथियोडोरी द्वारा व्यवस्थित रूप से प्रतिपादित किया गया था, जिसका ध्यान मैक्स बोर्न द्वारा इस ओर आकर्षित किया गया था। सामान्यतः बॉर्न के प्रभाव के माध्यम से, ऊष्मा की परिभाषा के लिए इस संशोधित वैचारिक प्रस्ताव को बीसवीं सदी के कई लेखकों द्वारा पसंद किया जाने लगा। जिसे "यांत्रिक प्रस्ताव "कहा जा सकता है<ref>Bailyn, M. (1994), pp. 65, 79.</ref>                                                                                         
1907 में, जॉर्ज एच. ब्रायन ने उन प्रणालियों के बारे में लिखा, जिनके मध्य पदार्थ का कोई स्थानांतरण नहीं होता है। "परिभाषा<nowiki>''</nowiki> जब ऊर्जा यांत्रिक कार्य के प्रदर्शन के अतिरिक्त एक प्रणाली या प्रणाली के भाग से दूसरे में प्रवाहित होता है, तो इस ऊर्जा को स्थानांतरित ऊष्मा कहा जाता है। इस परिभाषा को एक वैचारिक संशोधन को व्यक्त करने के रूप में माना जा सकता है, निम्नानुसार यह 1909 में कॉन्स्टेंटिन कैराथियोडोरी द्वारा व्यवस्थित रूप से प्रतिपादित किया गया था, जिसका ध्यान मैक्स बोर्न द्वारा इस ओर आकर्षित किया गया था। सामान्यतः बॉर्न के प्रभाव के माध्यम से, ऊष्मा की परिभाषा के लिए इस संशोधित वैचारिक प्रस्ताव को बीसवीं सदी के कई लेखकों द्वारा पसंद किया जाने लगा। जिसे "यांत्रिक प्रस्ताव "कहा जा सकता है<ref>Bailyn, M. (1994), pp. 65, 79.</ref>                                                                                         


पदार्थ के स्थानांतरण के सहयोग से ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में भी स्थानांतरित किया जा सकता है। बोर्न बताते हैं कि सामान्यतः इस तरह के ऊर्जा हस्तांतरण को कार्य और ऊष्मा के हिस्सों में विशिष्ट रूप से हल नहीं किया जा सकता है। सामान्यतः, जब पदार्थ हस्तांतरण से जुड़ी ऊर्जा का हस्तांतरण होता है, तो कार्य और ऊष्मा हस्तांतरण को केवल तभी अलग किया जा सकता है जब वे दीवारों से भौतिक रूप से अलग होते हैं जो पदार्थ हस्तांतरण के लिए अलग होते हैं।                                                                                                                                                                                                                                                                                                       
पदार्थ के स्थानांतरण के सहयोग से ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में भी स्थानांतरित किया जा सकता है। बोर्न बताते हैं कि सामान्यतः इस तरह के ऊर्जा हस्तांतरण को कार्य और ऊष्मा के हिस्सों में विशिष्ट रूप से हल नहीं किया जा सकता है। सामान्यतः, जब पदार्थ हस्तांतरण से जुड़ी ऊर्जा का हस्तांतरण होता है, तो कार्य और ऊष्मा हस्तांतरण को मात्र तभी अलग किया जा सकता है जब वे जो पदार्थ हस्तांतरण के लिए दीवारों से भौतिक रूप से अलग होते हैं।                                                                                                                                                                                                                                                                                                       


"यांत्रिक" प्रस्ताव ऊर्जा के संरक्षण के नियम को मानता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे रुद्धोष्म रूप से कार्य के रूप में स्थानांतरित किया जा सकता है, और उस ऊर्जा को ऊष्मप्रवैगिकी प्रणाली की आंतरिक ऊर्जा के रूप में रखा जा सकता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में एक पथ द्वारा स्थानांतरित किया जा सकता है जो  गैर- स्थिरोष्म है,और पदार्थ हस्तांतरण के साथ नहीं है। बैलिन के अनुसार प्रारंभ में, यह 'ऊष्मा' के रूप में लेबलिंग से रोकता है, जैसे गैर स्थिरोष्म, ऊर्जा का अत्यधिक हस्तांतरण। यह दीवारों की आदिम धारणा पर टिकी हुई है, विशेष रूप से स्थिरोष्म दीवारें और गैर स्थिरोष्म दीवारें, जिन्हें निम्नानुसार परिभाषित किया गया है। अस्थायी रूप से, मात्र इस परिभाषा के प्रयोजन के लिए, कोई भी रुचि की दीवार के पार कार्य के रूप में ऊर्जा के हस्तांतरण पर रोक लगा सकता है। पुनः हित की दीवारें दो वर्गों में आती हैं, (ए) ऐसी कि उनके द्वारा अलग की गई  प्रणालियां स्वतंत्र रूप से आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी पहले से स्थापित संबंधित अवस्थाओं में स्वतंत्र रूप से रहती हैं; उन्हें स्थिरोष्म के रूप में परिभाषित किया गया है; और (बी) स्वतंत्रता के अतिरिक्त; उन्हें  गैर- स्थिरोष्म के रूप में परिभाषित किया गया है।<ref name="Bailyn 79" />  
"यांत्रिक" प्रस्ताव ऊर्जा के संरक्षण के नियम को मानता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे रुद्धोष्म रूप से कार्य के रूप में स्थानांतरित किया जा सकता है, और उस ऊर्जा को ऊष्मप्रवैगिकी प्रणाली की आंतरिक ऊर्जा के रूप में रखा जा सकता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में एक पथ द्वारा स्थानांतरित किया जा सकता है जो  गैर- स्थिरोष्म है,और पदार्थ हस्तांतरण के साथ नहीं है। बैलिन के अनुसार प्रारंभ में, यह 'ऊष्मा' के रूप में लेबलिंग से रोकता है, जैसे गैर स्थिरोष्म, ऊर्जा का अत्यधिक हस्तांतरण। यह दीवारों की आदिम धारणा पर टिकी हुई है, विशेष रूप से स्थिरोष्म दीवारें और गैर स्थिरोष्म दीवारें, जिन्हें निम्नानुसार परिभाषित किया गया है। अस्थायी रूप से, मात्र इस परिभाषा के प्रयोजन के लिए, कोई भी की दीवार के पार कार्य के रूप में ऊर्जा के हस्तांतरण पर रोक लगा सकता है। पुनः हित की दीवारें दो वर्गों में आती हैं, (ए) ऐसी कि उनके द्वारा अलग की गई  प्रणालियां स्वतंत्र रूप से आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी पहले से स्थापित संबंधित अवस्थाओं में स्वतंत्र रूप से रहती हैं; उन्हें स्थिरोष्म के रूप में परिभाषित किया गया है; और (बी) स्वतंत्रता के अतिरिक्त; उन्हें  गैर- स्थिरोष्म के रूप में परिभाषित किया गया है।<ref name="Bailyn 79" />  


यह प्रस्ताव सैद्धांतिक विकास के रूप में ऊर्जा के ऊष्मा और तापमान के रूप में हस्तांतरण की धारणाओं को प्राप्त करता है, उन्हें आदिम के रूप में नहीं लेता है। यह कैलोरीमेट्री को एक व्युत्पन्न सिद्धांत मानता है। उन्नीसवीं शताब्दी में इसकी प्रारंभिक उत्पत्ति है, उदाहरण के लिए हेल्महोल्ट्ज़ के का
यह प्रस्ताव सैद्धांतिक विकास के रूप में ऊर्जा के ऊष्मा और तापमान के रूप में हस्तांतरण की धारणाओं को प्राप्त करता है, उन्हें आदिम के रूप में नहीं लेता है। यह कैलोरीमेट्री को एक व्युत्पन्न सिद्धांत मानता है। उन्नीसवीं शताब्दी में इसकी प्रारंभिक उत्पत्ति है, उदाहरण के लिए हेल्महोल्ट्ज़ के का
Line 52: Line 52:
एक बंद प्रणाली के लिए ऊष्मप्रवैगिकी  का प्रथम नियम क्लॉसियस द्वारा दो तरह से व्यक्त किया गया था। प्रथम नियम चक्रीय प्रक्रियाओं और प्रणाली के निविष्ट और निर्गत को संदर्भित करता है,परंतु प्रणाली की आंतरिक स्थिति में वृद्धि को संदर्भित नहीं करता है। दूसरा नियम प्रणाली की आंतरिक स्थिति में वृद्धिशील परिवर्तन को संदर्भित करता है, और प्रक्रिया के चक्रीय होने का विश्वास नहीं करता है।
एक बंद प्रणाली के लिए ऊष्मप्रवैगिकी  का प्रथम नियम क्लॉसियस द्वारा दो तरह से व्यक्त किया गया था। प्रथम नियम चक्रीय प्रक्रियाओं और प्रणाली के निविष्ट और निर्गत को संदर्भित करता है,परंतु प्रणाली की आंतरिक स्थिति में वृद्धि को संदर्भित नहीं करता है। दूसरा नियम प्रणाली की आंतरिक स्थिति में वृद्धिशील परिवर्तन को संदर्भित करता है, और प्रक्रिया के चक्रीय होने का विश्वास नहीं करता है।


एक चक्रीय प्रक्रिया वह है जिसे प्रायःअनिश्चित काल तक पुनरावृति किया जा सकता है, प्रणाली अपनी प्रारंभिक स्थिति में पुनरावृत्ति करता है। तथा एक चक्रीय प्रक्रिया के एकल चक्र के लिए विशेष रुचि प्रणाली द्वारा किए गए शुद्ध कार्य और ली गई शुद्ध ऊष्मा को संदर्भित करता है।
एक चक्रीय प्रक्रिया वह है जिसे प्रायःअनिश्चित काल तक पुनरावृति किया जा सकता है, प्रणाली अपनी प्रारंभिक स्थिति में पुनरावृत्ति करता है। तथा एक चक्रीय प्रक्रिया के एकल चक्र के लिए विशेष उल्लिखित प्रणाली द्वारा किए गए शुद्ध कार्य और ली गई शुद्ध ऊष्मा को संदर्भित करता है।


एक चक्रीय प्रक्रिया में जिसमें प्रणाली अपने परिवेश पर शुद्ध कार्य करता है, तो शारीरिक रूप से आवश्यक है कि प्रणाली में ऊष्मा ली जाए अपितु यह भी महत्वपूर्ण है कि कुछ ऊष्मा प्रणाली अंतर चक्र द्वारा कार्य में परिवर्तित ऊष्मा को छोड़ देता है। चक्रीय प्रक्रिया की प्रत्येक पुनरावृत्ति में, प्रणाली द्वारा किया गया शुद्ध कार्य, यांत्रिक इकाइयों में मापा जाता है,जो कैलोरीमीटर इकाइयों में मापी गई ऊष्मा की खपत के समानुपाती होता है।
एक चक्रीय प्रक्रिया में जिसमें प्रणाली अपने परिवेश पर शुद्ध कार्य करता है, तो शारीरिक रूप से आवश्यक है कि प्रणाली में ऊष्मा ली जाए अपितु यह भी महत्वपूर्ण है कि कुछ ऊष्मा प्रणाली अंतर चक्र द्वारा कार्य में परिवर्तित ऊष्मा को छोड़ देता है। चक्रीय प्रक्रिया की प्रत्येक पुनरावृत्ति में, प्रणाली द्वारा किया गया शुद्ध कार्य, यांत्रिक इकाइयों में मापा जाता है,जो कैलोरीमीटर इकाइयों में मापी गई ऊष्मा की खपत के समानुपाती होता है।                                                                                                                                                                                                                                        


आनुपातिकता का स्थिरांक सार्वभौमिक और प्रणाली से स्वतंत्र है और 1845 और 1847 में [[जेम्स प्रेस्कॉट जौल]] द्वारा मापा गया था, जिन्होंने इसे [[गर्मी के यांत्रिक समकक्ष|ऊष्मा के यांत्रिक समकक्ष]] के रूप में वर्णित किया था।
आनुपातिकता का स्थिरांक सार्वभौमिक और प्रणाली से स्वतंत्र है और 1845 और 1847 में [[जेम्स प्रेस्कॉट जौल]] द्वारा मापा गया था, जिन्होंने इसे [[गर्मी के यांत्रिक समकक्ष|ऊष्मा के यांत्रिक समकक्ष]] के रूप में वर्णित किया था।


=== परिपाटी संकेत ===
=== चिन्ह परिपाटी ===
एक सामान्य प्रक्रिया में बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन शुद्ध ऊर्जा के बराबर होता है जो प्रणाली में ऊष्मा के रूप में जोड़ी जाती है, प्रणाली द्वारा किए गए ऊष्मप्रवैगिकी  कार्य को घटाकर, दोनों को यांत्रिक इकाइयों में मापा जाता है। तथा <math>\Delta U</math> आंतरिक ऊर्जा में परिवर्तन के रूप में लिखा जाता है।
एक सामान्य प्रक्रिया में बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन शुद्ध ऊर्जा के बराबर होता है जो प्रणाली में ऊष्मा के रूप में जोड़ी जाती है, प्रणाली द्वारा किए गए ऊष्मप्रवैगिकी  कार्य को घटाकर, दोनों को यांत्रिक इकाइयों में मापा जाता है। तथा <math>\Delta U</math> आंतरिक ऊर्जा में परिवर्तन के रूप में लिखा जाता है।


Line 73: Line 73:
जहाँ <math>\delta Q</math> अपने परिवेश से प्रणाली को आपूर्ति की गई ऊष्मा की अपरिमेय मात्रा को दर्शाता है और <math>\delta</math> एक [[अचूक अंतर]] को दर्शाता है। कार्य और ऊष्मा ऊर्जा की आपूर्ति की वास्तविक भौतिक प्रक्रियाओं की अभिव्यक्तियाँ हैं, जबकि आंतरिक ऊर्जा <math>U</math> एक गणितीय सार है जो प्रणाली वाले ऊर्जा के आदान-प्रदान का लेखा-जोखा रखता है। इस प्रकार ऊष्मा के लिए <math>Q</math> का अर्थ है कि, प्रणाली के अंदर ऊर्जा के रूप का चर्चा करने के अतिरिक्त ऊष्मप्रवैगिकी य अर्थों में ऊष्मा के रूप में जोड़ी या हटाई गई ऊर्जा हैं। इसी प्रकार 'कार्य ऊर्जा' के लिए <math>W</math> का अर्थ है कि कार्य ऊष्मप्रवैगिकी  के माध्यम से प्राप्त गई ऊर्जा आंतरिक ऊर्जा प्रणाली का अधिकार है, जबकि किया गया कार्य और आपूर्ति की गई ऊष्मा नहीं है। इस अंतर का परिणाम यह है कि दी गई आंतरिक ऊर्जा में परिवर्तन होता है <math>\Delta U</math> ऊष्मा और कार्य के विभिन्न संयोजनों द्वारा प्राप्त किया जा सकता है। इसका संकेत यह कि ऊष्मा और कार्य पथ पर निर्भर हैं, जबकि आंतरिक ऊर्जा में परिवर्तन प्रक्रिया की प्रारंभिक और अंतिम अवस्थाओं पर निर्भर करता है। यह ध्यान रखना आवश्यक है कि ऊष्मप्रवैगिकी य कार्य को प्रणाली में परिवर्तन द्वारा मापा जाता है, तथा आसपास के बलों और दूरियों द्वारा मापे गए कार्य के समान होता है, <ref name="Gislason&Craig2005">{{cite journal | last1 = Gislason | first1 = E. A. | last2 = Craig | first2 = N. C. | year = 2005 | title = Cementing the foundations of thermodynamics:comparison of system-based and surroundings-based definitions of work and heat | journal = J. Chem. Thermodynamics | volume = 37 | issue = 9| pages = 954–966 | doi=10.1016/j.jct.2004.12.012}}</ref> यह अंतर '[[आइसोकोरिक प्रक्रिया]]' स्थिर आयतन पर शब्द में उल्लेखित है।
जहाँ <math>\delta Q</math> अपने परिवेश से प्रणाली को आपूर्ति की गई ऊष्मा की अपरिमेय मात्रा को दर्शाता है और <math>\delta</math> एक [[अचूक अंतर]] को दर्शाता है। कार्य और ऊष्मा ऊर्जा की आपूर्ति की वास्तविक भौतिक प्रक्रियाओं की अभिव्यक्तियाँ हैं, जबकि आंतरिक ऊर्जा <math>U</math> एक गणितीय सार है जो प्रणाली वाले ऊर्जा के आदान-प्रदान का लेखा-जोखा रखता है। इस प्रकार ऊष्मा के लिए <math>Q</math> का अर्थ है कि, प्रणाली के अंदर ऊर्जा के रूप का चर्चा करने के अतिरिक्त ऊष्मप्रवैगिकी य अर्थों में ऊष्मा के रूप में जोड़ी या हटाई गई ऊर्जा हैं। इसी प्रकार 'कार्य ऊर्जा' के लिए <math>W</math> का अर्थ है कि कार्य ऊष्मप्रवैगिकी  के माध्यम से प्राप्त गई ऊर्जा आंतरिक ऊर्जा प्रणाली का अधिकार है, जबकि किया गया कार्य और आपूर्ति की गई ऊष्मा नहीं है। इस अंतर का परिणाम यह है कि दी गई आंतरिक ऊर्जा में परिवर्तन होता है <math>\Delta U</math> ऊष्मा और कार्य के विभिन्न संयोजनों द्वारा प्राप्त किया जा सकता है। इसका संकेत यह कि ऊष्मा और कार्य पथ पर निर्भर हैं, जबकि आंतरिक ऊर्जा में परिवर्तन प्रक्रिया की प्रारंभिक और अंतिम अवस्थाओं पर निर्भर करता है। यह ध्यान रखना आवश्यक है कि ऊष्मप्रवैगिकी य कार्य को प्रणाली में परिवर्तन द्वारा मापा जाता है, तथा आसपास के बलों और दूरियों द्वारा मापे गए कार्य के समान होता है, <ref name="Gislason&Craig2005">{{cite journal | last1 = Gislason | first1 = E. A. | last2 = Craig | first2 = N. C. | year = 2005 | title = Cementing the foundations of thermodynamics:comparison of system-based and surroundings-based definitions of work and heat | journal = J. Chem. Thermodynamics | volume = 37 | issue = 9| pages = 954–966 | doi=10.1016/j.jct.2004.12.012}}</ref> यह अंतर '[[आइसोकोरिक प्रक्रिया]]' स्थिर आयतन पर शब्द में उल्लेखित है।


== बंद व्यवस्थाओं के लिएनियम  के विभिन्न कथन        ==
== बंद व्यवस्थाओं के लिए नियम के विभिन्न कथन        ==
विधि का महत्व बहुत व्यापक है, और फलस्वरूप कई प्रस्तावो से इस पर विचार किया जाता है।नियम  के सबसे सावधान पाठ्यपुस्तक के कथन इसे बंद प्रणालियों के लिए व्यक्त करते हैं। यह कई तरह से कहा गया है, कभी-कभी एक ही लेखक द्वारा भी।<ref name="Bailyn 79"/>बंद प्रणालियों के ऊष्मप्रवैगिकी  के लिए,प्रबंध के रूप में ऊर्जा के हस्तांतरण और ऊष्मा के रूप में अंतर केंद्रीय किया जाता है और वर्तमान लेख के अधिकार में ऊष्मप्रवैगिकी  प्रणाली के लिए खुला तंत्र, ऐसा भेद वर्तमान लेख के अधिकार से बाहर है,यद्यपि इस पर कुछ सीमित टिप्पणियाँ नीचे दिए गए अनुभाग में उष्मागतिकी के प्रथम नियम मुक्त तंत्र के लिए ऊष्मप्रवैगिकी  के प्रथम नियम में की गई हैं।  
विधि का महत्व बहुत व्यापक है, और फलस्वरूप कई प्रस्तावो से इस पर विचार किया जाता है। नियम के सबसे सावधान पाठ्यपुस्तक के कथन इसे बंद प्रणालियों के लिए व्यक्त करते हैं। यह कई तरह से कहा गया है, कभी-कभी एक ही लेखक द्वारा भी।<ref name="Bailyn 79"/>बंद प्रणालियों के ऊष्मप्रवैगिकी  के लिए,प्रबंध के रूप में ऊर्जा के हस्तांतरण और ऊष्मा के रूप में अंतर केंद्रीय किया जाता है और वर्तमान लेख के अधिकार में ऊष्मप्रवैगिकी  प्रणाली के लिए खुला तंत्र, ऐसा भेद वर्तमान लेख के अधिकार से बाहर है,यद्यपि इस पर कुछ सीमित टिप्पणियाँ नीचे दिए गए अनुभाग में उष्मागतिकी के प्रथम नियम मुक्त तंत्र के लिए ऊष्मप्रवैगिकी  के प्रथम नियम में की गई हैं।  


ऊष्मप्रवैगिकी  के नियम को भौतिक या गणितीय रूप से बताने के दो मुख्य नियम हैं। उन्हें तार्किक रूप से सुसंगत और एक दूसरे के अनुरूप होना चाहिए।<ref>[[John Gamble Kirkwood|Kirkwood, J. G.]], Oppenheim, I. (1961), pp. 31–33.</ref>भौतिक कथन का एक उदाहरण मैक्स प्लैंक (1897/1903) का है:
ऊष्मप्रवैगिकी  के नियम को भौतिक या गणितीय रूप से बताने के दो मुख्य नियम हैं। उन्हें तार्किक रूप से सुसंगत और एक दूसरे के अनुरूप होना चाहिए।<ref>[[John Gamble Kirkwood|Kirkwood, J. G.]], Oppenheim, I. (1961), pp. 31–33.</ref>भौतिक कथन का एक उदाहरण मैक्स प्लैंक (1897/1903) का है:
Line 81: Line 81:
यह भौतिक कथन न तो बंद प्रणालियों तक ही सीमित है और न ही क्षेत्रो के साथ प्रणालियों के लिए जो मात्र ऊष्मप्रवैगिकी य संतुलन के लिए दृढ़ता से परिभाषित हैं; इसका अर्थ खुली प्रणालियों के लिए और उन क्षेत्रो के लिए भी है जो ऊष्मप्रवैगिकी य संतुलन में नहीं हैं।
यह भौतिक कथन न तो बंद प्रणालियों तक ही सीमित है और न ही क्षेत्रो के साथ प्रणालियों के लिए जो मात्र ऊष्मप्रवैगिकी य संतुलन के लिए दृढ़ता से परिभाषित हैं; इसका अर्थ खुली प्रणालियों के लिए और उन क्षेत्रो के लिए भी है जो ऊष्मप्रवैगिकी य संतुलन में नहीं हैं।


गणितीय कथन का एक उदाहरण क्रॉफोर्ड (1963) का है, किसी दिए गए प्रणाली के लिए हम जाने देते हैं {{math|Δ''E''<sup>&nbsp;kin</sup>&nbsp;{{=}}}} बड़े पैमाने पर यांत्रिक ऊर्जा, {{math|Δ''E''<sup>&nbsp;pot</sup>&nbsp;{{=}}}} बड़े पैमाने पर संभावित ऊर्जा, और {{math|Δ''E''<sup>&nbsp;tot</sup>&nbsp;{{=}}}} कुल ऊर्जा उपयुक्त यांत्रिक चर के संदर्भ में और परिभाषा के अनुसार पहली दो <math>E^{\mathrm{tot}}=E^{\mathrm{kin}}+E^{\mathrm{pot}}+U\,\,.</math>किसी भी परिमित प्रक्रिया के लिए, चाहे उत्क्रमणीय हो या अपरिवर्तनीय होता है जहां <math>\Delta E^{\mathrm{tot}}=\Delta E^{\mathrm{kin}}+\Delta E^{\mathrm{pot}}+\Delta U\,\,.</math>एक रूप में प्रथमनियम  जिसमें ऊर्जा के संरक्षण के सिद्धांत को सम्मिलित किया <math>\Delta E^{\mathrm{tot}}=Q+W\,\,.</math>यहाँ {{math|''Q''}} और {{math|''W''}} ऊष्मा और प्रबंध जोड़ा जाता है, इस पर कोई प्रतिबंध नहीं है कि क्या प्रक्रिया प्रतिवर्ती, अर्धस्थैतिक, या अपरिवर्तनीय है। वार्नर, एमजे भौतिक, '29', 124 (1961)]<ref name="Crawford 106">Crawford, F. H. (1963), pp. 106–107.</ref>
गणितीय कथन का एक उदाहरण क्रॉफोर्ड (1963) का है,                                                                                                                                                                                                             किसी दिए गए प्रणाली के लिए हम {{math|Δ''E''<sup>&nbsp;kin</sup>&nbsp;{{=}}}} बड़े पैमाने पर यांत्रिक ऊर्जा, {{math|Δ''E''<sup>&nbsp;pot</sup>&nbsp;{{=}}}} बड़े पैमाने पर संभावित ऊर्जा, और {{math|Δ''E''<sup>&nbsp;tot</sup>&nbsp;{{=}}}} कुल ऊर्जा जाने देते है उपयुक्त यांत्रिक चर के संदर्भ में और परिभाषा के अनुसार पहली दो मात्राएँ निर्दिष्ट हैं
 
<math>E^{\mathrm{tot}}=E^{\mathrm{kin}}+E^{\mathrm{pot}}+U\,\,.</math>                                                                                                                                                                                                                                                               किसी भी परिमित प्रक्रिया के लिए, चाहे उत्क्रमणीय हो या अनुत्क्रमणीय
 
<math>\Delta E^{\mathrm{tot}}=\Delta E^{\mathrm{kin}}+\Delta E^{\mathrm{pot}}+\Delta U\,\,.</math>
 
एक रूप में पहला कानून जिसमें ऊर्जा के संरक्षण के सिद्धांत को अधिक सामान्यतः सम्मिलित किया गया है
 
<math>\Delta E^{\mathrm{tot}}=Q+W\,\,.</math>
 
यहाँ Q और W ऊष्मा और कार्य जोड़े गए हैं, इस पर कोई प्रतिबंध नहीं है कि क्या प्रक्रिया उत्क्रमणीय, अर्धस्थैतिक, या अपरिवर्तनीय है। वार्नर, एम जे भौतिक, 29, 124 (1961]<ref name="Crawford 106">Crawford, F. H. (1963), pp. 106–107.</ref>


W के लिए क्रॉफर्ड का यह कथन आईयूपीएसी के संकेत परिपाटी का उपयोग करता है, क्लॉसियस के नहीं। परंतु यह स्पष्ट रूप से बंद प्रणालियों को संदर्भित करता है। सामान्यतः,आंतरिक ऊर्जा यू का मूल्यांकन ऊष्मप्रवैगिकी य संतुलन के स्थिति में निकायों के लिए किया जाता है, जिसमें अच्छी तरह से परिभाषित तापमान होते हैं, लेकिन यह सामान्यतः प्रणाली में सभी कणों की गतिशील और संभावित ऊर्जा का योग होता है,प्रायः एक संदर्भ के सापेक्ष स्थिति ।
W के लिए क्रॉफर्ड का यह कथन आईयूपीएसी के संकेत परिपाटी का उपयोग करता है, क्लॉसियस के नहीं। परंतु यह स्पष्ट रूप से बंद प्रणालियों को संदर्भित करता है। सामान्यतः,आंतरिक ऊर्जा यू का मूल्यांकन ऊष्मप्रवैगिकी य संतुलन के स्थिति में निकायों के लिए किया जाता है, जिसमें अच्छी तरह से परिभाषित तापमान होते हैं, लेकिन यह सामान्यतः प्रणाली में सभी कणों की गतिशील और संभावित ऊर्जा का योग होता है,प्रायः एक संदर्भ के सापेक्ष स्थिति ।

Revision as of 09:16, 12 April 2023

ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा संरक्षण के नियम का सूत्रीकरण है, जो ऊष्मप्रवैगिकी प्रक्रियाओं के लिए अनुकूलित है। एक सरल सूत्रीकरण है: "एक प्रणाली में कुल ऊर्जा स्थिर रहती है, यद्यपि इसे एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है।" एक अन्य सामान्य वाक्यांश यह है कि बंद प्रणाली में "ऊर्जा न तो बनाई जा सकती है और न ही नष्ट की जा सकती है"। जबकि अनेक सूक्ष्मताएं निहितार्थ हैं जो अधिक जटिल योगों में उपयुक्त रूप से अधिकृत जा सकते हैं, यह प्रथम नियम का आवश्यक सिद्धांत है।

यह सैद्धांतिक रूप से ऊर्जा हस्तांतरण के दो रूपों को अलग करता है: पदार्थ की निरंतर मात्रा की प्रणाली के लिए ऊष्मा और ऊष्मप्रवैगिकी कार्य के लिए यह प्रणाली में ऊर्जा के संतुलन को बनाए रखने के लिएनियम प्रणाली की आंतरिक ऊर्जा को परिभाषित करता है।

ऊर्जा के संरक्षण का नियम बताता है कि किसी भी पृथक प्रणाली की कुल ऊर्जा, जो ऊर्जा या पदार्थ का आदान-प्रदान नहीं कर सकती है, क्योंकि स्थिर ऊर्जा को एक रूप से दूसरे रूप में रूपांतरित किया जा सकता है, लेकिन इसे न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है। आइन्सटाइन के सापेक्षता सिद्धांत E = mc2 समीकरण में द्रव्यमान-ऊर्जा तुल्यता सिद्धांत द्वारा, प्रथमनियम का उल्लंघन के अतिरिक्त, पदार्थ और ऊर्जा को एक दूसरे में परिवर्तित किया जा सकता है। अतः यह एक स्थिर ढांचे को संदर्भित करता है। सापेक्षता को ध्यान में रखने के लिए, किसी भी संदर्भ ढांचे को अंतर सापेक्ष गति,द्वारा ध्यान में रखा जा सकता है।

ऊष्मप्रवैगिकी प्रक्रिया का प्रथम नियम निम्नलिखित समीकरणों द्वारा संदर्भित किया जाता है[1]

,

जहाँ एक ऊष्मप्रवैगिकी बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन को दर्शाता है जिसके लिए प्रणाली सीमा के माध्यम से ऊष्मा का प्रबंध संभव है,परंतु पदार्थ का स्थानांतरण संभव नहीं है, ऊष्मा के रूप में प्रणाली को आपूर्ति की गई ऊर्जा की मात्रा को दर्शाता है, और अपने परिवेश पर प्रणाली द्वारा किए गए ऊष्मप्रवैगिकी कार्य की मात्रा को दर्शाता है।

एक समतुल्य कथन यह है कि पहली तरह की सतत गति वाले यंत्र असंभव हैं; कार्य अपने परिवेश पर एक प्रणाली द्वारा किए गए के लिए प्रणाली की आंतरिक ऊर्जा की आवश्यकता होती है जिसके परिणामस्वरूप U घटता है या उपभोग किया जाता है, जिससे उस कार्य द्वारा खोई गई आंतरिक ऊर्जा की मात्रा को ऊष्मा के रूप में पुन:आपूर्ति किया जा सके।

अनुकूल पृथक प्रणाली, जिसका संपूर्ण ब्रह्मांड एक उदाहरण है, प्रायः मात्र एक प्रारूप के रूप में उपयोग किया जाता है। व्यावहारिक अनुप्रयोगों में कई प्रणालियों को आंतरिक रासायनिक या परमाणु प्रतिक्रियाओं पर विचार करने की आवश्यकता होती है, साथ ही साथ प्रणाली में या प्रणाली के बाहर पदार्थ का स्थानांतरण भी होता है। ऐसे विचारों के लिए, ऊष्मप्रवैगिकी खुले प्रणाली, बंद प्रणाली और अन्य प्रकार की अवधारणा को भी परिभाषित करती है।

इतिहास

अठारहवीं शताब्दी के पूर्वार्द्ध में, फ्रांसीसी दार्शनिक और गणितज्ञ एमिली डु चैटेलेट ने ऊर्जा के संरक्षण नियम के एक रूप का प्रस्ताव करके ऊर्जा के उभरते सैद्धांतिक ढांचे में उल्लेखनीय योगदान दिया, जिसने गतिज ऊर्जा को सम्मिलित करने के लिए मान्यता दी।[2][3] प्रारंभिक विचारों के अनुभवजन्य विकास, अगली शताब्दी में, उष्मा के कैलोरी सिद्धांत अवधारणाओं से जूझ रहे थे।

1840 में, जर्मेन हेस ने रासायनिक परिवर्तनों के समय प्रतिक्रिया की ऊष्मा के लिए संरक्षण नियम बताया।[4] इस नियम के उपरांत में ऊष्मप्रवैगिकी के प्रथम नियम के परिणाम के रूप में मान्यता दी गई थी। परंतु हेस का कथन स्पष्ट रूप से ताप और कार्य से ऊर्जा के आदान-प्रदान से संबंधित नहीं था।

1842 में, जूलियस रॉबर्ट वॉन मेयर ने एक कथन दिया जो क्लिफर्ड ट्रूसडेल (1980) द्वारा निरंतर दबाव पर एक प्रक्रिया में प्रतिपादन में व्यक्त किया गया था। प्रथम नियम के विस्तार का उत्पादन करने के लिए उपयोग की जाने वाली ऊष्मा प्रबंध के साथ सार्वभौमिक रूप से अंतर-परिवर्तनीय है,यद्यपि यह सामान्य कथन नहीं है।[5][6] इस नियम का प्रथम पूर्ण विवरण 1850 में रुडोल्फ क्लॉसियस और विलियम रैंकिन से आया।[7][8] कुछ विद्वान रैंकिन के कथन को क्लॉसियस के सापेक्ष में कम विशिष्ट मानते हैं।[7]


मूल कथन: ऊष्मप्रवैगिकी प्रस्ताव

ऊष्मप्रवैगिकी के प्रथम नियम के मूल कथन 19वीं शताब्दी के वैचारिक ढांचे में प्रकट हुआ था, जिसमें ऊष्मा के रूप में ऊर्जा के हस्तांतरण को किसी मूल धारणा के रूप में लिया गया था, जिसे ढांचे के सैद्धांतिक विकास द्वारा परिभाषित या निर्मित नहीं किया गया था, अर्थात इसके पहले रूप को ही स्वीकार कर लिया गया था। ऊष्मप्रवैगिकी से पहले ऊष्मा की प्रारम्भिक धारणाओ को अनुभवजन्य रूप से स्थापित किया गया था, विशेष रूप से कैलोरीमेट्री के माध्यम से इसे अपने आप में एक विषय के रूप में माना जाता था। इस ढाँचे ने प्रबंध के रूप में ऊर्जा के हस्तांतरण की धारणा को भी प्रारम्भिक मान लिया था। इस ढाँचे ने सामान्य रूप से ऊर्जा की अवधारणा को नहीं माना,अर्थात इसे ऊष्मा और कार्य की पूर्व धारणाओं से व्युत्पन्न या संश्लेषित माना था। तथा एक लेखक द्वारा, इस ढांचे को ऊष्मप्रवैगिकी प्रस्ताव कहा गया।[8] तथा 1850 में रुडोल्फ क्लॉसियस द्वारा ऊष्मप्रवैगिकी के पहले नियम का प्रथम स्पष्ट कथन चक्रीय ऊष्मप्रवैगिकी प्रक्रियाओं को संदर्भित करता हैं ।

एक ऊष्मप्रवैगिकी प्रक्रिया में एक बंद प्रणाली सम्मिलित होती है, आंतरिक ऊर्जा में वृद्धि प्रणाली द्वारा संचित ऊष्मा और इसके द्वारा किए गए कार्य के मध्य के अंतर के बराबर होती है। वृद्धि के संदर्भ में इसकी परिभाषा के कारण, एक प्रणाली की आंतरिक ऊर्जा का मूल्य विशिष्ट रूप से परिभाषित नहीं होता है। यह मात्र एकीकरण के यादृच्छिक योज्य स्थिरांक तक परिभाषित किया गया है, जिसे स्वैच्छिक संदर्भ शून्य स्तर देने के लिए समायोजित किया जा सकता है। यह गैर-विशिष्टता आंतरिक ऊर्जा की अमूर्त गणितीय प्रकृति को ध्यान में रखते हुए आंतरिक ऊर्जा को पारंपरिक रूप से प्रणाली के पारंपरिक रूप से चुने गए मानक संदर्भ स्थिति के सापेक्ष कहा जाता है।
ऐसे सभी विषयो में जिनमें ऊष्मा अभिकरण द्वारा कार्य का उत्पादन किया जाता है, जो किए गए कार्य के समानुपाती होता है, और इसके विपरीत,प्रबंध की समान मात्रा के व्यय से उतनी ही मात्रा में ऊष्मा उत्पन्न होता है।[9] क्लॉसियस ने इस नियम को अन्य रूप में भी बताया कि, प्रणाली की स्थिति,आंतरिक ऊर्जा के एक कार्य के अस्तित्व का उल्लेख करते हुए, और ऊष्मप्रवैगिकी य प्रक्रिया की वृद्धि के लिए एक अंतर समीकरण के संदर्भ में इसे प्रस्तुत किया जा सकता है। आंतरिक ऊर्जा की अवधारणा को बेलीन द्वारा "अत्यधिक रुचि" के रूप में माना जाता है। इसकी मात्रा को तुरंत नहीं मापा जा सकता है, लेकिन वास्तविक तात्कालिक मापों को अलग करके मात्र अनुमान लगाया जा सकता है। बेलीन इसकी तुलना एक परमाणु की ऊर्जा अवस्थाओं से करता है, जो बोह्र के ऊर्जा संबंध hν = En″ - En' से प्रकट हुई थीं। प्रत्येक विषय में, मापी गई मात्राओं (आंतरिक ऊर्जा में वृद्धि, उत्सर्जित या अवशोषित विकिरण ऊर्जा की मात्रा) के अंतर पर विचार करके एक अमापनीय मात्रा (आंतरिक ऊर्जा, परमाणु ऊर्जा स्तर) का पता चलता है।


वैचारिक संशोधन: यांत्रिक प्रस्ताव

1907 में, जॉर्ज एच. ब्रायन ने उन प्रणालियों के बारे में लिखा, जिनके मध्य पदार्थ का कोई स्थानांतरण नहीं होता है। "परिभाषा'' जब ऊर्जा यांत्रिक कार्य के प्रदर्शन के अतिरिक्त एक प्रणाली या प्रणाली के भाग से दूसरे में प्रवाहित होता है, तो इस ऊर्जा को स्थानांतरित ऊष्मा कहा जाता है। इस परिभाषा को एक वैचारिक संशोधन को व्यक्त करने के रूप में माना जा सकता है, निम्नानुसार यह 1909 में कॉन्स्टेंटिन कैराथियोडोरी द्वारा व्यवस्थित रूप से प्रतिपादित किया गया था, जिसका ध्यान मैक्स बोर्न द्वारा इस ओर आकर्षित किया गया था। सामान्यतः बॉर्न के प्रभाव के माध्यम से, ऊष्मा की परिभाषा के लिए इस संशोधित वैचारिक प्रस्ताव को बीसवीं सदी के कई लेखकों द्वारा पसंद किया जाने लगा। जिसे "यांत्रिक प्रस्ताव "कहा जा सकता है[10]

पदार्थ के स्थानांतरण के सहयोग से ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में भी स्थानांतरित किया जा सकता है। बोर्न बताते हैं कि सामान्यतः इस तरह के ऊर्जा हस्तांतरण को कार्य और ऊष्मा के हिस्सों में विशिष्ट रूप से हल नहीं किया जा सकता है। सामान्यतः, जब पदार्थ हस्तांतरण से जुड़ी ऊर्जा का हस्तांतरण होता है, तो कार्य और ऊष्मा हस्तांतरण को मात्र तभी अलग किया जा सकता है जब वे जो पदार्थ हस्तांतरण के लिए दीवारों से भौतिक रूप से अलग होते हैं।

"यांत्रिक" प्रस्ताव ऊर्जा के संरक्षण के नियम को मानता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे रुद्धोष्म रूप से कार्य के रूप में स्थानांतरित किया जा सकता है, और उस ऊर्जा को ऊष्मप्रवैगिकी प्रणाली की आंतरिक ऊर्जा के रूप में रखा जा सकता है। यह यह भी बताता है कि ऊर्जा को एक ऊष्मप्रवैगिकी प्रणाली से दूसरे में एक पथ द्वारा स्थानांतरित किया जा सकता है जो गैर- स्थिरोष्म है,और पदार्थ हस्तांतरण के साथ नहीं है। बैलिन के अनुसार प्रारंभ में, यह 'ऊष्मा' के रूप में लेबलिंग से रोकता है, जैसे गैर स्थिरोष्म, ऊर्जा का अत्यधिक हस्तांतरण। यह दीवारों की आदिम धारणा पर टिकी हुई है, विशेष रूप से स्थिरोष्म दीवारें और गैर स्थिरोष्म दीवारें, जिन्हें निम्नानुसार परिभाषित किया गया है। अस्थायी रूप से, मात्र इस परिभाषा के प्रयोजन के लिए, कोई भी की दीवार के पार कार्य के रूप में ऊर्जा के हस्तांतरण पर रोक लगा सकता है। पुनः हित की दीवारें दो वर्गों में आती हैं, (ए) ऐसी कि उनके द्वारा अलग की गई प्रणालियां स्वतंत्र रूप से आंतरिक ऊष्मप्रवैगिकी संतुलन की अपनी पहले से स्थापित संबंधित अवस्थाओं में स्वतंत्र रूप से रहती हैं; उन्हें स्थिरोष्म के रूप में परिभाषित किया गया है; और (बी) स्वतंत्रता के अतिरिक्त; उन्हें गैर- स्थिरोष्म के रूप में परिभाषित किया गया है।[8]

यह प्रस्ताव सैद्धांतिक विकास के रूप में ऊर्जा के ऊष्मा और तापमान के रूप में हस्तांतरण की धारणाओं को प्राप्त करता है, उन्हें आदिम के रूप में नहीं लेता है। यह कैलोरीमेट्री को एक व्युत्पन्न सिद्धांत मानता है। उन्नीसवीं शताब्दी में इसकी प्रारंभिक उत्पत्ति है, उदाहरण के लिए हेल्महोल्ट्ज़ के का

यांत्रिक प्रस्ताव के अनुसार संकल्पनात्मक रूप से संशोधित कथन

वैचारिक रूप से संशोधित कथन, यांत्रिक प्रस्ताव के अनुसार प्रथम नियम के संशोधित कथन में कहा गया है कि किसी यादृच्छिक प्रक्रिया के कारण किसी आंतरिक ऊर्जा में परिवर्तन, जो प्रणाली को दिए गए प्रारंभिक ऊष्मप्रवैगिकी क्षेत्र से दिए गए अंतिम संतुलन ऊष्मप्रवैगिकी क्षेत्र में ले जाता है, जिसे भौतिक अस्तित्व के माध्यम से निर्धारित किया जा सकता है, उन दिए गए क्षेत्रो के लिए,संदर्भ प्रक्रिया जो विशुद्ध रूप से रुद्धोष्म कार्य के चरणों के माध्यम से होता है यह प्रस्ताव सैद्धांतिक विकास ऊर्जा के ऊष्मा और तापमान के रूप में हस्तांतरण की धारणाओं को प्राप्त करता है, तथा उन्हें प्रारम्भिक रूप में नहीं लेता है। तथा यह कैलोरीमेट्री को एक व्युत्पन्न सिद्धांत मानता है। उन्नीसवीं शताब्दी में इसकी प्रारंभिक उत्पत्ति हुई हैं। उदाहरण के लिए हेल्महोल्ट्ज़ के कार्य में,लेकिन कई अन्य लोगों के कार्य मे यह कथन अनुभवजन्य आधार के बहुत कम निकट है,[11]परंतु प्रायः इसे अवधारणात्मक रूप से उदार माना जाता है क्योंकि यह मात्र रुद्धोष्म कार्य और गैर-स्थिरोष्मा प्रक्रियाओं की अवधारणाओं पर निर्भर करता है, न कि ऊर्जा के हस्तांतरण की अवधारणाओं पर, ऊष्मा और अनुभवजन्य तापमान के रूप में जो मूल कथन निर्धारित किए जाते हैं। यह मैक्स बोर्न के प्रभाव के माध्यम से, इस वैचारिक पारसीमोनी के कारण है, प्रायः इसे सैद्धांतिक रूप से उत्तम माना जाता है। बॉर्न विशेष रूप से देखता है कि संशोधित प्रस्ताव ऊष्मा इंजनों की आयातित अभियांत्रिकी अवधारणा के संदर्भ में सोचने से बचता है। संशोधित कथन तब है- एक बंद प्रणाली के लिए, प्रवर्द्धन की किसी भी यादृच्छिक प्रक्रिया में जो इसे प्रारंभिक से आंतरिक ऊष्मप्रवैगिकी संतुलन की अंतिम स्थिति में ले जाती है, आंतरिक ऊर्जा का परिवर्तन वही होता है जो उन दो स्थितियों को जोड़ने वाली संदर्भ स्थिरोष्म कार्य प्रक्रिया के लिए होता है। यह प्रवर्द्धन की प्रक्रिया के मार्ग की ध्यान दिए बिना कि यह एक स्थिरोष्म या स्थिरोष्म प्रक्रिया है या नहीं। संदर्भ रुद्धोष्म कार्य प्रक्रिया ऐसी सभी प्रक्रियाओं के वर्ग में से यादृच्छिक ढंग से चुनी जा सकती है। यह कथन मूल कथनों के सापेक्ष में अनुभवजन्य आधार के बहुत कम निकट है, [17] लेकिन इसे प्रायः वैचारिक रूप से उदार माना जाता है क्योंकि यह मात्र रूद्धोष्म कार्य और गैर-रुद्धोष्म प्रक्रियाओं की अवधारणाओं पर आधारित है, स्थानांतरण की अवधारणाओं पर नहीं। उष्मा के रूप में ऊर्जा और अनुभवजन्य तापमान जो मूल कथनों द्वारा पूर्वकल्पित हैं। मोटे तौर पर मैक्स बोर्न के प्रभाव के माध्यम से, इस वैचारिक पारसीमोनी के कारण इसे प्रायः सैद्धांतिक रूप से बेहतर माना जाता है। बोर्न विशेष रूप से देखता है कि संशोधित प्रस्ताव ऊष्मा इंजनों की "आयातित अभियांत्रिकी" अवधारणा के संदर्भ में सोचने से बचाता है।

यांत्रिक प्रस्ताव अपनी सोच के आधार पर, 1921 में जन्मे और फिर 1949 में,ऊष्मा की परिभाषा को संशोधित करने का प्रस्ताव रखा। बोर्न 1949 V [12] मे विशेष रूप से, उन्होंने कॉन्स्टेंटिन कैराथोडोरी के कार्य का उल्लेख किया, जिन्होंने 1909 में ऊष्मा की मात्रा को परिभाषित किए बिना प्रथम नियम प्रतिपादित किया था।[13]बॉर्न की परिभाषा विशेष रूप से पदार्थ के हस्तांतरण के अतिरिक्त ऊर्जा के हस्तांतरण के लिए किया गया था, उदाहरण:[14] बोर्न देखता है कि दो प्रणालियों के मध्य पदार्थ का स्थानांतरण आंतरिक ऊर्जा के हस्तांतरण के साथ हो सकता है जिसे ऊष्मा और कार्य घटकों में हल नहीं किया जा सकता है। अन्य प्रणालियों के लिए रास्ते हो सकते हैं, तथा स्थाई रूप से विषयो के हस्तांतरण से अलग हो सकते हैं, जो ऊष्मा और प्रबंध के हस्तांतरण को स्वतंत्र और एक साथ विषयो के हस्तांतरण की अनुमति देते हैं, तथा ऐसे स्थानान्तरण में ऊर्जा का संरक्षण हो सकता है।

विवरण

चक्रीय प्रक्रियाएं

एक बंद प्रणाली के लिए ऊष्मप्रवैगिकी का प्रथम नियम क्लॉसियस द्वारा दो तरह से व्यक्त किया गया था। प्रथम नियम चक्रीय प्रक्रियाओं और प्रणाली के निविष्ट और निर्गत को संदर्भित करता है,परंतु प्रणाली की आंतरिक स्थिति में वृद्धि को संदर्भित नहीं करता है। दूसरा नियम प्रणाली की आंतरिक स्थिति में वृद्धिशील परिवर्तन को संदर्भित करता है, और प्रक्रिया के चक्रीय होने का विश्वास नहीं करता है।

एक चक्रीय प्रक्रिया वह है जिसे प्रायःअनिश्चित काल तक पुनरावृति किया जा सकता है, प्रणाली अपनी प्रारंभिक स्थिति में पुनरावृत्ति करता है। तथा एक चक्रीय प्रक्रिया के एकल चक्र के लिए विशेष उल्लिखित प्रणाली द्वारा किए गए शुद्ध कार्य और ली गई शुद्ध ऊष्मा को संदर्भित करता है।

एक चक्रीय प्रक्रिया में जिसमें प्रणाली अपने परिवेश पर शुद्ध कार्य करता है, तो शारीरिक रूप से आवश्यक है कि प्रणाली में ऊष्मा ली जाए अपितु यह भी महत्वपूर्ण है कि कुछ ऊष्मा प्रणाली अंतर चक्र द्वारा कार्य में परिवर्तित ऊष्मा को छोड़ देता है। चक्रीय प्रक्रिया की प्रत्येक पुनरावृत्ति में, प्रणाली द्वारा किया गया शुद्ध कार्य, यांत्रिक इकाइयों में मापा जाता है,जो कैलोरीमीटर इकाइयों में मापी गई ऊष्मा की खपत के समानुपाती होता है।

आनुपातिकता का स्थिरांक सार्वभौमिक और प्रणाली से स्वतंत्र है और 1845 और 1847 में जेम्स प्रेस्कॉट जौल द्वारा मापा गया था, जिन्होंने इसे ऊष्मा के यांत्रिक समकक्ष के रूप में वर्णित किया था।

चिन्ह परिपाटी

एक सामान्य प्रक्रिया में बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन शुद्ध ऊर्जा के बराबर होता है जो प्रणाली में ऊष्मा के रूप में जोड़ी जाती है, प्रणाली द्वारा किए गए ऊष्मप्रवैगिकी कार्य को घटाकर, दोनों को यांत्रिक इकाइयों में मापा जाता है। तथा आंतरिक ऊर्जा में परिवर्तन के रूप में लिखा जाता है।

जहाँ Q अपने परिवेश द्वारा प्रणाली को आपूर्ति की गई ऊष्मा की शुद्ध मात्रा को दर्शाता है और W प्रणाली द्वारा किए गए शुद्ध कार्य को दर्शाता है। यह चिन्ह परिपाटी ऊपर दिए गए नियम के क्लॉज़ियस के कथन में निहित है। इसकी उत्पत्ति ऊष्मा इंजनों के अध्ययन से हुई है जो ऊष्मा के उपभोग द्वारा उपयोगी कार्य उत्पन्न करते हैं; किसी भी ऊष्मा इंजन का प्रमुख प्रदर्शन संकेतक इसकी तापीय दक्षता है, जो किए गए शुद्ध कार्य और प्रणाली को आपूर्ति की गई ऊष्मा का भागफल है अपशिष्ट ऊष्मा को छोड़ कर। थर्मल दक्षता सकारात्मक होनी चाहिए, जो कि शुद्ध काम किया जाता है और ऊष्मा की आपूर्ति दोनों एक ही संकेत के होते हैं; तथा परंपरा द्वारा दोनों को सकारात्मक संकेत दिया जाता है

आजकल,लेखक प्रायः आईयूपीएसी परिपाटी का उपयोग करते हैं जिसके द्वारा प्रथमनियम प्रणाली पर किए गए ऊष्मप्रवैगिकी य प्रबंध के साथ तैयार किया जाता है, इसके आसपास सकारात्मक संकेत होता है। इसके साथ प्रबंध के लिए प्रायः उपयोग किए जाने वाले परिपाटी, एक बंद प्रणाली के लिए प्रथमनियम लिखा जा सकता है:[15]

U = Q- W

यह परिपाटी मैक्स प्लैंक, जैसे भौतिकविदों का अनुसरण करता है और प्रणाली में सभी शुद्ध ऊर्जा हस्तांतरण को सकारात्मक मानता है और प्रणाली से सभी शुद्ध ऊर्जा को नकारात्मक के रूप में स्थानांतरित करता है, भले ही प्रणाली के लिए इंजन या अन्य उपकरण के रूप में कोई भी उपयोग हो।

कार्य के लिए क्लॉसियस परिपाटी संकेत में प्रस्तुत है, जब एक प्रणाली एक अर्धस्थैतिक प्रक्रिया में फैलती है, तो प्रणाली द्वारा परिवेश पर किया गया ऊष्मप्रवैगिकी य कार्य उत्पाद, , दबाव का, , और मात्रा परिवर्तन, , जबकि परिवेश द्वारा प्रणाली पर किया गया ऊष्मप्रवैगिकी य कार्य . कार्य के लिए किसी भी चिह्न परिपाटी का उपयोग करते हुए, तंत्र की आंतरिक ऊर्जा में परिवर्तन करता है।

जहाँ अपने परिवेश से प्रणाली को आपूर्ति की गई ऊष्मा की अपरिमेय मात्रा को दर्शाता है और एक अचूक अंतर को दर्शाता है। कार्य और ऊष्मा ऊर्जा की आपूर्ति की वास्तविक भौतिक प्रक्रियाओं की अभिव्यक्तियाँ हैं, जबकि आंतरिक ऊर्जा एक गणितीय सार है जो प्रणाली वाले ऊर्जा के आदान-प्रदान का लेखा-जोखा रखता है। इस प्रकार ऊष्मा के लिए का अर्थ है कि, प्रणाली के अंदर ऊर्जा के रूप का चर्चा करने के अतिरिक्त ऊष्मप्रवैगिकी य अर्थों में ऊष्मा के रूप में जोड़ी या हटाई गई ऊर्जा हैं। इसी प्रकार 'कार्य ऊर्जा' के लिए का अर्थ है कि कार्य ऊष्मप्रवैगिकी के माध्यम से प्राप्त गई ऊर्जा आंतरिक ऊर्जा प्रणाली का अधिकार है, जबकि किया गया कार्य और आपूर्ति की गई ऊष्मा नहीं है। इस अंतर का परिणाम यह है कि दी गई आंतरिक ऊर्जा में परिवर्तन होता है ऊष्मा और कार्य के विभिन्न संयोजनों द्वारा प्राप्त किया जा सकता है। इसका संकेत यह कि ऊष्मा और कार्य पथ पर निर्भर हैं, जबकि आंतरिक ऊर्जा में परिवर्तन प्रक्रिया की प्रारंभिक और अंतिम अवस्थाओं पर निर्भर करता है। यह ध्यान रखना आवश्यक है कि ऊष्मप्रवैगिकी य कार्य को प्रणाली में परिवर्तन द्वारा मापा जाता है, तथा आसपास के बलों और दूरियों द्वारा मापे गए कार्य के समान होता है, [16] यह अंतर 'आइसोकोरिक प्रक्रिया' स्थिर आयतन पर शब्द में उल्लेखित है।

बंद व्यवस्थाओं के लिए नियम के विभिन्न कथन

विधि का महत्व बहुत व्यापक है, और फलस्वरूप कई प्रस्तावो से इस पर विचार किया जाता है। नियम के सबसे सावधान पाठ्यपुस्तक के कथन इसे बंद प्रणालियों के लिए व्यक्त करते हैं। यह कई तरह से कहा गया है, कभी-कभी एक ही लेखक द्वारा भी।[8]बंद प्रणालियों के ऊष्मप्रवैगिकी के लिए,प्रबंध के रूप में ऊर्जा के हस्तांतरण और ऊष्मा के रूप में अंतर केंद्रीय किया जाता है और वर्तमान लेख के अधिकार में ऊष्मप्रवैगिकी प्रणाली के लिए खुला तंत्र, ऐसा भेद वर्तमान लेख के अधिकार से बाहर है,यद्यपि इस पर कुछ सीमित टिप्पणियाँ नीचे दिए गए अनुभाग में उष्मागतिकी के प्रथम नियम मुक्त तंत्र के लिए ऊष्मप्रवैगिकी के प्रथम नियम में की गई हैं।

ऊष्मप्रवैगिकी के नियम को भौतिक या गणितीय रूप से बताने के दो मुख्य नियम हैं। उन्हें तार्किक रूप से सुसंगत और एक दूसरे के अनुरूप होना चाहिए।[17]भौतिक कथन का एक उदाहरण मैक्स प्लैंक (1897/1903) का है:

यह किसी भी तरह से संभव नहीं है, या तो यांत्रिक, तापीय रासायनिक, या अन्य उपकरणों द्वारा, सतत गति प्राप्त करने के लिए, अर्थात एक इंजन का निर्माण करना असंभव है जो एक चक्र में प्रबंध करेगा और निरंतर कार्य या गतिज ऊर्जा का उत्पादन करेगा, .[18]

यह भौतिक कथन न तो बंद प्रणालियों तक ही सीमित है और न ही क्षेत्रो के साथ प्रणालियों के लिए जो मात्र ऊष्मप्रवैगिकी य संतुलन के लिए दृढ़ता से परिभाषित हैं; इसका अर्थ खुली प्रणालियों के लिए और उन क्षेत्रो के लिए भी है जो ऊष्मप्रवैगिकी य संतुलन में नहीं हैं।

गणितीय कथन का एक उदाहरण क्रॉफोर्ड (1963) का है, किसी दिए गए प्रणाली के लिए हम ΔE kin = बड़े पैमाने पर यांत्रिक ऊर्जा, ΔE pot = बड़े पैमाने पर संभावित ऊर्जा, और ΔE tot = कुल ऊर्जा जाने देते है उपयुक्त यांत्रिक चर के संदर्भ में और परिभाषा के अनुसार पहली दो मात्राएँ निर्दिष्ट हैं

किसी भी परिमित प्रक्रिया के लिए, चाहे उत्क्रमणीय हो या अनुत्क्रमणीय

एक रूप में पहला कानून जिसमें ऊर्जा के संरक्षण के सिद्धांत को अधिक सामान्यतः सम्मिलित किया गया है

यहाँ Q और W ऊष्मा और कार्य जोड़े गए हैं, इस पर कोई प्रतिबंध नहीं है कि क्या प्रक्रिया उत्क्रमणीय, अर्धस्थैतिक, या अपरिवर्तनीय है। वार्नर, एम जे भौतिक, 29, 124 (1961][19]

W के लिए क्रॉफर्ड का यह कथन आईयूपीएसी के संकेत परिपाटी का उपयोग करता है, क्लॉसियस के नहीं। परंतु यह स्पष्ट रूप से बंद प्रणालियों को संदर्भित करता है। सामान्यतः,आंतरिक ऊर्जा यू का मूल्यांकन ऊष्मप्रवैगिकी य संतुलन के स्थिति में निकायों के लिए किया जाता है, जिसमें अच्छी तरह से परिभाषित तापमान होते हैं, लेकिन यह सामान्यतः प्रणाली में सभी कणों की गतिशील और संभावित ऊर्जा का योग होता है,प्रायः एक संदर्भ के सापेक्ष स्थिति ।

बंद प्रणालियों के लिएनियम के तथ्यों के इतिहास में ब्रायन 1907 कैराथियोडोरी 1909,के काम से पहले और बाद में दो मुख्य अवधियां हैं, और बॉर्न (1921) द्वारा कैराथोडोरी के काम की स्वीकृति बंद प्रणालियों के लिए कानून के पहले के पारंपरिक संस्करण आजकल प्रायः पुराने माने जाते हैं।

संतुलन ऊष्मप्रवैगिकी की कैराथोडोरी की प्रसिद्ध प्रस्तुति बंद प्रणालियों को संदर्भित करती है, जिसमें विभिन्न प्रकार की अभेद्यता और पारगम्यता की आंतरिक दीवारों से जुड़े कई चरणों को सम्मिलित करने की अनुमति है स्पष्ट रूप से ऐसी दीवारें सम्मिलित हैं जो मात्र ऊष्मा के लिए पारगम्य हैं। ऊष्मप्रवैगिकी के पहले नियम के कैराथोडोरी के 1909 के संस्करण को स्वयंसिद्ध द्वारा कहा गया था जो तापमान या स्थानांतरित ऊष्मा की मात्रा को परिभाषित करने या उल्लेख करने से रोकता है। उस स्वयंसिद्ध ने कहा कि संतुलन में एक चरण की आंतरिक ऊर्जा स्थिति का कार्य करता है, चरणों की आंतरिक ऊर्जा का योग प्रणाली की कुल आंतरिक ऊर्जा है, और यह कि प्रणाली की कुल आंतरिक ऊर्जा का मूल्य है ऊर्जा के एक रूप के रूप में कार्य पर विचार करते हुए, उस पर रुद्धोष्म रूप से किए गए कार्य की मात्रा से बदल जाता है। उस लेख ने इस कथन को ऐसी प्रणालियों के लिए ऊर्जा के संरक्षण के नियम की अभिव्यक्ति माना। यह संस्करण आजकल आधिकारिक एवं व्यापक रूप से स्वीकार किया जाता है, लेकिन अलग-अलग लेखकों द्वारा इसे अलग अलग नियमों से परिभाषित किया गया है।

बंद प्रणालियों के लिए पहलेनियम के ऐसे कथन रुद्धोष्म कार्य के संदर्भ में परिभाषित स्थिति के कार्य के रूप में आंतरिक ऊर्जा के अस्तित्व पर बल देते हैं। इस प्रकार ऊष्मा को कैलोरीमितीय रूप से या तापमान अंतर के कारण परिभाषित नहीं किया जाता है। इसे आंतरिक ऊर्जा के परिवर्तन और प्रणाली पर किए गए कार्य के मध्य अवशिष्ट अंतर के रूप में परिभाषित किया जाता है, जब वह कार्य आंतरिक ऊर्जा के संपूर्ण परिवर्तन के लिए उत्तरदायी नहीं होता है और प्रणाली रुद्धोष्म रूप से पृथक नहीं होता है।[14]नियम के 1909 कैराथियोडोरी स्टेटमेंट में स्वयंसिद्ध रूप में ऊष्मा या तापमान का उल्लेख नहीं होता है,परंतु संतुलन यह संदर्भित करता है कि चर समुच्चय द्वारा स्पष्ट रूप से परिभाषित किया गया है जिसमें आवश्यक रूप से गैर-विरूपण चर सम्मिलित हैं, जैसे दबाव, को उचित प्रतिबंधों के भीतर, अनुभवजन्य तापमान के रूप में सही ढंग से व्याख्या किया गया है,[20] और प्रणाली के चरणों को जोड़ने वाली दीवारों को स्पष्ट रूप से ऊष्मा के लिए संभवतः अभेद्य या ऊष्मा के लिए पारगम्य के रूप में परिभाषित किया गया है।

म्यूनस्टर 1970 के अनुसार, कैराथियोडोरी के सिद्धांत का कुछ हद तक असंतोषजनक पहलू यह है कि दूसरेनियम के परिणाम पर इस बिंदु पर विचार किया जाना चाहिए, अर्थात किसी भी क्षेत्र 2 तक पहुंचना सदैव संभव नहीं होता है रुद्धोष्म प्रक्रिया के माध्यम से किसी अन्य क्षेत्र से 1 मुंस्टर का उदाहरण है कि स्थिर आयतन पर कोई भी स्थिरोष्मा प्रक्रिया प्रणाली की आंतरिक ऊर्जा को कम नहीं कर सकती है।[14]कैराथियोडोरी के पेपर में दावा किया गया है कि पहलेनियम का कथन वास्तव में जौल की प्रयोगात्मक व्यवस्था के अनुरूप है, जिसे रूद्धोष्म कार्य का एक उदाहरण माना जाता है। यह इंगित नहीं करता है कि जूल की प्रायोगिक व्यवस्था ने एक तरल में पैडल के घर्षण के माध्यम से, या एक प्रतिरोध के माध्यम से विद्युत प्रवाह के पारित होने के माध्यम से अनिवार्य रूप से अपरिवर्तनीय कार्य किया। या प्रणाली के अंदर एक प्रतिरोध के माध्यम से विद्युत प्रवाह के पारित होने,तथा कुंडली की गति और आगमनात्मक ऊष्मीय, स्रोत द्वारा संचालित,किया, जो इलेक्ट्रॉनों के मार्ग से प्रणाली तक पहुंच सकता है, और इसलिए कठोरता से स्थिरोष्म नहीं है, बल्कि इलेक्ट्रॉन पदार्थ का एक रूप है, जो रूद्धोष्म दीवारों में प्रवेश नहीं कर सकता है। पेपर अपने मुख्य तर्क को अर्ध-स्थैतिक रूद्धोष्म कार्य की संभावना पर आधारित करता है, जो अनिवार्य रूप से प्रतिवर्ती है। कागज का दावा है कि यह कार्नाट चक्रों के संदर्भ से बच जाएगा, और फिर आगे और पीछे के अर्ध-स्थैतिक स्थिरोष्मा चरणों के चक्रों पर अपने तर्क को आधार बनाने के लिए आगे बढ़ता है, शून्य परिमाण के समतापीय चरणों के साथ कभी-कभी कथन में आंतरिक ऊर्जा की अवधारणा को स्पष्ट नहीं किया जाता है। तथा आंतरिक ऊर्जा के अस्तित्व को स्पष्ट किया जाता है यद्यपि ऊष्मप्रवैगिकी के पहले अभिगृहीत के कथन में कार्य का स्पष्ट रूप से उल्लेख नहीं किया गया है। गैर-स्थिरोष्मा प्रक्रिया में, कार्य को ध्यान में रखने के बाद आपूर्ति की गई ऊष्मा को आंतरिक ऊर्जा में अवशिष्ट परिवर्तन के रूप में परिभाषित किया जाता है।[21]एक सम्मानित आधुनिक लेखक ऊष्मप्रवैगिकी के पहले नियम को बताता है क्योंकि ऊष्मा ऊर्जा का एक रूप है, जिसमें स्पष्ट रूप से न तो आंतरिक ऊर्जा और न ही रुद्धोष्म कार्य का उल्लेख है। ऊष्मा को एक जलाशय के साथ तापीय संपर्क द्वारा हस्तांतरित ऊर्जा के रूप में परिभाषित किया जाता है, जिसका तापमान होता है, और प्रायः इतना बड़ा होता है कि ऊष्मा को जोड़ने और हटाने से इसका तापमान नहीं बदलता है।[22] रसायन विज्ञान पर एक वर्तमान छात्र पाठ इस प्रकार ऊष्मा को परिभाषित करता है: ऊष्मा एक तापमान अंतर के कारण एक प्रणाली और उसके परिवेश के मध्य तापीय ऊर्जा का आदान-प्रदान है। इसके बाद लेखक बताता है कि ताप क्षमता, विशिष्ट ताप क्षमता, दृढ़ ताप क्षमता और तापमान के संदर्भ में ऊष्मा को कैसे परिभाषित या कैलोरीमेट्री द्वारा मापा जाता है।[23]एक सम्मानित पाठ बंद प्रणालियों के लिए पहलेनियम के कथन से ऊष्मा के उल्लेख के कैराथियोडोरी के बहिष्करण की अवहेलना करता है, और प्रबंध और आंतरिक ऊर्जा के साथ-साथ कैलोरीमेट्रिक रूप से परिभाषित ऊष्मा को स्वीकार करता है।[24] एक अन्य सम्मानित पाठ ताप विनिमय को तापमान अंतर द्वारा निर्धारित के रूप में परिभाषित करता है,यद्यपि यह भी उल्लेख करता है कि बोर्न (1921) संस्करण पूरी तरह से कठोर है।[25] ये संस्करण पारंपरिक प्रस्ताव का पालन करते हैं जिसे अब पुराना माना जाता है, जिसका उदाहरण प्लैंक (1897/1903) ने दिया था।[26]


बंद प्रणालियों के लिए ऊष्मप्रवैगिकी के पहले नियम के लिए साक्ष्य

बंद प्रणालियों के लिए ऊष्मप्रवैगिकी का प्रथम नियम मूल रूप से कैलोरीमेट्रिक साक्ष्य सहित अनुभवजन्य रूप से देखे गए साक्ष्य से प्रेरित था। यद्यपि, आजकल इसे ऊर्जा के संरक्षण केनियम के माध्यम से ऊष्मा की परिभाषा प्रदान करने और प्रणाली के बाहरी पैरामीटर में परिवर्तन के संदर्भ में कार्य की परिभाषा प्रदान करने के लिए लिया जाता है।नियम की मूल खोज संभवतः आधी शताब्दी या उससे अधिक की अवधि में क्रमिक थी, और कुछ प्रारंभिक अध्ययन चक्रीय प्रक्रियाओं के संदर्भ में थे।[7]निम्नलिखित यौगिक प्रक्रियाओं के माध्यम से एक बंद प्रणाली की स्थिति के परिवर्तन के संदर्भ में एक खाता है जो आवश्यक रूप से चक्रीय नहीं हैं। यह खाता पहले उन प्रक्रियाओं पर विचार करता है जिनके लिए प्रथम नियम उनकी सरलता के कारण आसानी से सत्यापित हो जाता है, अर्थात् रूद्धोष्म प्रक्रियाएं ऊष्मा के रूप में कोई स्थानांतरण नहीं होता है और ऊष्मप्रवैगिकी प्रणाली जिसमें कार्य के रूप में कोई स्थानांतरण नहीं होता है।

रुद्धोष्म प्रक्रियाएं

रूद्धोष्म प्रक्रम में ऊर्जा का स्थानान्तरण कार्य के रूप में होता है न कि ऊष्मा के रूप में। सभी रूद्धोष्म प्रक्रियाओं के लिए जो किसी प्रणाली को दी गई आरंभिक अवस्था से दी गई अंतिम अवस्था तक ले जाती है, भले ही कार्य कैसे किया गया हो, कार्य के रूप में स्थानांतरित ऊर्जा से संबंधित अंतिम कुल मात्रा के समान होती है, जो मात्र दिए गए आरंभिक द्वारा निर्धारित की जाती है और अंतिम अवस्थाएँ प्रणाली पर किए गए कार्य को प्रणाली के बाहरी यांत्रिक या अर्ध-यांत्रिक चर में परिवर्तन द्वारा परिभाषित और मापा जाता है। भौतिक रूप से, कार्य के रूप में ऊर्जा के रुद्धोष्म हस्तांतरण के लिए रुद्धोष्म बाड़ों के अस्तित्व की आवश्यकता होती है।

उदाहरण के लिए, जूल के प्रयोग में, प्रारंभिक प्रणाली एक पानी की टंकी है जिसके अंदर पैडल व्हील है। यदि हम टैंक को ऊष्मीय रूप से अलग करते हैं, और पैडल व्हील को चरखी और भार के साथ घुमाते हैं, तो हम तापमान में वृद्धि को द्रव्यमान द्वारा नीचे की दूरी के साथ संबंधित कर सकते हैं। इसके उपरांत , प्रणाली को अपनी प्रारंभिक स्थिति में लौटाया जाता है, तथा पुनः इसे अलग किया जाता है, और विभिन्न उपकरणों का उपयोग करके टैंक पर समान मात्रा में कार्य किया जाता है। सभीनियम यों में, कार्य की मात्रा को स्वतंत्र रूप से मापा जा सकता है। प्रणाली पर स्थिरोष्मा कार्य करने से प्रारंभिक अवस्था में वापसी नहीं होती है। परिणाम बताते हैं कि पानी की अंतिम स्थिति सभी नियमों में समान होती है। तथा यह अप्रासंगिक है यदि कार्य विद्युत का यांत्रिक, रासायनिक या यदि अचानक धीरे-धीरे किया जाता है, जब तक कि यह एक स्थिरोष्मा नियमों से किया जाता है, अर्थात प्रणाली में या बाहर ऊष्मा हस्तांतरण के अतिरिक्त होता है इस तरह के साक्ष्य से पता चलता है कि टैंक में पानी का तापमान बढ़ाने के लिए, रूद्धोष्म रूप से किए गए गुणात्मक प्रकार के प्रबंध से कोई अंतर नहीं पड़ता। टैंक में पानी के तापमान को कम करने के लिए कोई गुणात्मक प्रकार का रूद्धोष्म कार्य कभी नहीं देखा गया है।

एक अवस्था से दूसरी अवस्था में परिवर्तन, उदाहरण के लिए तापमान और आयतन दोनों में वृद्धि, कई चरणों में आयोजित की जा सकती है, उदाहरण के लिए शरीर में एक प्रतिरोधक पर बाह्य रूप से आपूर्ति किए गए विद्युत कार्य और स्थिरोष्मा विस्तार से शरीर को प्रबंध करने की अनुमति मिलती है। परिवेश मे यह दिखाने की जरूरत है कि चरणों का समय क्रम, और उनके सापेक्ष परिमाण, स्थिति के परिवर्तन के लिए किए जाने वाले रुद्धोष्म कार्य की मात्रा को प्रभावित नहीं करते हैं। एक सम्मानित विद्वान के अनुसार'' दुर्भाग्य से ऐसा नहीं लगता कि इस प्रकार के प्रयोग कभी सावधानीपूर्वक किए गए हों। इसलिए हमें यह स्वीकार करना चाहिए कि जो कथन हमने यहां दिया है, और जो ऊष्मप्रवैगिकी के पहले नियम के बराबर है, प्रत्यक्ष प्रायोगिक साक्ष्य पर अच्छी तरह से स्थापित नहीं है।[11] इस प्रस्ताव की एक और अभिव्यक्ति इस सामान्यीकरण को सीधे सत्यापित करने के लिए कोई व्यवस्थित प्रयोग का कभी भी प्रयास नहीं किया गया है।[27]इस तरह के साक्ष्य, चरणों के अनुक्रम की स्वतंत्रता, उपर्युक्त साक्ष्य के साथ, गुणात्मक प्रकार के कार्य की स्वतंत्रता के साथ, एक महत्वपूर्ण क्षेत्र चर के अस्तित्व को दर्शाया गया है जो स्थिरोष्मा कार्य से मेल खाता है,परंतु ऐसा स्तिथि संरक्षित मात्रा का प्रतिनिधित्व करता है। उत्तरार्द्ध के लिए,साक्ष्य के एक और चरण आवश्यक होता है, जो कि नीचे बताए अनुसार, प्रतिवर्तीत अवधारणा से संबंधित होता है।

उस महत्वपूर्ण क्षेत्र चर को पहले पहचाना और निरूपित किया गया, तथा 1850 में क्लॉसियस द्वारा, ऊष्मा हस्तांतरण के संदर्भ में परिभाषित किया गया। इसे 1850 में रैंकिन द्वारा स्वतंत्र रूप से मान्यता दी गई थी, जिन्होंने इसे निरूपित भी किया था और 1851 में केल्विन ने इसे यांत्रिक ऊर्जा और बाद में आंतरिक ऊर्जा कहा। U"ऊर्जा" 1882 में हेल्महोल्ट्ज़ द्वारा इसे आंतरिक ऊर्जा का नाम दिया गया था। यदि केवल रूद्धोष्म प्रक्रियाएँ रुचि की होतीं हैं तो ताप को अनदेखा किया जा सकता, जो कि आंतरिक ऊर्जा की अवधारणा संभवतः ही उत्पन्न होती या इसकी आवश्यकता होती। प्रासंगिक भौतिकी अधिकतर संभावित ऊर्जा की अवधारणा से आच्छादित होगी, जैसा कि हेल्महोल्ट्ज़ के 1847 के पेपर में ऊर्जा के संरक्षण के सिद्धांत पर किया गया था, प्रायः यह उन बलों से संबंधित नहीं था जिन्हें एक संभावित द्वारा वर्णित नहीं किया जा सकता है, और इस सिद्धांत को पूरी तरह से सही ठहराएं। इसके अतिरिक्त, वह पेपर जूल के प्रारम्भिक कार्य की आलोचना भी किए थे आंतरिक ऊर्जा अवधारणा का एक बड़ा गुण यह है कि यह ऊष्मप्रवैगिकी को चक्रीय प्रक्रियाओं के प्रतिबंध से मुक्त करता है, और ऊष्मप्रवैगिकी संदर्भ स्थिति में निष्पादन की अनुमति देता है।

रुद्धोष्म प्रक्रिया में, रूद्धोष्म कार्य प्रणाली को एक संदर्भ स्थिति से लेता है या तो आंतरिक ऊर्जा के साथ एक यादृच्छिक करने के लिए आंतरिक ऊर्जा के साथ , या क्षेत्र से क्षेत्र को संदर्भित करता है,

विशेष कड़ाई और काल्पनिक, उत्क्रमण की स्थिति,को छोड़कर, प्रक्रियाओं में से मात्र एक बाह्य रूप से आपूर्ति किए गए कार्य के सरल अनुप्रयोग द्वारा अनुभवजन्य रूप से संभव है। इसका कारण ऊष्मप्रवैगिकी के दूसरे नियम के रूप में दिया गया है और वर्तमान लेख में इस पर विचार नहीं किया गया है।

इस तरह की अपरिवर्तनीय तथ्य को विभिन्न प्रस्तावो के अनुसार दो मुख्य नियमों से निर्धारण किया जा सकता है:

ब्रायन (1907) के प्रबंध के बाद से, आजकल इससे निपटने का सबसे स्वीकृत नियम, कैराथोडोरी,अर्ध-स्थैतिक प्रक्रियाओं की पहले से स्थापित अवधारणा पर भरोसा करते है, निम्नलिखित कार्य के रूप में ऊर्जा के हस्तांतरण की वास्तविक भौतिक प्रक्रिया हमेशा कम से कम कुछ हद तक अपरिवर्तनीय होती है। अपरिवर्तनीयता प्रायः अपव्यय के रूप में जानी जाने वाली तंत्र के कारण होती है, जो बल्क गतिज ऊर्जा को आंतरिक ऊर्जा में बदल देती है। उदाहरण घर्षण और चिपचिपाहट हैं। यदि प्रक्रिया अधिक धीमी गति से की जाती है, तो घर्षण या चिपचिपा अपव्यय कम होता है। असीम रूप से धीमी गति से प्रदर्शन की सीमा में, अपव्यय शून्य हो जाता है और फिर सीमित प्रक्रिया, यद्यपि वास्तविक केअतिरिक्त काल्पनिक, काल्पनिक रूप से प्रतिवर्ती है, और इसे अर्ध-स्थैतिक कहा जाता है। अर्ध-स्थैतिक प्रक्रिया को काल्पनिक सीमित करने केसमय प्रणाली के आंतरिक गहन चर बाहरी गहन चर के बराबर होते हैं, जो कि आसपास के प्रतिक्रियाशील बलों का वर्णन[28] इस सूत्र को सही ठहराने के लिए लिया जा सकता है।

 

 

 

 

(1)

इससे निपटने का एक अन्य नियम यह है कि उपरोक्त सूत्र (1) को सही ठहराने के लिए प्रणाली में या प्रणाली से ताप हस्तांतरण की प्रक्रियाओं के साथ प्रयोग किया जा सकता है। इसके अतरिक्त, यह प्रत्यक्ष प्रयोगात्मक साक्ष्य की कमी की समस्या से संबंधित है कि प्रक्रिया के चरणों का समय क्रम आंतरिक ऊर्जा के निर्धारण में कोई फर्क नहीं पड़ता हैं। यह नियम रूद्धोष्म कार्य प्रक्रियाओं के संदर्भ में सैद्धांतिक शुद्धता प्रदान नहीं करता है, लेकिन अनुभवजन्य रूप से व्यवहार्य है, और वास्तव में किए गए प्रयोगों के अनुरूप है, जैसे कि ऊपर वर्णित जौल प्रयोग, और पुरानी परंपराओं के साथ वर्णित हैं।

सूत्र (1) उपरोक्त अनुमति देता है कि क्षेत्र से अर्ध-स्थैतिक रुद्धोष्म कार्य की प्रक्रियाओं द्वारा जाना जाता है क्षेत्र से क्षेत्र हम एक पथ ले सकते हैं जो संदर्भ स्थिति से होकर जाता है, चूंकि अर्ध-स्थैतिक रुद्धोष्म कार्य पथ से स्वतंत्र है।

इस तरह के अनुभवजन्य साक्ष्य, इस तरह के सिद्धांत के साथ मिलकर निम्नलिखित कथन को सही ठहराते हैं।

किसी भी प्रकृति की एक बंद प्रणाली के दो निर्दिष्ट क्षेत्रो के मध्य सभी स्थिरोष्मा प्रक्रियाओं के लिए, प्रक्रिया के विवरण की परवाह किए बिना किया गया शुद्ध कार्य समान है, और आंतरिक ऊर्जा नामक एक क्षेत्र कार्य निर्धारित करता है।

गतिशील प्रक्रियाएं

प्रथम नियम का एक पूरक अवलोकन योग्य पहलू ऊष्मा हस्तांतरण के बारे में है। उष्मा के रूप में ऊर्जा के गतिशील हस्तांतरण को कैलोरीमेट्री द्वारा रूचि की प्रणाली के परिवेश में परिवर्तन द्वारा आनुभविक रूप से मापा जा सकता है। इसके लिए फिर से पूरी प्रक्रिया, प्रणाली और परिवेश के रुद्धोष्म परिक्षेत्र के अस्तित्व की आवश्यकता होती है, यद्यपि परिवेश और प्रणाली के मध्य अलग करने वाली दीवार ऊष्मीय रूप से प्रवाहकीय या विकिरण पारगम्य है, रुद्धोष्म नहीं। एक कैलोरीमीटर संवेदी ऊष्मा के माप पर विश्वास कर सकता है, जिसके लिए थर्मामीटर के अस्तित्व की आवश्यकता होती है और विशिष्ट परिस्थितियों में ज्ञात संवेदी ताप क्षमता वाले निकायों में तापमान परिवर्तन की माप होती है; या यह चरण परिवर्तन कैलोरीमेट्री के माध्यम से गुप्त ऊष्मा के माप पर विश्वास कर सकता है, क्षेत्र के समीकरण चरण परिवर्तन की ज्ञात गुप्त ऊष्मा के निकायों में निर्दिष्ट स्थितियों के तहत चरण परिवर्तनों की घटना से निर्धारित तापमान पर असंतुलन दिखाता है। कैलोरीमीटर को उसमें बाह्य रूप से निर्धारित ऊष्मा की मात्रा को स्थानांतरित करके कैलिब्रेट किया जा सकता है, उदाहरण के लिए कैलोरीमीटर के अंदर एक प्रतिरोधक विद्युत तापीय से जिसके माध्यम से एक ठीक-ठीक ज्ञात विद्युत प्रवाह को ठीक-ठीक मापी गई अवधि के लिए ठीक-ठीक ज्ञात वोल्टेज पर पारित किया जाता है। अंशांकन परिवेश-आधारित के रूप में हस्तांतरित ऊर्जा की मात्रा के साथ स्थानांतरित ऊष्मा की मात्रा के कैलोरीमेट्रिक माप की तुलना करने की अनुमति देता है।[16] प्रबंध एक पाठ्यपुस्तक के अनुसार, मापने के लिए सबसे आम उपकरण एक रुद्धोष्म अणु कैलोरीमीटर है।[29] एक अन्य पाठ्यपुस्तक के अनुसार, कैलोरीमिति का उपयोग वर्तमान प्रयोगशालाओं में व्यापक रूप से किया जाता है।[30] एक मत के अनुसार, अधिकांश ऊष्मप्रवैगिकी य डेटा कैलोरीमेट्री से आते हैं।[16]

जब एक गतिशील प्रक्रिया में ऊर्जा को कार्य के रूप में स्थानांतरित किए बिना ऊष्मा के रूप में ऊर्जा के हस्तांतरण के साथ प्रणाली विकसित होती है,[31] प्रणाली में स्थानांतरित ऊष्मा इसकी आंतरिक ऊर्जा में वृद्धि के बराबर है:


प्रतिवर्ती प्रक्रियाओं के लिए सामान्य मामला

ऊष्मा हस्तांतरण व्यावहारिक रूप से प्रतिवर्ती होता है जब यह व्यावहारिक रूप से नगण्य रूप से छोटे तापमान प्रवणता द्वारा संचालित होता है। कार्य स्थानांतरण व्यावहारिक रूप से उत्क्रमणीय होता है जब यह इतनी धीमी गति से होता है कि प्रणाली के भीतर कोई घर्षण प्रभाव नहीं होता है; यदि प्रक्रिया को प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी य) होता है तो प्रणाली के बाहर घर्षण प्रभाव भी शून्य होना चाहिए। किसी विशिष्ट उत्क्रमणीय प्रक्रिया के लिए सामान्यतः तंत्र पर उत्क्रमणीय रूप से किया गया कार्य, , और ऊष्मा विपरीत रूप से प्रणाली में स्थानांतरित हो जाती है, क्रमशः रूद्धोष्म या गतिशील रूप से होने की आवश्यकता नहीं है,यद्यपि वे उसी विशेष प्रक्रिया से संबंधित होने चाहिए जो इसके विशेष प्रतिवर्ती पथ द्वारा परिभाषित है, ऊष्मप्रवैगिकी य क्षेत्र के स्थान के माध्यम से फिर प्रबंध और ऊष्मा हस्तांतरण हो सकता है और एक साथ गणना की जा सकता है।

दो पूरक पहलुओं को एक साथ रखकर, किसी विशेष उत्क्रमणीय प्रक्रिया के लिए प्रथम नियम लिखा जा सकता है

यह संयुक्त कथन बंद प्रणालियों के लिए प्रतिवर्ती प्रक्रियाओं के लिए ऊष्मप्रवैगिकी का प्रथम नियम है।

विशेष रूप से, यदि हमारे पास तापीय रूप से पृथक बंद प्रणाली पर कोई प्रबंध नहीं किया जाता है

.

यह ऊर्जा के संरक्षण केनियम का एक पहलू है और कहा जा सकता है:

एक पृथक प्रणाली की आंतरिक ऊर्जा स्थिर रहती है।

अपरिवर्तनीय प्रक्रियाओं के लिए सामान्य मामला

यदि, एक बंद प्रणाली की स्थिति बदलने की प्रक्रिया में, ऊर्जा हस्तांतरण व्यावहारिक रूप से शून्य तापमान प्रवणता, व्यावहारिक रूप से घर्षण रहित और लगभग संतुलित बलों के साथ नहीं है, तो प्रक्रिया अपरिवर्तनीय है। फिर उच्च सटीकता के साथ ऊष्मा और प्रबंध के हस्तांतरण की गणना करना कठिन हो सकता है, यद्यपि प्रतिवर्ती प्रक्रियाओं के लिए सरल समीकरण अभी भी रचना परिवर्तनों की अनुपस्थिति में एक अच्छा सन्निकटन रखते हैं। महत्वपूर्ण रूप से, प्रथमनियम अभी भी प्रणाली पर अपरिवर्तनीय रूप से किए गए कार्य के माप और गणना पर जांच करता है और प्रदान करता है, , और ऊष्मा अपरिवर्तनीय रूप से प्रणाली में स्थानांतरित हो जाता है, , जो अपने विशेष अपरिवर्तनीय पथ द्वारा परिभाषित उसी विशेष प्रक्रिया से संबंधित हैं, ऊष्मप्रवैगिकी य क्षेत्र के स्थान के माध्यम से होता हैं।

इसका अर्थ है आंतरिक ऊर्जा क्षेत्र का एक कार्य है और आंतरिक ऊर्जा परिवर्तन है दो क्षेत्र के मध्य मात्र दो क्षेत्र का एक कार्य है।

विधि के लिए साक्ष्य के भार का अवलोकन

ऊष्मप्रवैगिकी का प्रथम नियम इतना सामान्य है कि इसकी सभी भविष्यवाणियों का सीधे परीक्षण नहीं किया जा सकता है। ठीक से किए गए कई प्रयोगों में इसका ठीक-ठीक समर्थन किया गया है, और इसका कभी उल्लंघन नहीं किया गया। दरअसल, प्रयोज्यता के अपने दायरे के भीतर,नियम इतनी मज़बूती से स्थापित है, कि आजकल प्रयोग कोनियम की सटीकता के परीक्षण के रूप में माना जाने के अतिरिक्त, प्रयोग की सटीकता के परीक्षण के रूप मेंनियम के बारे में सोचना अधिक व्यावहारिक और यथार्थवादी है। एक प्रयोगात्मक परिणाम जोनियम का उल्लंघन करता प्रतीत होता है, तो उसे गलत या गलत तरीके से माना जा सकता है, इस प्रकार, कुछ इसेनियम के सापेक्ष अधिक अमूर्त सिद्धांत के रूप में माना जा सकता हैं।

अत्यल्प प्रक्रियाओं के लिए क्षेत्र कार्यात्मक सूत्रीकरण

जब ऊपर दिए गए समीकरणों में ऊष्मा और प्रबंध का स्थानांतरण परिमाण में अतिसूक्ष्म होता है, तो उन्हें प्रायःनिरूपित किया जाता है δ, द्वारा निरूपित सटीक अंतर के अतिरिक्त d, एक अनुस्मारक के रूप में कि ऊष्मा और कार्य किसी भी प्रणाली की स्थिति का वर्णन नहीं करते हैं। एक अचूक अंतर का अभिन्न ऊष्मप्रवैगिकी य मापदंडों के स्थान के माध्यम से लिए गए विशेष पथ पर निर्भर करता है जबकि एक सटीक अंतर का अभिन्न मात्र प्रारंभिक और अंतिम अवस्थाओं पर निर्भर करता है। यदि प्रारंभिक और अंतिम अवस्थाएँ समान हैं, तो एक अचूक अंतर का समाकल शून्य हो भी सकता है और नहीं भी,यद्यपि एक सटीक अंतर का समाकल हमेशा शून्य होता है। रासायनिक या भौतिक परिवर्तन के माध्यम से ऊष्मप्रवैगिकी य प्रणाली द्वारा लिया गया पथ ऊष्मप्रवैगिकी य प्रक्रिया के रूप में जाना जाता है।

एक बंद सजातीय प्रणाली के लिए प्रथमनियम उन शब्दों में कहा जा सकता है जिनमें दूसरेनियम में स्थापित अवधारणाएं सम्मिलित हैं। आंतरिक ऊर्जा U तब प्रणाली के परिभाषित क्षेत्र चर के एक सम्मेलन के रूप में व्यक्त किया जा सकता है S, एन्ट्रापी, और V, आयतन: U = U (S, V). इन शब्दों में, T, प्रणाली का तापमान, और P, इसका दबाव, के आंशिक रूप से व्युत्पन्न हैं U इसके संबंध में S और V. ये चर संपूर्ण ऊष्मप्रवैगिकी में महत्वपूर्ण हैं,पहलेनियम के कथन के लिए आवश्यक नहीं है। कठोर रूप से, उन्हें तभी परिभाषित किया जाता है जब प्रणाली आंतरिक ऊष्मप्रवैगिकी य संतुलन की अपनी स्थिति में होता है। कुछ उद्देश्यों के लिए, अवधारणाएं प्रणाली के आंतरिक ऊष्मप्रवैगिकी य संतुलन के पास पर्याप्त रूप से परिदृश्यों के लिए अच्छा सन्निकटन प्रदान करती हैं।

पहलेनियम की आवश्यकता है कि:

पुनः, एक उत्क्रमणीय प्रक्रिया के काल्पनिक विषयो के लिए, dU सटीक अंतरों के संदर्भ में लिखा जा सकता है। कोई प्रतिवर्ती प्रक्रिया ऊष्मप्रवैगिकी य परिवर्तनों की कल्पना कर सकता है, जैसे कि प्रणाली के भीतर और प्रणाली परिवेश के मध्य ऊष्मप्रवैगिकी य संतुलन से प्रत्येक पल नगण्य प्रस्थान होता है। पुनः, यांत्रिक कार्य द्वारा दिया जाता है और इन नियमों के लिए जोड़े गए ताप की मात्रा को δQ = T dS के रूप में व्यक्त किया जा सकता है।

यद्यपि यह यहाँ प्रतिवर्ती परिवर्तनों के लिए दिखाया गया है, यह रासायनिक प्रतिक्रियाओं या चरण संक्रमणों की अनुपस्थिति में अधिक सामान्य रूप से मान्य है, जैसा कि U को परिभाषित क्षेत्र चर के S और V ऊष्मप्रवैगिकी य क्षेत्र सम्मेलन के रूप में माना जा सकता है

समीकरण (2) ऊर्जा प्रतिनिधित्व में एक बंद प्रणाली के लिए मौलिक ऊष्मप्रवैगिकी य संबंध के रूप में जाना जाता है, जिसके लिए परिभाषित क्षेत्र चर हैं S और V, जिसके संबंध में T और P के आंशिक रूप से व्युत्पन्न होता है U. मात्र उत्क्रमणीय स्थिति में या संघटन परिवर्तन केअतिरिक्त अर्धस्थैतिक प्रक्रिया के लिए किया गया कार्य और स्थानांतरित ऊष्मा को -P dV और T dS द्वारा दिया जाता है।

एक बंद प्रणाली के विषयो में जिसमें प्रणाली के कण विभिन्न प्रकार के होते हैं और, क्योंकि रासायनिक प्रतिक्रियाएं हो सकती हैं, उनकी संबंधित संख्या अनिवार्य रूप से स्थिर नहीं होती है, du के लिए मौलिक ऊष्मप्रवैगिकी य संबंध बन जाता है:

जहां dNi प्रतिक्रिया में टाइप-आई कणों की संख्या में छोटी वृद्धि है, और μi प्रणाली में टाइप-आई कणों की रासायनिक क्षमता के रूप में जाना जाता है। यदि डीएनi मोल इकाई में व्यक्त किया जाता है फिर μi J/mol में व्यक्त किया जाता है। यदि प्रणाली में मात्र वॉल्यूम की तुलना में अधिक बाहरी यांत्रिक चर हैं जो बदल सकते हैं, मौलिक ऊष्मप्रवैगिकी य संबंध आगे सामान्य करता है:

यहां एक्सi बाहरी चर x के संगत सामान्यीकृत बल हैंi. पैरामीटर एक्सi प्रणाली के आकार से स्वतंत्र हैं और गहन पैरामीटर और एक्स कहा जाता हैi आकार के आनुपातिक हैं और व्यापक पैरामीटर कहलाते हैं।

एक खुली प्रणाली के लिए, एक प्रक्रिया के समय कणों के साथ-साथ ऊर्जा को प्रणाली में या प्रणाली से बाहर स्थानांतरित किया जा सकता है। इस विषयो में, ऊष्मप्रवैगिकी का प्रथम नियम अभी भी इस रूप में है कि आंतरिक ऊर्जा क्षेत्र का एक कार्य है और एक प्रक्रिया में आंतरिक ऊर्जा का परिवर्तन मात्र प्रारंभिक और अंतिम अवस्थाओं का एक कार्य है, जैसा कि नीचे दिए गए खंड में बताया गया है।

यांत्रिकी से एक उपयोगी विचार यह है कि एक कण द्वारा प्राप्त ऊर्जा उस बल के लागू होने केसमय कण के विस्थापन से गुणा किए गए बल के बराबर होती है। अब तापन पद के अतिरिक्त प्रथम नियम पर विचार करें: dU = -P dV दबाव P को एक बल के रूप में देखा जा सकता है और वास्तव में प्रति इकाई क्षेत्र में बल की इकाइयाँ होती हैं जबकि dVis विस्थापन दूरी समय क्षेत्र की इकाइयों के साथ होती हैं। हम इस कार्य अवधि के संबंध में कह सकते हैं कि एक दबाव अंतर मात्रा के हस्तांतरण को बल देता है, और यह कि दो (कार्य) का उत्पाद प्रक्रिया के परिणामस्वरूप प्रणाली से स्थानांतरित ऊर्जा की मात्रा है। यदि कोई इस शब्द को नकारात्मक बनाता है तो यह प्रणाली पर किया जाने वाला कार्य होगा।

T dS शब्द को उसी प्रकाश में देखना उपयोगी है: यहाँ तापमान को एक सामान्यीकृत बल के रूप में जाना जाता है और एन्ट्रापी एक सामान्यीकृत विस्थापनके रूप मे जाना जाता है है।

इसी तरह, प्रणाली में कणों के समूहों के मध्य रासायनिक क्षमता में अंतर एक रासायनिक प्रतिक्रिया को प्रेरित करता है जो कणों की संख्या को बदलता है, और संबंधित उत्पाद प्रक्रिया में परिवर्तित रासायनिक संभावित ऊर्जा की मात्रा है। उदाहरण के लिए,तरल जल और जल वाष्प। वाष्पीकरण की एक सामान्यीकृत शक्ति है जो पानी के अणुओं को तरल से बाहर निकालती है। संक्षेपण की एक सामान्यीकृत शक्ति होती है जो वाष्प के अणुओं को वाष्प से बाहर निकालती है। मात्र जब ये दो बल (या रासायनिक क्षमता) बराबर होते हैं तो संतुलन होता है, और स्थानांतरण की शुद्ध दर शून्य होती है।

एक सामान्यीकृत बल-विस्थापन युग्म बनाने वाले दो ऊष्मप्रवैगिकी य पैरामीटर संयुग्म चर कहलाते हैं। भले ही, दो सबसे परिचित जोड़े हैं, दबाव-आयतन और तापमान-एन्ट्रॉपी के साथ संलग्न हो।

द्रव गतिकी

द्रव गतिकी में, ऊष्मप्रवैगिकी का प्रथम नियम पढ़ता है .[32]


स्थानिक रूप से विषम प्रणाली

पारंपरिक ऊष्मप्रवैगिकी प्रारंभ में बंद सजातीय प्रणालियों (जैसे प्लैंक 1897/1903) पर केंद्रित है[26], जिन्हें इस अर्थ में 'शून्य-आयामी' माना जा सकता है कि उनमें कोई स्थानिक भिन्नता नहीं है। यद्यपि अलग-अलग आंतरिक गति और स्थानिक विषमता वाले प्रणाली का भी अध्ययन करना वांछित है। ऐसी प्रणालियों के लिए, ऊर्जा के संरक्षण के सिद्धांत को न मात्र आंतरिक ऊर्जा के संदर्भ में व्यक्त किया जाता है, जैसा कि सजातीय प्रणालियों के लिए परिभाषित किया गया है, बल्कि एक दूसरे के संबंध में गतिज ऊर्जा और अमानवीय प्रणाली के भागों की संभावित ऊर्जा के संदर्भ में भी है। लंबी दूरी की बाहरी ताकतें।[33] इन तीन और विशिष्ट प्रकार की ऊर्जाओं के मध्य एक प्रणाली की कुल ऊर्जा कैसे आवंटित की जाती है, यह अलग-अलग लेखकों के उद्देश्यों के अनुसार भिन्न होता है; ऐसा इसलिए है क्योंकि ऊर्जा के ये घटक वास्तव में मापी गई भौतिक मात्राओं केअतिरिक्त कुछ हद तक गणितीय कलाकृतियाँ हैं। एक विषम बंद प्रणाली के किसी भी बंद सजातीय घटक के लिए, यदि उस घटक प्रणाली की कुल ऊर्जा को दर्शाता है,जो लिख सकता है।

जहाँ और निरूपित क्रमशः कुल गतिज ऊर्जा और घटक बंद सजातीय प्रणाली की कुल संभावित ऊर्जा, और इसकी आंतरिक ऊर्जा को दर्शाता है।[19][34] प्रणाली के परिवेश के साथ संभावित ऊर्जा का आदान-प्रदान किया जा सकता है जब परिवेश प्रणाली पर गुरुत्वाकर्षण या विद्युत चुम्बकीय जैसे बल क्षेत्र को लागू करता है।

एक यौगिक प्रणाली जिसमें दो अंतःक्रियात्मक बंद सजातीय घटक उपप्रणालियाँ होती हैं, में परस्पर क्रिया की संभावित ऊर्जा होती है सब प्रणाली के मध्य इस प्रकार, एक स्पष्ट संकेतन में, कोई लिख सकता है

मात्रा आम तौर पर सब प्रणाली के लिए एक ऐसे तरीके से असाइनमेंट की कमी होती है जो मनमाना नहीं है, और यह प्रबंध के रूप में ऊर्जा के हस्तांतरण की सामान्य गैर-मनमानी परिभाषा के रास्ते में खड़ा है। अवसरों पर, लेखक अपने विभिन्न संबंधित मनमाना कार्य करते हैं।[35] प्रणाली के भीतर अशांत गति की उपस्थिति में आंतरिक और गतिज ऊर्जा के मध्य अंतर करना कठिन है, क्योंकि घर्षण धीरे-धीरे अणुओं की आणविक यादृच्छिक गति में स्थानीय बल्क प्रवाह की मैक्रोस्कोपिक गतिज ऊर्जा को नष्ट कर देता है जिसे आंतरिक ऊर्जा के रूप में वर्गीकृत किया जाता है।[36] आंतरिक ऊर्जा में स्थानीय बल्क प्रवाह की गतिज ऊर्जा के घर्षण द्वारा अपव्यय की दर,[37] चाहे अशांत या सुव्यवस्थित प्रवाह में, गैर-संतुलन ऊष्मप्रवैगिकी में एक महत्वपूर्ण मात्रा है। समय-भिन्न स्थानिक रूप से विषम प्रणालियों के लिए एंट्रॉपी को परिभाषित करने के प्रयासों के लिए यह एक गंभीर कठिनाई होती है।

खुली प्रणाली के लिए ऊष्मप्रवैगिकी का प्रथम नियम

ऊष्मप्रवैगिकी के पहले नियम के लिए, बंद प्रणाली दृश्य से खुले प्रणाली दृश्य में भौतिक अवधारणा का कोई तुच्छ मार्ग नहीं है।[38][39] बंद प्रणालियों के लिए, एक रुद्धोष्म परिक्षेत्र और एक रुद्धोष्म दीवार की अवधारणा मौलिक हैं। पदार्थ और आंतरिक ऊर्जा ऐसी दीवार में प्रवेश या प्रवेश नहीं कर सकती है। एक खुली प्रणाली के लिए, एक दीवार होती है जो पदार्थ द्वारा प्रवेश की अनुमति देती है। सामान्य तौर पर, विसारक गति में पदार्थ अपने साथ कुछ आंतरिक ऊर्जा ले जाता है, और गति के साथ कुछ सूक्ष्म संभावित ऊर्जा परिवर्तन होते हैं। एक खुली प्रणाली रुद्धोष्म रूप से संलग्न नहीं है।

ऐसे कुछ विषयो हैं जिनमें एक खुली प्रणाली के लिए एक प्रक्रिया, विशेष उद्देश्यों के लिए, माना जा सकता है जैसे कि यह एक बंद प्रणाली के लिए हो। एक खुली प्रणाली में, काल्पनिक रूप से या संभावित रूप से, पदार्थ प्रणाली और उसके परिवेश के मध्य से गुजर सकता है।यद्यपि जब किसी विशेष विषयो में, रुचि की प्रक्रिया में मात्र काल्पनिक या संभावित सम्मिलित होता है,यद्यपि विषयो का कोई वास्तविक मार्ग नहीं होता है, तो इस प्रक्रिया पर विचार किया जा सकता है जैसे कि यह एक बंद प्रणाली के लिए हो।

एक खुली प्रणाली के लिए आंतरिक ऊर्जा

चूंकि एक बंद प्रणाली की आंतरिक ऊर्जा की संशोधित और अधिक कठोर परिभाषा प्रक्रियाओं की संभावना पर टिकी हुई है जिसके द्वारा रुद्धोष्म कार्य प्रणाली को एक क्षेत्र से दूसरे क्षेत्र में ले जाता है, यह एक खुली प्रणाली के लिए आंतरिक ऊर्जा की परिभाषा के लिए एक समस्या छोड़ देता है, कौन सा रूद्धोष्म कार्य सामान्य रूप से संभव नहीं है। मैक्स बोर्न के अनुसार, एक खुले कनेक्शन में पदार्थ और ऊर्जा के हस्तांतरण को यांत्रिकी में कम नहीं किया जा सकता है।[40] बंद प्रणालियों के विषयो के विपरीत, खुली प्रणालियों के लिए, प्रसार की उपस्थिति में, पदार्थ के थोक प्रवाह द्वारा आंतरिक ऊर्जा के संवहन हस्तांतरण के मध्य कोई अप्रतिबंधित और बिना शर्त भौतिक अंतर नहीं होता है, पदार्थ के हस्तांतरण के अतिरिक्त आंतरिक ऊर्जा का स्थानांतरण सामान्यतः ऊष्मा चालन और कार्य हस्तांतरण कहा जाता है), और विभिन्न संभावित ऊर्जाओं में परिवर्तन।[41] पुराने पारंपरिक तरीके और संकल्पनात्मक रूप से संशोधित (कैराथियोडोरी) तरीके इस बात से सहमत हैं कि खुली प्रणालियों के मध्य ऊष्मा और कार्य हस्तांतरण प्रक्रियाओं की कोई शारीरिक रूप से अनूठी परिभाषा नहीं है। विशेष रूप से, दो अन्यथा पृथक खुली प्रणालियों के मध्य परिभाषा के अनुसार एक रुद्धोष्म दीवार असंभव है।[42] ऊर्जा के संरक्षण के सिद्धांत का सहारा लेकर इस समस्या का समाधान किया जाता है। यह सिद्धांत एक समग्र पृथक प्रणाली को दो अन्य घटक गैर-अंतःक्रियात्मक पृथक प्रणालियों से प्राप्त करने की अनुमति देता है, इस तरह से समग्र पृथक प्रणाली की कुल ऊर्जा दो घटक पृथक प्रणालियों की कुल ऊर्जा के योग के बराबर होती है। दो पूर्व पृथक प्रणालियों को पदार्थ और ऊर्जा के लिए पारगम्य दीवार के मध्य प्लेसमेंट के ऊष्मप्रवैगिकी य ऑपरेशन के अधीन किया जा सकता है, इसके बाद नई एकल अविभाजित प्रणाली में आंतरिक संतुलन की एक नई ऊष्मप्रवैगिकी स्थिति की स्थापना के लिए एक समय होता है।[43] प्रारंभिक दो प्रणालियों की आंतरिक ऊर्जा और अंतिम नई प्रणाली की आंतरिक ऊर्जा, जिन्हें क्रमशः ऊपर की तरह बंद प्रणाली माना जाता है, को मापा जा सकता है।[38]तब ऊर्जा के संरक्षण के नियम की आवश्यकता होती है

जहाँ ΔUs और ΔUo क्रमशः प्रणाली और उसके आसपास की आंतरिक ऊर्जा में परिवर्तन को दर्शाता है। यह दो अन्यथा अलग-अलग खुली प्रणालियों के मध्य स्थानांतरण के लिए ऊष्मप्रवैगिकी के पहले नियम का एक कथन है,[44] जो ऊपर बताए गएनियम के वैचारिक रूप से संशोधित और कठोर कथन के साथ अच्छी तरह से फिट बैठता है।

आंतरिक ऊर्जा के साथ दो प्रणालियों को जोड़ने के ऊष्मप्रवैगिकी य ऑपरेशन के लिए U1 और U2, आंतरिक ऊर्जा के साथ एक नई प्रणाली का उत्पादन करने के लिए U, कोई लिख सकता है U = U1 + U2; के लिए संदर्भ बताता है U, U1 और U2 तदनुसार निर्दिष्ट किया जाना चाहिए, यह भी बनाए रखना चाहिए कि एक प्रणाली की आंतरिक ऊर्जा उसके द्रव्यमान के समानुपाती हो, जिससे आंतरिक ऊर्जा गहन और व्यापक गुण हों।[38][45]

एक ऐसा अर्थ है जिसमें इस प्रकार की योगात्मकता एक मौलिक अभिधारणा व्यक्त करती है जो शास्त्रीय बंद प्रणाली ऊष्मप्रवैगिकी य के सरलतम विचारों से परे जाती है; कुछ चरों की व्यापकता स्पष्ट नहीं है, और स्पष्ट अभिव्यक्ति की आवश्यकता है; वास्तव में एक लेखक तो यहां तक ​​कहता है कि इसे ऊष्मप्रवैगिकी के चौथे नियम के रूप में मान्यता दी जा सकती है, यद्यपि इसे अन्य लेखकों द्वारा दोहराया नहीं जाता है।[46][47] बिल्कुल भी[48]: कहाँ ΔNs और ΔNo क्रमशः प्रणाली और उसके आसपास के एक घटक पदार्थ के मोल संख्या में परिवर्तन को दर्शाता है। यह द्रव्यमान के संरक्षण के नियम का एक कथन है।

एक खुली प्रणाली और उसके परिवेश के मध्य पदार्थ के हस्तांतरण की प्रक्रिया

मात्र एक पारगम्य दीवार द्वारा संपर्क के माध्यम से अपने परिवेश से जुड़ी एक प्रणाली,यद्यपि अन्यथा पृथक, एक खुली प्रणाली है। यदि यह प्रारंभिक रूप से आसपास के सब प्रणाली के साथ संपर्क संतुलन की स्थिति में है, तो उनके मध्य पदार्थ के स्थानांतरण की एक ऊष्मप्रवैगिकी य प्रक्रिया हो सकती है यदि आसपास के सब प्रणाली को कुछ ऊष्मप्रवैगिकी य ऑपरेशन के अधीन किया जाता है, उदाहरण के लिए, इसके मध्य एक विभाजन को हटाना और कुछ और आसपास के सब प्रणाली । परिवेश में विभाजन को हटाने से प्रणाली और इसके सन्निहित आसपास के सब प्रणाली के मध्य आदान-प्रदान की प्रक्रिया प्रारंभ हो जाती है।

एक उदाहरण वाष्पीकरण है। कोई एक खुली प्रणाली पर विचार कर सकता है जिसमें तरल का एक संग्रह होता है, सिवाय इसके कि जहां इसे वाष्पित करने की अनुमति दी जाती है या इसके ऊपर वाष्प से संघनन प्राप्त करने की अनुमति दी जाती है, जिसे इसके आस-पास के सब प्रणाली के रूप में माना जा सकता है, और इसकी मात्रा नियंत्रण के अधीन है।

परिवेश में एक ऊष्मप्रवैगिकी य ऑपरेशन द्वारा एक ऊष्मप्रवैगिकी य प्रक्रिया प्रारंभ की जा सकती है, जो कि वाष्प की नियंत्रित मात्रा में यांत्रिक रूप से बढ़ जाती है। वाष्प द्वारा परिवेश के भीतर कुछ यांत्रिक कार्य किए जाएंगे,यद्यपि कुछ मूल तरल भी वाष्पित हो जाएंगे और वाष्प संग्रह में प्रवेश करेंगे जो कि आसपास के उपतंत्र है। प्रणाली को छोड़ने वाले वाष्प के साथ कुछ आंतरिक ऊर्जा होगी,यद्यपि उस आंतरिक ऊर्जा के हिस्से को ऊष्मा के रूप में और प्रबंध के हिस्से के रूप में विशिष्ट रूप से पहचानने की कोशिश करने का कोईअर्थ नहीं होगा। नतीजतन, ऊर्जा हस्तांतरण जो प्रणाली और उसके आस-पास के सब प्रणाली के मध्य पदार्थ के हस्तांतरण के साथ होता है, उसे विशिष्ट रूप से ऊष्मा में विभाजित नहीं किया जा सकता है और खुले प्रणाली से या उसके स्थानान्तरण का कार्य किया जा सकता है। आसपास के सब प्रणाली में वाष्प के हस्तांतरण के साथ होने वाले कुल ऊर्जा हस्तांतरण के घटक को पारंपरिक रूप से 'वाष्पीकरण की अव्यक्त ऊष्मा ' कहा जाता है,यद्यपि ऊष्मा शब्द का यह प्रयोग पारंपरिक ऐतिहासिक भाषा का एक विचित्र रूप है, जो ऊष्मप्रवैगिकी य परिभाषा के सख्त अनुपालन में नहीं है। उष्मा के रूप में ऊर्जा का स्थानांतरण। इस उदाहरण में, बल्क फ्लो की गतिज ऊर्जा और गुरुत्वाकर्षण जैसी लंबी दूरी की बाहरी ताकतों के संबंध में संभावित ऊर्जा दोनों को शून्य माना जाता है। ऊष्मप्रवैगिकी का प्रथम नियम आंतरिक संतुलन की प्रारंभिक और अंतिम अवस्थाओं के मध्य खुली प्रणाली की आंतरिक ऊर्जा के परिवर्तन को संदर्भित करता है।

एकाधिक संपर्कों के साथ खुली प्रणाली

एक खुली प्रणाली एक साथ कई अन्य प्रणालियों के साथ संपर्क संतुलन में हो सकती है। इसमें ऐसे विषयो सम्मिलित हैं जिनमें प्रणाली और उसके आसपास के कई सब प्रणाली के मध्य संपर्क संतुलन है, जिसमें दीवारों के माध्यम से सब प्रणाली के साथ अलग-अलग कनेक्शन सम्मिलित हैं जो पदार्थ और आंतरिक ऊर्जा को ऊष्मा के रूप में स्थानांतरित करने के लिए पारगम्य हैं और स्थानांतरित पदार्थ के पारित होने के घर्षण की अनुमति देते हैं। यद्यपि अचल, और दूसरों के साथ स्थिरोष्मा दीवारों के माध्यम से अलग कनेक्शन, और डायथर्मिक दीवारों के माध्यम से अलग कनेक्शन अभी तक दूसरों के लिए अभेद्य हैं। क्योंकि भौतिक रूप से अलग कनेक्शन हैं जो ऊर्जा के लिए पारगम्य हैं यद्यपि पदार्थ के लिए अभेद्य हैं, प्रणाली और उसके परिवेश के मध्य उनके मध्य ऊर्जा हस्तांतरण निश्चित ऊष्मा और कार्य वर्णों के साथ हो सकता है। यहाँ संकल्पनात्मक रूप से आवश्यक यह है कि पदार्थ के स्थानांतरण के साथ हस्तांतरित आंतरिक ऊर्जा को एक चर द्वारा मापा जाता है जो गणितीय रूप से ऊष्मा और कार्य को मापने वाले चरों से स्वतंत्र होता है।[49] चरों की ऐसी स्वतंत्रता के साथ, प्रक्रिया में आंतरिक ऊर्जा की कुल वृद्धि को तब निर्धारित किया जाता है, जो दीवारों के माध्यम से पदार्थ के हस्तांतरण के साथ परिवेश से स्थानांतरित आंतरिक ऊर्जा के योग के रूप में होती है, और आंतरिक ऊर्जा को हस्तांतरित की जाती है। ऊष्मा पार्य दीवारों के माध्यम से ऊष्मा के रूप में प्रणाली,और प्रणाली में स्थानांतरित ऊर्जा, स्थिरोष्मा दीवारों के माध्यम से प्रबंध के रूप में, जिसमें लंबी दूरी की ताकतों द्वारा प्रणाली को स्थानांतरित ऊर्जा सम्मिलित है। ऊर्जा की ये एक साथ स्थानांतरित मात्रा प्रणाली के आसपास की घटनाओं द्वारा परिभाषित की जाती है। क्योंकि पदार्थ के साथ स्थानांतरित आंतरिक ऊर्जा सामान्य रूप से ऊष्मा और कार्य घटकों में विशिष्ट रूप से हल करने योग्य नहीं होती है, सामान्य रूप से कुल ऊर्जा हस्तांतरण को ऊष्मा और कार्य घटकों में विशिष्ट रूप से हल नहीं किया जा सकता है।[50] इन शर्तों के तहत, निम्न सूत्र बाह्य रूप से परिभाषित उष्मागतिकीय चर के संदर्भ में प्रक्रिया का वर्णन कर सकता है । ऊष्मप्रवैगिकी के पहले नियम के एक कथन के रूप में:

 

 

 

 

(3)

जहां ΔU0 प्रणाली की आंतरिक ऊर्जा के परिवर्तन को दर्शाता है, और ΔUi की आंतरिक ऊर्जा के परिवर्तन को दर्शाता है ith की m आस-पास के सब प्रणाली जो प्रणाली के साथ खुले संपर्क को दर्शाता हैं, प्रणाली और उसके मध्य स्थानांतरण के कारण ith आसपास के सब प्रणाली , और Q परिवेश के ताप भंडार से प्रणाली में ऊष्मा के रूप में हस्तांतरित आंतरिक ऊर्जा को दर्शाता है, और W प्रणाली से आसपास के सब प्रणाली में स्थानांतरित ऊर्जा को दर्शाता है जो इसके साथ रुद्धोष्म संबंध में हैं। एक दीवार जो पदार्थ के लिए पारगम्य है और प्रबंध के रूप में ऊर्जा के हस्तांतरण की अनुमति देने के लिए गति कर सकता है, यहां पर विचार नहीं किया गया है।

पहले और दूसरेनियम का संयोजन

यदि प्रणाली को ऊर्जावान मूलभूत समीकरण द्वारा वर्णित किया गया है, तो U0 = U0(S, V, Nj,और यदि प्रणाली के आंतरिक क्षेत्र चर के संदर्भ में प्रक्रिया को अर्ध-स्थैतिक औपचारिकता में वर्णित किया जा सकता है, तो सूत्र द्वारा ऊष्मप्रवैगिकी के पहले और दूसरेनियम के संयोजन द्वारा भी प्रक्रिया का वर्णन किया जा सकता है

 

 

 

 

(4)

जहां प्रणाली के एन रासायनिक घटक हैं और आसपास के सब प्रणाली पारगम्य रूप से जुड़े हुए हैं, और जहां टी, एस, पी, वी, एनj, और μj, ऊपर के रूप में परिभाषित किया गया है।[51] एक सामान्य प्राकृतिक प्रक्रिया के लिए, समीकरणों के मध्य कोई तत्काल शब्द-वार पत्राचार नहीं होता है (3) और (4), क्योंकि वे विभिन्न वैचारिक फ़्रेमों में प्रक्रिया का वर्णन करते हैं।

फिर भी, एक सशर्त पत्राचार मौजूद है। यहां तीन प्रासंगिक प्रकार की दीवार हैं: विशुद्ध रूप से डायतापीय स्थिरोष्मा और पदार्थ के लिए पारगम्य। यदि उन प्रकार की दो दीवारों को बंद कर दिया जाता है, तो मात्र एक को छोड़ दिया जाता है जो ऊर्जा के हस्तांतरण की अनुमति देता है, प्रबंध के रूप में, ऊष्मा के रूप में, या पदार्थ के साथ, शेष अनुमत शर्तें सटीक रूप से मेल खाती हैं। यदि दो प्रकार की दीवारों को बिना सील किए छोड़ दिया जाता है, तो उनके मध्य ऊर्जा हस्तांतरण साझा किया जा सकता है, जिससे शेष दो अनुमत शर्तें सटीक रूप से मेल न खाएं।

अर्ध-स्थैतिक स्थानान्तरण के विशेष कल्पित विषयो के लिए, एक साधारण पत्राचार है।[52] इसके लिए, यह माना जाता है कि प्रणाली के पास अपने परिवेश के संपर्क के कई क्षेत्र हैं। ऐसे पिस्टन हैं जो रुद्धोष्म कार्य, विशुद्ध रूप से डायतापीय दीवारों, और पूरी तरह से नियंत्रणीय रासायनिक क्षमता (या आवेशित प्रजातियों के समकक्ष नियंत्रण) के आसपास के उपतंत्रों के साथ खुले कनेक्शन की अनुमति देते हैं। फिर, एक उपयुक्त काल्पनिक अर्ध-स्थैतिक हस्तांतरण के लिए, कोई लिख सकता है

कहाँ प्रजातियों की अतिरिक्त मात्रा है और संबंधित दाढ़ एन्ट्रापी है।[53] काल्पनिक अर्ध-स्थैतिक स्थानान्तरण के लिए जिसके लिए जुड़े आसपास के उप-प्रणालियों में रासायनिक क्षमता को उपयुक्त रूप से नियंत्रित किया जाता है, इन्हें उपज के लिए समीकरण (4) में रखा जा सकता है

 

 

 

 

(5)

कहाँ प्रजातियों की मोलर एन्थैल्पी है .[54][55][56]


गैर-संतुलन स्थानान्तरण

एक खुली प्रणाली और उसके आसपास के एकल सन्निहित उपतंत्र के मध्य ऊर्जा के हस्तांतरण को गैर-संतुलन ऊष्मप्रवैगिकी में भी माना जाता है। इस स्थिति में परिभाषा की समस्या भी उत्पन्न होती है। यह अनुमति दी जा सकती है कि प्रणाली और सब प्रणाली के मध्य की दीवार न मात्र पदार्थ और आंतरिक ऊर्जा के लिए पारगम्य है, बल्कि जंगम भी हो सकती है जिससे दो प्रणालियों के अलग-अलग दबाव होने पर प्रबंध करने की अनुमति मिल सके। इस विषयो में,ऊष्मा के रूप में ऊर्जा के हस्तांतरण को परिभाषित नहीं किया गया है।

समीकरण (3) के विनिर्देशन पर किसी प्रक्रिया के लिए ऊष्मप्रवैगिकी के प्रथम नियम को इस रूप में परिभाषित किया जा सकता है

 

 

 

 

(6)

जहां ΔU प्रणाली की आंतरिक ऊर्जा में परिवर्तन को दर्शाता है, Δ Q परिवेश के ताप भंडार से प्रणाली में ऊष्मा के रूप में हस्तांतरित आंतरिक ऊर्जा को दर्शाता है, p Δ V प्रणाली के प्रबंध को दर्शाता है और प्रजातियों की मोलर एन्थैल्पी है , आसपास से प्रणाली में आना जो प्रणाली के संपर्क में है।

फॉर्मूला (6) सामान्य स्थिति में, अर्ध-स्थैतिक और अपरिवर्तनीय प्रक्रियाओं दोनों के लिए मान्य है। अर्ध-स्थैतिक प्रक्रिया की स्थिति पर पिछले खंड में विचार किया गया है, जो हमारे शब्दों में परिभाषित करता है

 

 

 

 

(7)

 

 

 

 

(8)

संतुलन से ऊष्मप्रवैगिकी प्रणाली के विचलन का वर्णन करने के लिए, मौलिक चर के अतिरिक्त जो कि संतुलन की स्थिति को ठीक करने के लिए उपयोग किया जाता है, जैसा कि ऊपर वर्णित किया गया था, चर का एक सेट जिन्हें आंतरिक चर कहा जाता है जो अनुमति देता है सामान्य विषयो के लिए तैयार करने के लिए अनुमति देता है

 

 

 

 

(9)

 

 

 

 

(10)

गैर-संतुलन प्रक्रियाओं के अध्ययन के तरीके ज्यादातर स्थानिक रूप से निरंतर प्रवाह प्रणालियों से संबंधित हैं। इस विषयो में, प्रणाली और परिवेश के मध्य खुला कनेक्शन आमतौर पर प्रणाली को पूरी तरह से घेरने के लिए लिया जाता है, जिससे पदार्थ के लिए अभेद्ययद्यपि ऊष्मा के लिए पारगम्य कोई अलग जुड़ाव न हो। ऊपर उल्लिखित विशेष विषयो को छोड़कर, जब पदार्थ का कोई वास्तविक हस्तांतरण नहीं होता है, जिसे एक बंद प्रणाली के रूप में माना जा सकता है, कड़ाई से परिभाषित ऊष्मप्रवैगिकी य शर्तों में, यह इस प्रकार है कि ऊष्मा के रूप में ऊर्जा के हस्तांतरण को परिभाषित नहीं किया गया है। इस अर्थ में, सतत प्रवाह वाली खुली प्रणाली के लिए 'ऊष्मा प्रवाह' जैसी कोई चीज नहीं है। उचित रूप से, बंद प्रणालियों के लिए, कोई आंतरिक ऊर्जा को ऊष्मा के रूप में स्थानांतरित करने की बात करता है,यद्यपि सामान्यतः, खुली प्रणालियों के लिए, मात्र आंतरिक ऊर्जा के हस्तांतरण के बारे में ही बात की जा सकती है। यहां एक कारक यह है कि अलग-अलग स्थानान्तरणों के मध्य प्रायः संकरीकरण प्रभाव होते हैं, उदाहरण के लिए कि एक पदार्थ के हस्तांतरण से दूसरे के स्थानांतरण का कारण हो सकता है, भले ही उत्तरार्द्ध में शून्य रासायनिक संभावित ढाल हो।

s एक प्रणाली और उसके परिवेश के मध्य स्थानांतरण एक क्षेत्रचर के हस्तांतरण पर लागू होता है, और एक संतुलननियम का पालन ककि दाता प्रणाली द्वारा खोई गई राशि रिसेप्टर प्रणाली द्वारा प्राप्त राशि के बराबर होती है। ऊष्मा एक अवस्था चर नहीं है। असतत खुली प्रणालियों के लिए ऊष्मा हस्तांतरण की उनकी 1947 की परिभाषा के लिए, लेखक प्रोगोगाइन ने कुछ हद तक ध्यान से समझाया कि इसकी परिभाषा एक संतुलननियम का पालन नहीं करती है। वह इसे विरोधाभासी बताते हैं।[57] ग्यारमती द्वारा स्थिति को स्पष्ट किया गया है, जो दर्शाता है कि निरंतर-प्रवाह प्रणालियों के लिए ऊष्मा हस्तांतरण की उनकी परिभाषा, वास्तव में विशेष रूप से ऊष्मा को संदर्भित नहीं करती है, बल्कि आंतरिक ऊर्जा को स्थानांतरित करने के लिए निम्नानुसार है। वह निरंतर-प्रवाह की स्थिति में एक वैचारिक छोटे सेल को तथाकथित लैग्रेंजियन तरीके से परिभाषित एक प्रणाली के रूप में मानता है, जो द्रव्यमान के स्थानीय केंद्र के साथ चलती है। कुल द्रव्यमान के प्रवाह के रूप में माने जाने पर सीमा के पार पदार्थ का प्रवाह शून्य होता है। फिर भी, यदि भौतिक संविधान कई रासायनिक रूप से अलग-अलग घटकों का है जो एक दूसरे के संबंध में फैल सकते हैं, तो प्रणाली को खुला माना जाता है, प्रणाली के द्रव्यमान के केंद्र के संबंध में घटकों के विसारक प्रवाह को परिभाषित किया जा रहा है, और संतुलन बड़े पैमाने पर स्थानांतरण के रूप में एक दूसरे। फिर भी इस विषयो में आंतरिक ऊर्जा के थोक प्रवाह और आंतरिक ऊर्जा के विसारक प्रवाह के मध्य अंतर हो सकता है, क्योंकि आंतरिक ऊर्जा घनत्व सामग्री के प्रति इकाई द्रव्यमान में स्थिर नहीं होता है, और आंतरिक ऊर्जा के गैर-संरक्षण की अनुमति देता है क्योंकि चिपचिपाहट द्वारा बल्क प्रवाह की गतिज ऊर्जा का आंतरिक ऊर्जा में स्थानीय रूपांतरण।

ग्यारमती से पता चलता है कि "ऊष्मा प्रवाह वेक्टर" की उनकी परिभाषा सख्ती से आंतरिक ऊर्जा के प्रवाह की परिभाषा बोल रही है, विशेष नहीं, और इसलिए यह पता चला है कि ऊष्मा शब्द का उनका उपयोग ऊष्मा की सख्त ऊष्मप्रवैगिकी परिभाषा के विपरीत है यद्यपि यह कमोबेश ऐतिहासिक प्रथा के अनुकूल है, जो प्रायः पर्याप्त रूप से ताप और आंतरिक ऊर्जा के बीच स्पष्ट रूप से अंतर नहीं करता था; वह लिखते हैं "कि इस संबंध को ऊष्मा प्रवाह की अवधारणा की सटीक परिभाषा के रूप में माना जाना चाहिए, जो प्रयोगात्मक भौतिकी और ताप तकनीक में कम उपयोग किया जाता है।" असतत प्रणालियों के बारे में, प्रिगोगाइन द्वारा ऐतिहासिक 1947 के काम के पहले के खंडों में उपयोग, ग्यारमती का यह उपयोग निरंतर-प्रवाह प्रणालियों के बारे में प्रिगोगाइन द्वारा उसी 1947 के कार्य के उपरांत खंडों के अनुरूप किया गया है, जो "हीट फ्लक्स" शब्द का उपयोग करते हैं। निरंतर-प्रवाह प्रणालियों के बारे में उनके 1971 के पाठ में ग्लान्सडॉर्फ और प्रोगोगिन द्वारा इस प्रयोग का भी पालन किया जाता है।[58] सामान्यतः असतत प्रणालियों के बारे में प्रोगोगाइन द्वारा ऐतिहासिक 1947 के प्रबंध के पहले के खंडों में उपर्युक्त विरोधाभासी उपयोग से अलग सोच के रूप में, वे लिखते हैं: फिर से आंतरिक ऊर्जा के प्रवाह को संवहन प्रवाह में विभाजित किया जा सकता है ρuv और चालन प्रवाह। यह चालन प्रवाह परिभाषा के अनुसार W.ऊष्मा प्रवाह है इसलिए: j[U] = ρuv + W जहाँ u प्रति इकाई द्रव्यमान आंतरिक ऊर्जा को दर्शाता है। ये लेखक वास्तव में प्रतीकों का उपयोग करते हैं E और e आंतरिक ऊर्जा को निरूपित करने के लिए यद्यपि वर्तमान लेख के अंकन के अनुसार उनके अंकन को यहाँ बदल दिया गया है। ये लेखक वास्तव में प्रतीक का उपयोग करते हैं U प्रवाह की गतिज ऊर्जा सहित कुल ऊर्जा को संदर्भित करने के लिए।][59] गैर-संतुलन ऊष्मप्रवैगिकी पर अन्य लेखकों द्वारा भी इस प्रयोग का अनुसरण किया जाता है, जैसे कि लेबन,और कैसस-वास्केज़,[60]इस प्रयोग को बेलीन द्वारा आंतरिक ऊर्जा के गैर-संवहनी प्रवाह के रूप में वर्णित किया गया है, और ऊष्मप्रवैगिकी के पहलेनियम के अनुसार उनकी परिभाषा संख्या 1 के रूप में सूचीबद्ध है।[61]गैसों के गतिज सिद्धांत के कार्यकर्ता भी इस प्रयोग का अनुसरण करते हैं। यह हास के कम ताप प्रवाह की तदर्थ परिभाषा नहीं है।[62] मात्र एक रासायनिक घटक की प्रवाह प्रणाली के विषयो में, लाग्रंगियन प्रतिनिधित्व में, प्रवाह और पदार्थ के प्रसार के मध्य कोई अंतर नहीं है। इसके अतिरिक्त द्रव्यमान के स्थानीय केंद्र के साथ चलने वाली कोशिका के अंदर या बाहर पदार्थ का प्रवाह शून्य होता है। वास्तव में, इस विवरण में, व्यक्ति एक ऐसी प्रणाली से निपट रहा है जो पदार्थ के हस्तांतरण के लिए प्रभावी रूप से बंद है। यद्यपि फिर भी कोई वैध रूप से बल्क प्रवाह और आंतरिक ऊर्जा के विसरित प्रवाह के मध्य अंतर की बात कर सकता है,तथा प्रवाहित सामग्री के भीतर एक तापमान प्रवणता द्वारा संचालित होता है, और बल्क प्रवाह के द्रव्यमान के स्थानीय केंद्र के संबंध में परिभाषित किया जाता है। वस्तुतः बंद प्रणाली के इस स्थिति में, शून्य पदार्थ हस्तांतरण के कारण, जैसा कि ऊपर उल्लेख किया गया है, कार्य के रूप में ऊर्जा के हस्तांतरण और ऊष्मा के रूप में आंतरिक ऊर्जा के हस्तांतरण के मध्य सुरक्षित रूप से अंतर कर सकते हैं।[63]


यह भी देखें

टिप्पणी

संदर्भ

  1. Mandl 1988
  2. Hagengruber, Ruth, editor (2011) Émilie du Chatelet between Leibniz and Newton. Springer. ISBN 978-94-007-2074-9.
  3. Arianrhod, Robyn (2012). Seduced by logic : Émilie du Châtelet, Mary Somerville, and the Newtonian revolution (US ed.). New York: Oxford University Press. ISBN 978-0-19-993161-3.
  4. Hess, H. (1840). "थर्मोकेमिकल जांच". Annalen der Physik und Chemie. 126 (6): 385–404. Bibcode:1840AnP...126..385H. doi:10.1002/andp.18401260620. hdl:2027/hvd.hxdhbq.
  5. Truesdell, C. A. (1980), pp. 157–158.
  6. Mayer, Robert (1841). Paper: 'Remarks on the Forces of Nature"; as quoted in: Lehninger, A. (1971). Bioenergetics – the Molecular Basis of Biological Energy Transformations, 2nd. Ed. London: The Benjamin/Cummings Publishing Company.
  7. 7.0 7.1 7.2 Truesdell, C. A. (1980).
  8. 8.0 8.1 8.2 8.3 Bailyn, M. (1994), p. 79.
  9. Clausius, R. (1850), page 373, translation here taken from Truesdell, C. A. (1980), pp. 188–189.
  10. Bailyn, M. (1994), pp. 65, 79.
  11. 11.0 11.1 Pippard, A. B. (1957/1966), p. 15. According to Herbert Callen, in his most widely cited text, Pippard's text gives a "scholarly and rigorous treatment"; see Callen, H. B. (1960/1985), p. 485. It is also recommended by Münster, A. (1970), p. 376.
  12. Cite error: Invalid <ref> tag; no text was provided for refs named Born 1921
  13. कांस्टेंटिन कैराथियोडोरी|कैराथिओडोरी, सी. (1909)। </ रेफ> और मैक्स बोर्न (1921) द्वारा कैराथियोडोरी के काम की स्वीकृति। रेफरी नाम = जन्म 1921 >{{cite journal | last1 = Born | first1 = M. | year = 1921 | title = ऊष्मप्रवैगिकी के पारंपरिक प्रतिनिधित्व पर महत्वपूर्ण विचार| journal = Phys. Z. | volume = 22 | pages = 218–224 }
  14. 14.0 14.1 14.2 मुंस्टर, ए. (1970), पीपी. 23-24.
  15. Quantities, Units and Symbols in Physical Chemistry (IUPAC Green Book) Archived October 27, 2016, at the Wayback Machine See Sec. 2.11 Chemical Thermodynamics p. 56
  16. 16.0 16.1 16.2 Gislason, E. A.; Craig, N. C. (2005). "Cementing the foundations of thermodynamics:comparison of system-based and surroundings-based definitions of work and heat". J. Chem. Thermodynamics. 37 (9): 954–966. doi:10.1016/j.jct.2004.12.012.
  17. Kirkwood, J. G., Oppenheim, I. (1961), pp. 31–33.
  18. Planck, M. (1897/1903), p. 86.
  19. 19.0 19.1 Crawford, F. H. (1963), pp. 106–107.
  20. Buchdahl, H. A. (1966), p. 34.
  21. Callen, H. B. (1960/1985), pp. 13, 17.
  22. Kittel, C. Kroemer, H. (1980). Thermal Physics, (first edition by Kittel alone 1969), second edition, W. H. Freeman, San Francisco, ISBN 0-7167-1088-9, pp. 49, 227.
  23. Tro, N. J. (2008). Chemistry. A Molecular Approach, Pearson/Prentice Hall, Upper Saddle River NJ, ISBN 0-13-100065-9, p. 246.
  24. Kirkwood, J. G., Oppenheim, I. (1961), pp. 17–18. Kirkwood & Oppenheim 1961 is recommended by Münster, A. (1970), p. 376. It is also cited by Eu, B. C. (2002), Generalized Thermodynamics, the Thermodynamics of Irreversible Processes and Generalized Hydrodynamics, Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-0788-4, pp. 18, 29, 66.
  25. Guggenheim, E. A. (1949/1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, (first edition 1949), fifth edition 1967, North-Holland, Amsterdam, pp. 9–10. Guggenheim 1949/1965 is recommended by Buchdahl, H. A. (1966), p. 218. It is also recommended by Münster, A. (1970), p. 376.
  26. 26.0 26.1 Planck, M. (1897/1903).
  27. Kestin, J. (1966), p. 156.
  28. Adkins, C. J. (1968/1983), p. 35.
  29. Atkins, P., de Paula, J. (1978/2010). Physical Chemistry, (first edition 1978), ninth edition 2010, Oxford University Press, Oxford UK, ISBN 978-0-19-954337-3, p. 54.
  30. Kondepudi, D. (2008). Introduction to Modern Thermodynamics, Wiley, Chichester, ISBN 978-0-470-01598-8, p. 63.
  31. Partington, J.R. (1949), p. 183: "Rankine calls the curves representing changes without performance of work, adynamics."
  32. White, Frank M. (1991). चिपचिपा द्रव प्रवाह (PDF). McGraw-Hill, Inc. pp. 69–72. ISBN 0-07-069712-4. Retrieved 18 June 2021.[dead link]
  33. Bailyn, M. (1994), 254–256.
  34. Glansdorff, P., Prigogine, I. (1971), p. 8.
  35. Tisza, L. (1966), p. 91.
  36. Denbigh, K. G. (1951), p. 50.
  37. Thomson, W. (1852 a). "On a Universal Tendency in Nature to the Dissipation of Mechanical Energy Archived April 1, 2016, at the Wayback Machine" Proceedings of the Royal Society of Edinburgh for April 19, 1852 [This version from Mathematical and Physical Papers, vol. i, art. 59, p. 511.]
  38. 38.0 38.1 38.2 मुंस्टर ए. (1970), सेक्शन 14, 15, पीपी. 45-51.
  39. Landsberg, P. T. (1978), p. 78.
  40. Born, M. (1949), p. 44.
  41. Denbigh, K. G. (1951), p. 56. Denbigh states in a footnote that he is indebted to correspondence with E. A. Guggenheim and with N. K. Adam. From this, Denbigh concludes "It seems, however, that when a system is able to exchange both heat and matter with its environment, it is impossible to make an unambiguous distinction between energy transported as heat and by the migration of matter, without already assuming the existence of the 'heat of transport'."
  42. Münster, A. (1970), p. 46.
  43. Tisza, L. (1966), p. 41.
  44. Tisza, L. (1966), p. 111.
  45. Prigogine, I., (1955/1967), p. 12.
  46. Landsberg, P. T. (1961), pp. 142, 387.
  47. Landsberg, P. T. (1978), pp. 79, 102.
  48. Callen H. B. (1960/1985), p. 54.
  49. Born, M. (1949), pp. 146–147 Archived April 7, 2016, at the Wayback Machine.
  50. Haase, R. (1971), p. 35.
  51. Callen, H. B., (1960/1985), p. 35.
  52. Aston, J. G., Fritz, J. J. (1959), Chapter 9. This is an unusually explicit account of some of the physical meaning of the Gibbs formalism.
  53. Jan T. Knuiman, Peter A. Barneveld, and Nicolaas A. M. Besseling, "On the Relation between the Fundamental Equation of Thermodynamics and the Energy Balance Equation in the Context of Closed and Open Systems," Journal of Chemical Education 2012 89 (8), 968-972 DOI: 10.1021/ed200405k, [1].
  54. Smith, D. A. (1980). Definition of heat in open systems, Aust. J. Phys., 33: 95–105. Archived October 12, 2014, at the Wayback Machine
  55. Buchdahl, H. A. (1966), Section 66, pp. 121–125.
  56. Callen, J. B. (1960/1985), Section 2-1, pp. 35–37.
  57. Prigogine, I., (1947), pp. 48–49.
  58. Gyarmati, I. (1970), p. 68.
  59. Glansdorff, P, Prigogine, I, (1971), p. 9.
  60. Lebon, G., Jou, D., Casas-Vázquez, J. (2008), p. 45.
  61. Bailyn, M. (1994), p. 308.
  62. Haase, R. (1963/1969), p. 18.
  63. Eckart, C. (1940).



उद्धृत स्रोत

  • एडकिन्स, सी.जे. (1968/1983). इक्विलिब्रियम ऊष्मप्रवैगिकी य ्स, (प्रथम संस्करण 1968), तीसरा संस्करण 1983, कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 0-521-25445-0.
  • एस्टन, जे.जी., फ्रिट्ज, जे.जे. (1959)। ऊष्मप्रवैगिकी और सांख्यिकीय ऊष्मप्रवैगिकी , जॉन विली एंड संस, न्यूयॉर्क।
  • रोजर बालियान|बालियन, आर. (1991/2007). माइक्रोफ़िज़िक्स से मैक्रोफ़िज़िक्स तक: सांख्यिकीय भौतिकी के तरीके और अनुप्रयोग, वॉल्यूम 1, डिर्क टेर हार द्वारा अनुवादित। डी। टेर हार, जे.एफ. ग्रेग, स्प्रिंगर, बर्लिन, ISBN 978-3-540-45469-4.
  • बेलीन, एम। (1994)। ऊष्मप्रवैगिकी का एक सर्वेक्षण, अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स प्रेस, न्यूयॉर्क, ISBN 0-88318-797-3.
  • मैक्स बॉर्न|बॉर्न, एम. (1949). नेचुरल फिलॉसफी ऑफ कॉज एंड चांस, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, लंदन।
  • जॉर्ज एच. ब्रायन|ब्रायन, जी.एच. (1907). ऊष्मप्रवैगिकी य ्स। मुख्य रूप से पहले सिद्धांतों और उनके प्रत्यक्ष अनुप्रयोगों से संबंधित एक परिचयात्मक ग्रंथ, बी. जी. टेबनेर, लीपज़िग
  • राडू बालेस्कु|बालेस्कु, आर. (1997). सांख्यिकीय गतिशीलता; मैटर आउट ऑफ इक्विलिब्रियम, इंपीरियल कॉलेज प्रेस, लंदन, ISBN 978-1-86094-045-3.
  • बुचडाहल, एच.ए. (1966), द कॉन्सेप्ट ऑफ़ क्लासिकल ऊष्मप्रवैगिकी य ्स, कैम्ब्रिज यूनिवर्सिटी प्रेस, लंदन।
  • हर्बर्ट कैलेन | कैलन, एच. बी. (1960/1985), ऊष्मप्रवैगिकी य ्स एंड एन इंट्रोडक्शन टू थर्मोस्टेटिस्टिक्स, (प्रथम संस्करण 1960), दूसरा संस्करण 1985, जॉन विले एंड संस, न्यूयॉर्क, ISBN 0-471-86256-8.
  • Carathéodory, C. (1909). "ऊष्मप्रवैगिकी के मूल सिद्धांतों पर अध्ययन". Mathematische Annalen. 67 (3): 355–386. doi:10.1007/BF01450409. S2CID 118230148. एक अनुवाद पाया जा सकता है यहां। इसके अतिरिक्त केस्टिन, जे. (1976) में एक अधिकतर विश्वसनीय translation is to be found है। ऊष्मप्रवैगिकी का दूसरा नियम, डाउडेन, हचिंसन और रॉस, स्ट्राउड्सबर्ग पीए।
  • Clausius, R. (1850), "Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen", Annalen der Physik, 79 (4): 368–397, 500–524, Bibcode:1850AnP...155..500C, doi:10.1002/andp.18501550403, hdl:2027/uc1.$b242250. अंग्रेजी अनुवाद देखें: ऑन द मूविंग फोर्स ऑफ़ हीट, एंड द लॉज़ ऑफ़ द नेचर ऑफ़ हीट ऑफ़ थॉट डीड्यूसिबल। फिल। पत्रिका। (1851), श्रृंखला 4, 2, 1-21, 102-119। Google पुस्तकें पर भी उपलब्ध है।
  • क्रॉफर्ड, एफएच (1963)। ऊष्मा , ऊष्मप्रवैगिकी , और सांख्यिकीय भौतिकी, रूपर्ट हार्ट-डेविस, लंदन, हरकोर्ट, ब्रेस एंड वर्ल्ड, इंक।
  • डी ग्रोट, एस.आर., मजूर, पी. (1962)। गैर-संतुलन ऊष्मप्रवैगिकी , नॉर्थ-हॉलैंड, एम्स्टर्डम। पुनर्मुद्रित (1984), डोवर प्रकाशन इंक, न्यूयॉर्क, ISBN 0486647412.
  • डेनबिघ, के.जी. (1951). The Thermodynamics of the Steady State, मेथुएन, लंदन, विली, न्यूयॉर्क।
  • डेनबिघ, के. (1954/1981)। रासायनिक संतुलन के सिद्धांत। रसायन विज्ञान और केमिकल इंजीनियरिंग में अनुप्रयोगों के साथ, चौथा संस्करण, कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज यूके, ISBN 0-521-23682-7.
  • एकार्ट, सी. (1940). अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी । I. सरल तरल पदार्थ, भौतिक। रेव. '58': 267–269.
  • फिट्स, डी.डी. (1962)। असंतुलित ऊष्मप्रवैगिकी । फ्लुइड प्रणाली ्स, मैकग्रा-हिल, न्यूयॉर्क में अपरिवर्तनीय प्रक्रियाओं की फेनोमेनोलॉजिकल थ्योरी।
  • ग्लैंसडॉर्फ, पी., इल्या प्रिगोगाइन | प्रिगोगाइन, आई., (1971)। संरचना, स्थिरता और उतार-चढ़ाव का ऊष्मप्रवैगिकी य सिद्धांत, विले, लंदन, ISBN 0-471-30280-5.
  • ग्यारमती, आई. (1967/1970). गैर-संतुलन ऊष्मप्रवैगिकी य ्स। फील्ड थ्योरी एंड वैरिएशनल प्रिंसिपल्स, 1967 हंगेरियन से ई. ग्यारमती और डब्ल्यू. एफ. हेंज, स्प्रिंगर-वर्लाग, न्यूयॉर्क द्वारा अनुवादित।
  • हासे, आर. (1963/1969). अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी , अंग्रेजी अनुवाद, एडिसन-वेस्ले प्रकाशन, रीडिंग एमए।
  • हासे, आर. (1971). मौलिकनियम ों का सर्वेक्षण, ऊष्मप्रवैगिकी का अध्याय 1, खंड 1 का पृष्ठ 1-97, संस्करण। डब्ल्यू। जोस्ट, भौतिक रसायन विज्ञान। एक उन्नत ग्रंथ, एड। एच. आयरिंग, डी. हेंडरसन, डब्ल्यू. जोस्ट, अकादमिक प्रेस, न्यूयॉर्क, एलसीएन 73-117081।
  • हरमन वॉन हेल्महोल्ट्ज़|हेल्महोल्ट्ज़, एच. (1847). उबेर डाई एरहाल्टुंग डेर क्राफ्ट। Eine physikalische Abhandlung, G. Reimer (प्रकाशक), बर्लिन, 23 जुलाई को Physikalischen Gesellschaft zu बर्लिन के एक सत्र में पढ़ा। हेल्महोल्त्ज़, एच. वॉन (1882) में पुनर्मुद्रित, Wissenschaftliche Abhandlungen, बैंड 1, जे.ए. बार्थ, लीपज़िग। वैज्ञानिक संस्मरण में जे. टिंडाल द्वारा अनुवादित और संपादित, विज्ञान की विदेशी अकादमियों के लेनदेन और विदेशी पत्रिकाओं से चयनित। नेचुरल फिलॉसफी (1853), वॉल्यूम 7, जे. टाइंडल, डब्ल्यू. फ्रांसिस द्वारा संपादित, टेलर एंड फ्रांसिस, लंदन द्वारा प्रकाशित, पीपी। 114-162, सीरीज 7, द सोर्स ऑफ साइंस के वॉल्यूम 7 के रूप में पुनर्मुद्रित, एच द्वारा संपादित। वूल्फ, (1966), जॉनसन रिप्रिंट कॉर्पोरेशन, न्यूयॉर्क, और फिर से ब्रश, एस.जी., द काइनेटिक थ्योरी ऑफ़ गैसेस में। एंथोलॉजी ऑफ क्लासिक पेपर्स विथ हिस्टोरिकल कमेंट्री, हिस्ट्री ऑफ मॉडर्न फिजिकल साइंसेज का वॉल्यूम 1, एन.एस. हॉल, इंपीरियल कॉलेज प्रेस, लंदन द्वारा संपादित, ISBN 1-86094-347-0, पीपी. 89–110।
  • Kestin, J. (1961). "आइसोट्रोपिक्स को प्रतिच्छेद करने पर". Am. J. Phys. 29 (5): 329–331. Bibcode:1961AmJPh..29..329K. doi:10.1119/1.1937763.
  • केस्टिन, जे. (1966). ऊष्मप्रवैगिकी में एक कोर्स, ब्लैसडेल पब्लिशिंग कंपनी, वाल्थम एमए।
  • जॉन गैंबल किर्कवुड|किर्कवुड, जे.जी., ओपेनहेम, आई. (1961)। केमिकल ऊष्मप्रवैगिकी य ्स, मैकग्रा-हिल बुक कंपनी, न्यूयॉर्क।
  • लैंड्सबर्ग, पी.टी. (1961). ऊष्मप्रवैगिकी य ्स विथ क्वांटम स्टैटिस्टिकल इलस्ट्रेशन्स, इंटरसाइंस, न्यूयॉर्क।
  • लैंड्सबर्ग, पी.टी. (1978). ऊष्मप्रवैगिकी और सांख्यिकीय यांत्रिकी, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ऑक्सफोर्ड यूके, ISBN 0-19-851142-6.
  • लेबन, जी., जौ, डी., कसास-वाज़क्वेज़, जे. (2008)। गैर-संतुलन ऊष्मप्रवैगिकी को समझना, स्प्रिंगर, बर्लिन, ISBN 978-3-540-74251-7.
  • Mandl, F. (1988) [1971]. सांख्यिकीय भौतिकी (2nd ed.). Chichester·New York·Brisbane·Toronto·Singapore: John Wiley & sons. ISBN 978-0471915331.
  • मुंस्टर, ए. (1970), शास्त्रीय ऊष्मप्रवैगिकी , ई.एस. हैलबर्स्टाट द्वारा अनुवादित, विली-इन्टरसाइंस, लंदन, ISBN 0-471-62430-6.
  • जे.आर. पार्टिंगटन | पार्टिंगटन, जे.आर. (1949)। भौतिक रसायन विज्ञान पर एक उन्नत ग्रंथ, खंड 1, मौलिक सिद्धांत। गैसों के गुण, लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन।
  • ब्रायन पिप्पर्ड|पिप्पर्ड, ए.बी. (1957/1966). भौतिकी के उन्नत छात्रों के लिए क्लासिकल ऊष्मप्रवैगिकी य ्स के तत्व, मूल प्रकाशन 1957, पुनर्मुद्रण 1966, कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज यूके।
  • मैक्स प्लैंक|प्लैंक, एम.(1897/1903). ट्रीटीज़ ऑन ऊष्मप्रवैगिकी य ्स, ए. ऑग, लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन द्वारा अनुवादित।
  • Pokrovskii, Vladimir (2020). जटिल प्रणालियों के ऊष्मप्रवैगिकी: सिद्धांत और अनुप्रयोग। (in English). IOP Publishing, Bristol, UK.
  • इल्या प्रिगोगाइन|प्रोगोगाइन, आई. (1947). एटूड ऊष्मप्रवैगिकी य डेस फेनोमेन्स इरेवर्सिबल्स, डुनॉड, पेरिस, और डेसोर्स, लीज।
  • इल्या प्रिगोगाइन|प्रोगोगाइन, आई., (1955/1967). अपरिवर्तनीय प्रक्रियाओं के ऊष्मप्रवैगिकी का परिचय, तीसरा संस्करण, इंटरसाइंस पब्लिशर्स, न्यूयॉर्क।
  • रीफ, एफ. (1965). फंडामेंटल्स ऑफ स्टैटिस्टिकल एंड तापीय फिजिक्स, मैकग्रा-हिल बुक कंपनी, न्यूयॉर्क।
  • लेस्ज़्लो तिस्ज़ा | तिस्ज़ा, एल. (1966). सामान्यीकृत ऊष्मप्रवैगिकी , एम.आई.टी. प्रेस, कैम्ब्रिज एमए।
  • क्लिफर्ड ट्रूसडेल | ट्रूसडेल, सी. ए. (1980)। ऊष्मप्रवैगिकी का दुखद इतिहास, 1822-1854, स्प्रिंगर, न्यूयॉर्क, ISBN 0-387-90403-4.
  • क्लिफर्ड ट्रूसडेल | ट्रूसडेल, सी.ए., मुनकास्टर, आर.जी. (1980)। मैक्सवेल के काइनेटिक थ्योरी ऑफ़ ए सिंपल मोनोएटोमिक गैस के फंडामेंटल, जिसे रैशनल मैकेनिक्स की एक शाखा के रूप में माना जाता है, अकादमिक प्रेस, न्यूयॉर्क, ISBN 0-12-701350-4.
  • चोएग्ल, एन.डब्ल्यू. (2000). संतुलन और स्थिर-क्षेत्र ऊष्मप्रवैगिकी के मूल सिद्धांत, एल्सेवियर, एम्स्टर्डम, ISBN 0-444-50426-5.

अग्रिम पठन


बाहरी संबंध