एन-क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 384: Line 384:
{{Dimension topics}}
{{Dimension topics}}
{{Authority control}}
{{Authority control}}
[[Category: बहुआयामी ज्यामिति]] [[Category: क्षेत्रों]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Created On 11/04/2023]]
[[Category:Created On 11/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with ignored display titles]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:क्षेत्रों]]
[[Category:बहुआयामी ज्यामिति]]

Latest revision as of 20:22, 26 April 2023

ऑर्थोगोनल प्रक्षेपण के रूप में 2-गोले वायरफ्रेम
Error creating thumbnail:
जिस प्रकार एक स्टीरियोग्राफिक प्रोजेक्शन एक गोले की सतह को समतल पर प्रोजेक्ट कर सकता है। उसी प्रकार यह 3-गोले को 3-स्पेस में भी प्रोजेक्ट कर सकता है। यह छवि 3-स्पेस के लिए प्रक्षेपित तीन समन्वय दिशाओं को दिखाती है।समांतर (लाल), मेरिडियन (भूगोल) (नीला) और हाइपरमेरिडियन (हरा)। त्रिविम प्रक्षेपण के अनुरूप मानचित्र गुण के कारण वक्र एक दूसरे को लंबवत रूप से (पीले बिंदुओं में) 4डी के रूप में काटते हैं। सभी वक्र वृत्त हैं: वे वक्र जो प्रतिच्छेद करते हैं और ⟨0,0,0,1⟩ की एक अनंत त्रिज्या (सीधी रेखा) है।

गणित में एन-क्षेत्र या हाइपरस्फीयर एक टोपोलॉजिकल क्षेत्र है। जो मानक एन-क्षेत्र के लिए होमियोमॉर्फिक है। जो (n + 1)-आयाम में यूक्लिडियन अंतरिक्ष बिंदुओं का समुच्चय है। जो एक निश्चित बिंदु से एक स्थिर दूरी r पर स्थित हैं। जिसे केंद्रक कहा जाता है। यह सामान्य त्रि-आयामी अंतरिक्ष में सामान्य क्षेत्र का सामान्यीकरण है। किसी गोले की त्रिज्या केंद्र से उसके बिंदुओं की निश्चित दूरी पर है। जब गोले की इकाई त्रिज्या होती है। तो इसे सामान्य रूप से 'इकाई' कहा जाता है।संक्षिप्तता के लिए इसे इकाई एन-क्षेत्र या बस एन-क्षेत्र कहा जाना सामान्य है। मानक (गणित) के संदर्भ में एन-क्षेत्र को परिभाषित किया गया है-

और एक n-त्रिज्या का क्षेत्र r के रूप में परिभाषित किया जा सकता है।

n-क्षेत्र का आयाम n है और (n + 1) यूक्लिडियन अंतरिक्ष आयाम के साथ भ्रमित नहीं होना चाहिए। जिसमें यह स्वाभाविक रूप से एम्बेडिंग हो रहा है। एक n-क्षेत्र किसी (n + 1)-आयामी गेंद (गणित) की निर्धारित सतह या सीमा है।

विशेष रूप से:

  • एक (आयामी) रेखा खंड के सिरों पर बिंदुओं की जोड़ी एक 0-क्षेत्र है।
  • एक वृत्त, जो एक (द्वि-आयामी) डिस्क (गणित) की एक-आयामी परिधि है, एक 1-क्षेत्र है।
  • त्रि-आयामी गेंद की द्वि-आयामी सतह एक 2-क्षेत्र है। जिसे अधिकांशतः केवल गोला कहा जाता है।
  • एक (चार-आयामी) 4-गेंद की त्रि-आयामी सीमा (टोपोलॉजी) एक 3-क्षेत्र है।
  • (n – 1)-एक की आयामी सीमा (n-आयामी) n-गेंद एक (n – 1)-वृत्त है।

n ≥ 2 के लिए, n-क्षेत्र जो डिफरेंशियल मैनिफोल्ड हैं, को स्थिर, सकारात्मक वक्रता के सरलतम रूप से जुड़े हुए n-डायमेंशनल मैनिफोल्ड के रूप में (एक अंतर तक) वर्णित किया जा सकता है। वह n-क्षेत्र कई अन्य स्थलाकृतिक विवरणों को गृहण करते हैं। उदाहरण के लिए वे दो एन-आयामी यूक्लिडियन रिक्त स्थान को एक साथ जोड़कर, एक बिंदु के साथ एन-क्यूब की सीमा की पहचान करके या (आगमनात्मक रूप से) एक (n-1) -क्षेत्र के निलंबन का निर्माण करके बनाया जा सकता है। 1-गोला 1-कई गुना है। जो एक वृत्त है। जो केवल जुड़ा नहीं है। 0-गोला 0-कई गुना है, जो जुड़ा भी नहीं है। जिसमें दो बिंदु हैं।

विवरण

किसी भी प्राकृतिक संख्या n के लिए एक n-त्रिज्या का क्षेत्र r को बिंदुओं के (n + 1)-आयामी यूक्लिडियन स्थान समुच्चय के रूप में परिभाषित किया गया है। जो r किसी निश्चित बिंदु से c दूरी पर हैं। जहाँ r कोई धनात्मक संख्या वास्तविक संख्या हो सकती है और जहाँ c में कोई बिंदु (n + 1)-विमीय स्थान में हो सकता है। विशेष रूप से:

  • एक 0-क्षेत्र बिंदुओं की एक जोड़ी {cr, c + r} है और एक लाइन सेगमेंट (1-बॉल) की सीमा है।
  • 1-क्षेत्र त्रिज्या r का एक वृत्त है, जो c पर केंद्रित है और एक डिस्क (2-बॉल) की सीमा है।
  • एक 2-क्षेत्र 3-आयामी यूक्लिडियन अंतरिक्ष में एक साधारण 2-आयामी क्षेत्र है और एक साधारण गेंद (3-गेंद) की सीमा है।
  • 3-क्षेत्र 4-आयामी यूक्लिडियन अंतरिक्ष में 3-आयामी क्षेत्र है।

यूक्लिडियन निर्देशांक (n + 1)-क्षेत्र में

बिंदुओं का समुच्चय (n + 1)-क्षेत्र में (x1, x2, ..., xn+1), जो एक n-वृत्त, Sn(r) को परिभाषित करता है, समीकरण द्वारा प्रदर्शित किया गया है:

जहाँ c = (c1, c2, ..., cn+1) एक केंद्र बिंदु है और r त्रिज्या है।

उपरोक्त n-क्षेत्र में (n + 1)-आयामी यूक्लिडियन क्षेत्र उपस्थित है और इसका एक उदाहरण n-कई गुना है। वॉल्यूम फॉर्म ω की n-त्रिज्या का क्षेत्र r द्वारा दिया गया है-

जहाँ हॉज स्टार ऑपरेटर है। देखें Flanders (1989, §6.1) स्थिति में इस सूत्र की जानकारी और प्रमाण के लिए r = 1. परिणाम स्वरुप ,


n-बॉल

n-क्षेत्र से घिरे हुए क्षेत्र को (n + 1)-बॉल (गणित) कहते हैं । (n + 1)-बॉल बंद समुच्चय है। यदि इसमें n-क्षेत्र सम्मिलित है और यह खुला समुच्चय है। यदि इसमें n-क्षेत्र सम्मिलित नहीं है।

विशेष रूप से:

  • एक 1-गेंद, एक रेखा खंड, 0-गोले का आंतरिक भाग है।
  • एक 2-गेंद, एक डिस्क (गणित), एक वृत्त (1-गोले) का आंतरिक भाग है।
  • एक 3-गेंद, एक साधारण गेंद (गणित), एक गोले (2-गोले) का आंतरिक भाग है।
  • एक 4-गेंद 3-गोले आदि का आंतरिक भाग है।

सामयिक विवरण

टोपोलॉजी n-क्षेत्र का निर्माण एलेक्जेंड्रॉफ विस्तार के रूप में किया जा सकता है | एक बिंदु का संघनन n-आयामी यूक्लिडियन स्थान संक्षेप में n-क्षेत्र को इस प्रकार वर्णित किया जा सकता है Sn = ℝn ∪ {∞}, जो n-विमीय यूक्लिडियन स्थान और सभी दिशाओं में अनंत का प्रतिनिधित्व करने वाला एक बिंदु है।

विशेष रूप से यदि एक बिंदु n-क्षेत्र से हटा दिया जाता है। तो यह होमोमोर्फिज्म n बन जाता है। यह त्रिविम प्रक्षेपण का आधार बनता है।[1]


मात्रा और सतह क्षेत्र

Vn(R) और Sn(R) एन-बॉल का एन-डायमेंशनल वॉल्यूम है और एन-स्फीयर का सतह क्षेत्र आयाम n + 1 में सन्निहित है, जिसकी त्रिज्य क्रमशः क्रमशः R है

स्थिरांक Vn और Sn (R = 1 के लिए यूनिट बॉल और गोला) पुनरावृत्ति से संबंधित हैं:

सतहों और आयतन को बंद रूप में भी दिया जा सकता है:

जहाँ Γ गामा समुच्चय है। इन समीकरणों की व्युत्पत्ति इस खंड में दी गई है।

File:Hypersphere volume and surface area graphs.svg
मात्रा के रेखांकन (Vn) और भूतल क्षेत्र (Sn−1) का n-त्रिज्या की गेंदें 1. मेंHypersphere_volume_and_surface_area_graphs.svg, इसे और इसके मूल्य को हाइलाइट करने के लिए एक बिंदु पर होवर करें।
सामान्यतः n-बॉल की मात्रा इन n-आयामी यूक्लिडियन क्षेत्र और n-क्षेत्र की सतह में (n + 1)-आयामी यूक्लिडियन स्थान त्रिज्या R की nवीं घात समानुपाती होते हैं। R (आनुपातिकता के विभिन्न स्थिरांकों के साथ जो n के साथ भिन्न होते हैं)। हम n-बॉल के आयतन के लिए Vn(R) = VnRn लिखते हैं और n-गोले के सतह क्षेत्र के लिए Sn(R) = SnRn, दोनों त्रिज्या R, जहाँ Vn = Vn(1) और Sn = Sn(1) इकाई-त्रिज्या स्थिति के मान हैं।

इकाई n-गेंद का आयतन आयाम पांच में अधिकतम है। जहां यह घटने लगती है और शून्य के रूप में जाती है, जो n अनंत की ओर जाता है।[2] इसके अतिरिक्त सम-आयामी की मात्रा का योग n-त्रिज्या की गेंदें R बंद रूप में व्यक्त किया जा सकता है:[2]

विषम-आयामी एनालॉग के लिए,

जहाँ erf त्रुटि कार्य है।[3]


उदाहरण

0-बॉल में एक बिंदु होता है। 0-आयामी हॉसडॉर्फ उपाय एक समुच्चय में अंकों की संख्या है। इसलिए,

0-गोले में इसके दो अंत-बिंदु {−1, 1} होते हैं, इसलिए,

यूनिट 1-बॉल अंतराल [−1, 1] और लंबाई 2 है। तो,

इकाई 1-क्षेत्र यूक्लिडियन तल में इकाई वृत्त है और इसकी परिधि (1-आयामी माप) है।

इकाई 1-क्षेत्र से घिरा क्षेत्र 2-गेंद या इकाई डिस्क है और इसका क्षेत्रफल (2-आयामी माप) है।

3-आयामी यूक्लिडियन अंतरिक्ष में इकाई 2-क्षेत्र का सतह क्षेत्र (2-आयामी माप) द्वारा दिया जाता है।

और संलग्न आयतन यूनिट 3-बॉल का आयतन (3-आयामी माप) है। जिसके द्वारा दिया गया है।


पुनरावृत्ति

सतह क्षेत्र या गुण n-विमीय आयतन का n-क्षेत्र की सीमा पर (n + 1)-त्रिज्या की गेंद R अंतर समीकरण द्वारा गेंद के आयतन से संबंधित है।

या समकक्ष इकाई n-गेंद संकेंद्रित के संघ के रूप में (n − 1)-गोलाकार कोशिका का प्रतिनिधित्व करते हैं,

इसलिए,

हम इकाई (n + 2)-क्षेत्र को n-गोले के साथ एक वृत्त (1-गोले) के उत्पादों के संघ के रूप में भी प्रस्तुत कर सकते हैं। माना कि r = cos θ और r2 + R2 = 1, जिससे R = sin θ और dR = cos θ . तब,

तब S1 = 2π V0, समीकरण

सभी के लिए n रखता है।

यह पुनरावृत्ति की व्युत्पत्ति को पूरा करता है:


बंद प्रपत्र

पुनरावृत्तियों को मिलाकर हम देखते हैं कि-

इसलिए इंडक्शन ऑन करके k पर प्रदर्शित करना सरल है, जो कि-

जहाँ !! विषम प्राकृतिक संख्याओं के लिए परिभाषित दोहरे क्रमगुणन 2k + 1 द्वारा (2k + 1)!! = 1 × 3 × 5 × ... × (2k − 1) × (2k + 1) को प्रदर्शित करता है और इसी प्रकार सम संख्याओं के लिए (2k)!! = 2 × 4 × 6 × ... × (2k − 2) × (2k).

सामान्यतः आयतन में n-आयामी यूक्लिडियन स्थान इकाई का n-बॉल द्वारा दिया जाता है।

जहाँ Γ गामा फलन है। जो Γ(1/2) = π, Γ(1) = 1, और Γ(x + 1) = xΓ(x) को संतुष्ट करता है। इसलिए Γ(x + 1) = x! और जहाँ हम इसके विपरीत x! = Γ(x + 1) प्रत्येक x के लिए परिभाषित करते हैं।

गुणा करके Vn द्वारा Rn, R के संबंध में अंतर करना और फिर समुच्चय R = 1, हमें बंद रूप प्राप्त होता है।

के लिए (n− 1)-गोले की आयामी सतह Sn−1 है।

अन्य संबंध

आरेख में प्रदर्शित सतह क्षेत्र के लिए एक रिवर्स-दिशा पुनरावृत्ति संबंध देने के लिए पुनरावृत्तियों को जोड़ा जा सकता है:

File:N SpheresVolumeAndSurfaceArea.png
n परिवेशी यूक्लिडियन स्थान के आयाम को संदर्भित करता है। जो उस ठोस का आंतरिक आयाम भी है। जिसका आयतन यहाँ सूचीबद्ध है। किन्तु जो उस गोले के आंतरिक आयाम से 1 अधिक है। जिसका सतह क्षेत्र यहाँ सूचीबद्ध है। घुमावदार लाल तीर अलग-अलग सूत्रों के बीच संबंध n प्रदर्शित करते हैं। प्रत्येक तीर की नोक पर सूत्र गुणांक उस तीर के पुच्छ पर सूत्र गुणांक के बराबर होता है। जो तीर के शीर्ष में गुणक (जहाँ n एरोहेड में संदर्भित करता है। n मान जो तीर का सिरा निर्देशित करता है)। यदि नीचे के तीरों की दिशा पलट दी जाती है। तो उनके तीरों के सिरों को /n − 2 से गुणा करने के लिए कहेंगे। वैकल्पिक रूप से कहा सतह क्षेत्र Sn+1 क्षेत्र में n + 2 आयाम बिल्कुल है और 2πR गुना मात्रा Vn में गोले से घिरा हुआ n आयाम है।

सूचकांक-स्थानांतरण n को n − 2 पुनः पुनरावृत्ति संबंध उत्पन्न करता है:

जहाँ S0 = 2, V1 = 2, S1 = 2π और V2 = π.

के लिए पुनरावृत्ति संबंध Vn को 2-आयामी ध्रुवीय समन्वय प्रणाली के साथ अभिन्न के माध्यम से भी प्रमाणित किया जा सकता है:


गोलाकार निर्देशांक

हम एक समन्वय प्रणाली को n-आयामी यूक्लिडियन स्थान में परिभाषित कर सकते हैं। जो 3-आयामी यूक्लिडियन अंतरिक्ष के लिए परिभाषित गोलाकार निर्देशांक के अनुरूप है। जिसमें निर्देशांक एक रेडियल r समन्वय से मिलकर बनता है और n − 1 कोणीय निर्देशांक φ1, φ2, ..., φn−1 हैं। जहां कोण φ1, φ2, ..., φn−2 सीमा से अधिक [0, π] रेडियंस (या अधिक [0, 180] डिग्री) और φn−1 के क्षेत्र में [0, 2π) रेडियंस (या अधिक [0, 360) डिग्री) है। यदि xi कार्तीय निर्देशांक हैं। तो हम x1, ..., xn से r, φ1, ..., φn−1 के साथ गणना कर सकते हैं:[4]

नीचे वर्णित विशेष स्थितियों को छोड़कर विपरीत परिवर्तन अद्वितीय है:

जहाँ यदि xk ≠ 0 कुछ k के लिए, किन्तु सभी xk+1, ... xn तब φk = 0 शून्य हैं। जब xk > 0 और φk = π (180 डिग्री) जब xk < 0.

कुछ विशेष स्थिति हैं। जहां विपरीत परिवर्तन अद्वितीय नहीं है; φk किसी k के लिए, जब भी सभी अस्पष्ट होंगे और सभी xk, xk+1, ... xn शून्य हैं। इस स्थिति में φk को शून्य चुना जा सकता है।

गोलाकार आयतन और क्षेत्र तत्व

n-डायमेंशनल यूक्लिडियन स्पेस तत्व के आयतन को व्यक्त करने के लिए गोलाकार निर्देशांक के संदर्भ में पहले निरीक्षण करें कि जेकोबियन मैट्रिक्स और परिवर्तन का निर्धारक है:

इस मैट्रिक्स के निर्धारक की गणना प्रेरण द्वारा की जा सकती है। जब n = 2, एक सीधी संगणना से यह जानकारी प्राप्त होती है कि निर्धारक r हैं। बड़े n के लिए ध्यान दें कि Jn को Jn−1 से निम्नानुसार बनाया जा सकता है। n कॉलम को छोड़कर, पंक्तियाँ n − 1 और n का Jn का n − 1 का Jn−1 पंक्ति के समान हैं। किन्तु cos φn−1 पंक्ति में n − 1 के एक अतिरिक्त कारक से गुणा किया जाता है और sin φn−1 पंक्ति में n का एक अतिरिक्त कारक स्तंभ n में, पंक्तियाँ n − 1 और n का Jn स्तंभ के समान n − 1 पंक्ति का n − 1 का Jn−1 हैं। किन्तु क्रमशः पंक्ति n − 1 में sin φn−1 और पंक्ति n में cos φn−1 के अतिरिक्त कारकों से गुणा किया जाता है। Jn के निर्धारक की गणना अंतिम कॉलम में लाप्लास विस्तार द्वारा की जा सकती है। Jn के पुनरावर्ती विवरण से, (n − 1, n) पर प्रविष्टि को हटाकर बनाई गई सबमैट्रिक्स और इसकी पंक्ति और स्तंभ लगभग Jn−1 के बराबर है। किन्तु इसके कि इसकी अंतिम पंक्ति को sin φn−1 से गुणा किया जाता है। इसी प्रकार प्रविष्टि को हटाकर गठित सबमैट्रिक्स (n, n) और इसकी पंक्ति और स्तंभ लगभग Jn−1 बराबर हैं। किन्तु इसके कि इसकी अंतिम पंक्ति को cos φn−1 से गुणा किया जाता है। इसलिए Jn का निर्धारक है-

इंडक्शन तब गोलाकार निर्देशांक में आयतन तत्व के लिए एक बंद-रूप अभिव्यक्ति देता है।

n-गेंद की मात्रा के सूत्र को समाकलन द्वारा प्राप्त किया जा सकता है।

इसी प्रकार की सतह क्षेत्र तत्व (n − 1)-त्रिज्या का क्षेत्र R, जो 2-गोले के क्षेत्र तत्व का सामान्यीकरण करता है, द्वारा दिया गया है।

कोणीय निर्देशांक पर एक ओर्थोगोनल आधार की प्राकृतिक पसंद गेगेनबाउर बहुपद का एक उत्पाद है,

j = 1, 2, ..., n − 2 के लिए और यह eisφj कोण के लिए j = n − 1 गोलाकार हार्मोनिक्स के अनुरूप हैं।

बहुगोल निर्देशांक

मानक गोलाकार समन्वय प्रणाली n उत्पाद के रूप में ℝ × ℝn−1 लेखन से उत्पन्न होती है। ये दो कारक ध्रुवीय निर्देशांकों का उपयोग करके संबंधित हो सकते हैं। प्रत्येक बिंदु के लिए x का n मानक कार्तीय निर्देशांक

मिश्रित ध्रुवीय-कार्टेशियन समन्वय प्रणाली में परिवर्तित किया जा सकता है:

यह ध्यान देने योग्य है कि n किरण को मूल बिंदु से प्रारंभ करके में इंगित करता है और वहां से गुजरते हुए व्यक्त किया जा सकता है। जिसे की ओर घुमा रहा है और द्वारा और एक दूरी की यात्रा किरण के साथ दर्शाया जाता है। इस अपघटन को दोहराने से अंततः मानक गोलाकार समन्वय प्रणाली बन जाती है।

इस निर्माण के एक सामान्यीकरण से पॉलीस्फेरिकल समन्वय प्रणाली उत्पन्न होती है।[5] क्षेत्र n छोटे आयाम के दो यूक्लिडियन रिक्त स्थान के उत्पाद के रूप में विभाजित है। किन्तु एक रेखा होने के लिए किसी भी स्थान की आवश्यकता नहीं है। विशेष रूप से, मान लीजिए p और q सकारात्मक पूर्णांक हैं। जैसे कि n = p + q. तब n = ℝp × ℝq इस अपघटन का उपयोग करते हुए एक बिंदु x ∈ ℝn के रूप में लिखा जा सकता है।

इसे लिखकर मिश्रित ध्रुवीय-कार्टेशियन समन्वय प्रणाली में परिवर्तित किया जा सकता है:

यहाँ और से जुड़े इकाई वैक्टर y और z हैं। x के अनुसार , , r ≥ 0, यह व्यक्त करता है और एक कोण θ यह दिखाया जा सकता है कि [0, 2π) का डोमेन θ है। यदि p = q = 1, [0, π] यदि p और q में से एक वास्तव में 1 है और [0, π/2] यदि न तो p और न ही q 1 हैं। तो व्युत्क्रम परिवर्तन है-

इन विभाजनों को तब तक दोहराया जा सकता है, जब तक कि सम्मिलित कारकों में से एक का आयाम दो या अधिक हो। एक पॉलीस्फेरिकल कोऑर्डिनेट तन्त्र इन विभाजनों को दोहराने का परिणाम है। जब तक कि कोई कार्टेशियन निर्देशांक नहीं बचा है। पहले के बाद विभाजन को रेडियल समन्वय की आवश्यकता नहीं होती है क्योंकि के डोमेन और गोले हैं। इसलिए एक बहुगोलीय समन्वय प्रणाली के निर्देशांक एक गैर-श्रणात्मक त्रिज्या हैं और n − 1 कोण संभावित पॉलीस्फेरिकल समन्वय प्रणाली बाइनरी पेड़ के साथ n पत्तियाँ मिलती है। पेड़ में प्रत्येक गैर-पत्ती नोड एक विभाजन से मिलता है और एक कोणीय समन्वय निर्धारित करता है। उदाहरण के लिए पेड़ की जड़ n प्रतिनिधित्व करती है और इसके संघटक p और q पहले विभाजन का प्रतिनिधित्व करते हैं। लीफ नोड्स कार्टेशियन निर्देशांक Sn−1 के अनुरूप हैं। पॉलीस्फेरिकल निर्देशांक से कार्टेशियन निर्देशांक में परिवर्तित करने के सूत्र रूट से लीफ नोड्स तक के मार्गों को खोजकर निर्धारित किए जा सकते हैं। ये सूत्र पथ द्वारा ली गई प्रत्येक शाखा के लिए एक कारक वाले उत्पाद हैं। एक नोड के लिए जिसका संगत कोणीय निर्देशांक θi है। बाईं शाखा लेने से एक कारक sin θi का परिचय मिलता है और दाहिनी शाखा लेने से एक कारक cos θi का परिचय देता है। इसके विपरीत परिवर्तन पॉलीस्फेरिकल निर्देशांक से कार्टेशियन निर्देशांक तक समूहीकरण नोड्स द्वारा निर्धारित किया जाता है। एक सामान्य माता-पिता वाले नोड्स की प्रत्येक जोड़ी को एक मिश्रित ध्रुवीय-कार्टेशियन समन्वय प्रणाली से विभाजित करने के लिए उपरोक्त सूत्रों का उपयोग करके कार्टेशियन समन्वय प्रणाली में परिवर्तित किया जा सकता है।

विशेष ऑर्थोगोनल समूह के संदर्भ में पॉलीस्फेरिकल निर्देशांक की भी व्याख्या है। n = ℝp × ℝq का विभाजन एक उपसमूह निर्धारित करता है।

यह उपसमूह है जो दो कारकों में से हल किया गये प्रत्येक को छोड़ देता है। भागफल के लिए सहसमुच्चय प्रतिनिधियों का एक समुच्चय चुनता वही है। जो पॉलीस्फेरिकल समन्वय अपघटन के इस चरण के लिए प्रतिनिधि कोणों को चुनता है।

बहुगोलीय निर्देशांकों n में आयतन का माप चालू होता है और क्षेत्र माप पर Sn−1 उत्पाद हैं। प्रत्येक कोण के लिए एक कारक है और आयतन माप चालू है। n में रेडियल निर्देशांक के लिए एक कारक भी है। जो कि क्षेत्र माप का रूप है:

जहां कारक Fi पेड़ द्वारा निर्धारित किया जाता है। इसी प्रकार मात्रा माप है।

मान लीजिए कि हमारे पास पेड़ का एक नोड है। जो अपघटन n1+n2 = ℝn1 × ℝn2 से मिलता है और वह कोणीय समन्वय θ है। संगत कारक F के मूल्यों n1 और n2 पर निर्भर करता है। जब क्षेत्र माप को सामान्यीकृत किया जाता है। जिससे गोले का क्षेत्रफल 1 हो। तो ये कारक इस प्रकार हैं। यदि n1 = n2 = 1, तब

यदि n1 > 1 और n2 = 1, और यदि B तब बीटा फलन को प्रदर्शित है

यदि n1 = 1 और n2 > 1, तब

अंत में, यदि दोनों n1 और n2 तब एक से अधिक हैं


त्रिविम प्रक्षेपण

जिस प्रकार तीन आयामों में सन्निहित एक द्वि-आयामी क्षेत्र को त्रिविमीय प्रक्षेपण द्वारा द्वि-आयामी तल पर मैप किया जा सकता है। उसी प्रकार एक n-क्षेत्र को a पर मैप किया जा सकता है। n-डायमेंशनल हाइपरप्लेन द्वारा n-स्टीरियोग्राफिक प्रक्षेपण का आयामी संस्करण उदाहरण के लिए बिंदु [x,y,z] त्रिज्या 1 के द्वि-आयामी क्षेत्र पर बिंदु पर [x/1 − z, y/1 − z] पर xy-सतह पर मैप करता है। दूसरे शब्दों में,

इसी प्रकार एक का त्रिविम प्रक्षेपण n-वृत्त Sn त्रिज्या 1 को (n − 1)-आयामी हाइपरप्लेन n−1 के लंबवत xn-अक्ष के रूप में मैप करेगा।


यादृच्छिक अंक उत्पन्न करना

समान रूप से यादृच्छिक पर (n − 1)-क्षेत्र

File:2sphere-uniform.png
एक इकाई 2-गोले की सतह पर समान रूप से वितरण से खींचे गए बिंदुओं का एक समुच्चय, जो मार्सग्लिया के एल्गोरिथम का उपयोग करके उत्पन्न होता है।

इकाई पर समान रूप से वितरित यादृच्छिक अंक उत्पन्न करने के लिए (n − 1)-क्षेत्र (अर्थात इकाई की सतह n-गेंद), मार्शगैलिया (1972) निम्नलिखित एल्गोरिथम देता है।

n-सामान्य वितरण के आयामी वेक्टर (यह उपयोग करने के लिए पर्याप्त N(0, 1) उत्पन्न करें। चूंकि वास्तव में भिन्नता का चुनाव x = (x1, x2, ..., xn) अधिकतम रूप से है। अब इस बिंदु की त्रिज्या की गणना करें:

सदिश 1/rx इकाई की सतह पर n-गेंद समान रूप से वितरित है।

मार्सग्लिया द्वारा दिया गया एक विकल्प समान रूप से उत्तम प्रकार से x = (x1, x2, ..., xn) यूनिट हाइपरक्यूब में एक बिंदु का चयन करना है| n-घन प्रत्येक का मापदंण्ड लेकर xi स्वतंत्र रूप से निरंतर समान वितरण से अधिक (–1, 1), कंप्यूटिंग r उपरोक्त के रूप में और बिंदु को अस्वीकार कर रहा है और यदि पुन: r ≥ 1 मापदंड कर रहा है। (अर्थात् यदि बिंदु n अंदर नहीं है), और जब गेंद में एक बिंदु 1/r कारक द्वारा गोलाकार सतह तक स्केलिंग प्राप्त किया जाता है। तो फिर 1/rx इकाई की सतह पर समान रूप से वितरित n-गेंद है। उच्च आयामों के लिए यह विधि बहुत अक्षम हो जाती है क्योंकि इकाई घन का एक छोटा सा अंश गोले में समाहित होता है। दस आयामों में घन का 2% से कम गोला द्वारा भरा जाता है। इसलिए सामान्यतः 50 से अधिक प्रयासों की आवश्यकता होगी। सत्तर आयामों में से कम घन भर गया है। जिसका अर्थ है कि सामान्यतः एक ट्रिलियन क्वाड्रिलियन परीक्षणों की आवश्यकता होगी। जो कि एक कंप्यूटर से कहीं अधिक हो सकता है।


समान रूप से एन-बॉल के अन्दर

ईकाई की सतह से यादृच्छिक रूप से समान रूप से चुने गए बिंदु के साथ (n − 1)-क्षेत्र (उदाहरण के लिए, मार्सग्लिया के एल्गोरिथ्म का उपयोग करके), इकाई के अन्दर यादृच्छिक रूप से समान रूप से एक बिंदु प्राप्त करने के लिए केवल एक त्रिज्या की आवश्यकता होती है। यदि u अंतराल से यादृच्छिक रूप से समान रूप से उत्पन्न संख्या [0, 1] है और x एक बिंदु है जिसे इकाई से यादृच्छिक रूप से समान रूप से चुना गया (n − 1)-क्षेत्र है। तब u1/n x इकाई के अन्दर समान रूप से वितरित किया जाता है।

वैकल्पिक रूप से, बिंदुओं को इकाई के अन्दर n-गेंद इकाई से घटाकर (n + 1)-वृत्त से समान रूप से सैम्पल लिया जा सकता है। विशेष रूप से, यदि (x1, x2, ..., xn+2) इकाई से समान रूप से चुना गया बिंदु (n + 1)-क्षेत्र है। तब (x1, x2, ..., xn) इकाई के अन्दर समान रूप से वितरित किया जाता है। (अर्थात् केवल दो निर्देशांकों को छोड़कर)।[6]

यदि n पर्याप्त रूप से बड़ी है। तो n-गेंद की अधिकांश मात्रा इसकी सतह के बहुत पास के क्षेत्र में समाहित होगी। इसलिए उस आयतन से चुना गया बिंदु भी संभवतः सतह के पास होगा। यह कुछ संख्यात्मक और अन्य अनुप्रयोगों में उत्पन्न होने वाली आयामीता के तथाकथित अभिशाप की ओर ले जाने वाली घटनाओं में से एक है।

विशिष्ट क्षेत्र

0-क्षेत्र
R} बिंदुओं का जोड़ा कुछ R > 0 के लिए असतत टोपोलॉजी एकमात्र क्षेत्र जो पथ से जुड़ा नहीं है। समानांतर।
1-क्षेत्र
सामान्यतः यह वृत्त कहलाता है। एक गैर-तुच्छ मौलिक समूह है। एबेलियन ले समूह संरचना U(1); मंडल समूह वास्तविक प्रक्षेपी रेखा के लिए होमियोमॉर्फिक।
2-क्षेत्र
सामान्यतः केवल एक गोला कहा जाता है। इसकी जटिल संरचना के लिए रीमैन क्षेत्र देखें। बराबर जटिल प्रक्षेपी रेखा के लिए प्रदर्शित है।
3-क्षेत्र
समानांतर करने योग्य मुख्य बंडल सर्कल बंडल U(1)-बंडल हॉफ फिब्रेशन 2-क्षेत्र, लाइ ग्रुप स्ट्रक्चर Sp(1).
4-क्षेत्र
चतुष्कोणीय प्रक्षेपी रेखा के समतुल्य, HP1. SO(5) / SO(4).
5-क्षेत्र
मुख्य बंडल वृत्त बंडल U(1)-जटिल प्रोजेक्टिव स्पेस पर बंडल CP2. SO(6) / SO(5) = SU(3) / SU(2). दिया गया है या नहीं यह अनिर्णीत समस्या है। n-डायमेंशनल मैनिफोल्ड होमियोमॉर्फिक Sn के लिए n ≥ 5 है [7]
6-क्षेत्र
शुद्ध इकाई ऑक्टोनियन के समुच्चय से आने वाली लगभग जटिल संरचना को धारण करता है। SO(7) / SO(6) = G2 / SU(3). हेंज हॉफ के बाद यह प्रश्न है कि क्या इसमें एक जटिल कई गुना है। हॉपफ समस्या के रूप में जाना जाता है।[8]
7-क्षेत्र
इकाई ऑक्टोनियंस के समुच्चय के रूप में टोपोलॉजिकल क्वैसीग्रुप संरचना। मुख्य Sp(1)-बंडल ओवर S4. समानांतर। SO(8) / SO(7) = SU(4) / SU(3) = Sp(2) / Sp(1) = Spin(7) / G2 = Spin(6) / SU(3). 7-गोला विशेष रुचि का है क्योंकि यह इस आयाम में था कि पहले विदेशी क्षेत्रों की खोज की गई थी।
8-क्षेत्र
अष्टकोणीय प्रक्षेपी रेखा के समतुल्य OP1.
23-क्षेत्र
24-आयामी अंतरिक्ष में एक अत्यधिक सघन गोला-पैकिंग संभव है। जो जोंक जाली के अद्वितीय गुणों से संबंधित है।

अष्टफलकीय क्षेत्र

अष्टफलकीय n-क्षेत्र को इसी प्रकार परिभाषित किया गया है। किन्तु 1 मानक का उपयोग करना।

सामान्यतः यह एक क्रॉस-पॉलीटॉप का आकार लेता है।

अष्टफलकीय 1-गोला एक वर्ग है (इसके आंतरिक भाग के बिना)। अष्टफलकीय 2-गोला एक नियमित अष्टफलक है। इसके कारण अष्टफलकीय n-क्षेत्र का नाम टोपोलॉजिकल जॉइन n + 1 पृथक बिंदुओं के जोड़े है ।[9] सहज रूप से दो जोड़े के टोपोलॉजिकल जॉइन एक जोड़ी में प्रत्येक बिंदु के बीच एक खंड और दूसरी जोड़ी में प्रत्येक बिंदु को खींचकर उत्पन्न होता है। इससे एक वर्ग प्राप्त होता है। इसे तीसरी जोड़ी से जोड़ने के लिए वर्ग पर प्रत्येक बिंदु और तीसरी जोड़ी में प्रत्येक बिंदु के बीच एक खंड बनाएं। यह एक अष्टफलक देता है।

यह भी देखें

टिप्पणियाँ

  1. James W. Vick (1994). Homology theory, p. 60. Springer
  2. 2.0 2.1 Smith, David J.; Vamanamurthy, Mavina K. (1989). "How Small Is a Unit Ball?". Mathematics Magazine. 62 (2): 101–107. doi:10.1080/0025570X.1989.11977419. JSTOR 2690391.
  3. Smith, David J.; Vamanamurthy, Mavina K. (1989). "How Small Is a Unit Ball?". Mathematics Magazine. 62 (2): 106. doi:10.1080/0025570X.1989.11977419. JSTOR 2690391.
  4. Blumenson, L. E. (1960). "एन-डायमेंशनल गोलाकार निर्देशांक की व्युत्पत्ति". The American Mathematical Monthly. 67 (1): 63–66. doi:10.2307/2308932. JSTOR 2308932.
  5. N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions, Vol. 2: Class I representations, special functions, and integral transforms, translated from the Russian by V. A. Groza and A. A. Groza, Math. Appl., vol. 74, Kluwer Acad. Publ., Dordrecht, 1992, ISBN 0-7923-1492-1, pp. 223–226.
  6. Voelker, Aaron R.; Gosmann, Jan; Stewart, Terrence C. (2017). एन-स्फीयर और एन-बॉल से प्रभावी रूप से सैम्पलिंग वैक्टर और कोऑर्डिनेट करता है (Report). Centre for Theoretical Neuroscience. doi:10.13140/RG.2.2.15829.01767/1.
  7. Stillwell, John (1993), Classical Topology and Combinatorial Group Theory, Graduate Texts in Mathematics, vol. 72, Springer, p. 247, ISBN 9780387979700.
  8. Agricola, Ilka; Bazzoni, Giovanni; Goertsches, Oliver; Konstantis, Panagiotis; Rollenske, Sönke (2018). "हॉफ समस्या के इतिहास पर". Differential Geometry and Its Applications. 57: 1–9. arXiv:1708.01068. doi:10.1016/j.difgeo.2017.10.014. S2CID 119297359.
  9. Meshulam, Roy (2001-01-01). "क्लिक कॉम्प्लेक्स और हाइपरग्राफ मिलान". Combinatorica (in English). 21 (1): 89–94. doi:10.1007/s004930170006. ISSN 1439-6912. S2CID 207006642.


संदर्भ


बाहरी संबंध