प्यूसेक्स श्रृंखला: Difference between revisions
No edit summary |
No edit summary |
||
| Line 89: | Line 89: | ||
न्यूटन-प्यूसेक्स प्रमेय के प्रमाण में इन प्रारंभिक नियमों से पुनरावर्ती रूप से प्यूसेक्स श्रृंखला समाधानों की अगली नियमों की गणना करना सम्मिलित होगा। | न्यूटन-प्यूसेक्स प्रमेय के प्रमाण में इन प्रारंभिक नियमों से पुनरावर्ती रूप से प्यूसेक्स श्रृंखला समाधानों की अगली नियमों की गणना करना सम्मिलित होगा। | ||
=== रचनात्मक प्रमाण === | === <u>रचनात्मक प्रमाण</u> === | ||
मान लीजिए कि पहला कार्यकाल <math>\gamma x^{v_0}</math> एक प्यूसेक्स श्रृंखला के समाधान का <math>P(y)=0</math> पिछले अनुभाग की विधि द्वारा गणना की गई है। हिसाब करना बाकी है <math>z=y-\gamma x^{v_0}.</math> इसके लिए हमने सेट किया <math>y_0=\gamma x^{v_0},</math> और टेलर का विस्तार लिखिए {{mvar|P}} पर <math>z=y-y_0:</math> | मान लीजिए कि पहला कार्यकाल <math>\gamma x^{v_0}</math> एक प्यूसेक्स श्रृंखला के समाधान का <math>P(y)=0</math> पिछले अनुभाग की विधि द्वारा गणना की गई है। हिसाब करना बाकी है <math>z=y-\gamma x^{v_0}.</math> इसके लिए हमने सेट किया <math>y_0=\gamma x^{v_0},</math> और टेलर का विस्तार लिखिए {{mvar|P}} पर <math>z=y-y_0:</math> | ||
:<math>Q(z)=P(y_0+z)=P(y_0)+zP'(y_0)+\cdots + z^j\frac {P^{(j)}(y_0)} {j!} +\cdots</math> | :<math>Q(z)=P(y_0+z)=P(y_0)+zP'(y_0)+\cdots + z^j\frac {P^{(j)}(y_0)} {j!} +\cdots</math> | ||
Revision as of 01:16, 22 March 2023
गणित में प्यूसेक्स श्रृंखला पावर श्रृंखला का एक सामान्यीकरण है। जो अनिश्चित (चर) के श्रणात्मक और आंशिक घातांक के लिए अनुमति देता है। उदाहरण के लिए श्रृंखला
अनिश्चित x में एक प्यूसेक्स श्रृंखला है। 1676 में आइजैक न्यूटन द्वारा पहली बार प्यूसेक्स श्रृंखला प्रारम्भ की गई थी[1] और 1850 में विक्टर प्यूसेक्स द्वारा फिर से खोजा गया।[2] प्यूसेक्स श्रृंखला की परिभाषा में सम्मिलित है कि घातांकों के हर को परिबद्ध होना चाहिए। इसलिए घातांकों को एक उभयनिष्ठ भाजक n में घटाकर प्यूसेक्स श्रृंखला nवें मूल में लॉरेंट श्रृंखला बन जाती है। उदाहरण के लिए ऊपर दिया गया उदाहरण एक लॉरेंट श्रृंखला है क्योंकि n जटिल संख्या है और nवीं रूट्स अभिसरण श्रृंखला प्यूसेक्स श्रृंखला सामान्यतः परिभाषित करती है और n के निकटतम (गणित) में 0 कार्य करता है।
प्यूसेक्स की प्रमेय, जिसे कभी-कभी न्यूटन-प्यूसेक्स प्रमेय भी कहा जाता है, यह प्रमाणित करती है कि बहुपद समीकरण दिए जाने पर जटिल गुणांक के साथ इसके समाधान में y के कार्यों के रूप में देखा गया x में प्यूसेक्स श्रृंखला x के रूप में विस्तारित किया जा सकता है। जो कि कुछ निकटतम (गणित) अभिसरण श्रृंखला 0 हैं। दूसरे शब्दों में एक बीजगणितीय वक्र की प्रत्येक शाखा को स्थानीय रूप से प्यूसेक्स श्रृंखला x द्वारा वर्णित किया जा सकता है। (या में x − x0 के निकटतम के ऊपर शाखाओं पर विचार करते समय x0 ≠ 0)।
आधुनिक शब्दावली का प्रयोग करते हुए प्यूसेक्स के प्रमेय का दावा है कि विशेषता 0 के एक बीजगणितीय रूप से बंद क्षेत्र पर प्यूसेक्स श्रृंखला का समूह स्वयं बीजगणितीय रूप से बंद क्षेत्र है। जिसे प्यूसेक्स श्रृंखला का क्षेत्र कहा जाता है। यह औपचारिक पावर श्रृंखला औपचारिक लॉरेंट श्रृंखला का बीजगणितीय समापन है। जो स्वयं औपचारिक पावर श्रृंखला की रिंग्स के अंशों का क्षेत्र है।
परिभाषा
यदि K एक क्षेत्र (गणित) है (जैसे कि सम्मिश्र संख्या)। प्यूसेक्स श्रृंखला जिसमें गुणांक हैं, K रूप की अभिव्यक्ति है-
जहाँ एक धनात्मक पूर्णांक है और एक पूर्णांक है। दूसरे शब्दों में प्यूसेक्स श्रृंखला लॉरेंट श्रृंखला से भिन्न होती है। जिसमें वे अनिश्चित के भिन्नात्मक घातांकों की अनुमति देते हैं। जब तक कि इन भिन्नात्मक घातांकों में परिबद्ध हर (यहाँ n) है। लॉरेंट श्रृंखला की तरह ही प्यूसेक्स श्रृंखला अनिश्चित के ऋणात्मक घातांकों की अनुमति देती है। जब तक कि ये ऋणात्मक घातांक नीचे परिबद्ध हैं (यहाँ द्वारा )। जोड़ और गुणा अपेक्षित हैं। उदाहरण के लिए-
और
घातांकों के हर को पहले कुछ सामान्य भाजक में उन्नत करके उन्हें परिभाषित किया जा सकता है और उसके बाद की औपचारिक लौरेंट श्रृंखला के इसी क्षेत्र में आपरेशन प्रदर्शन में गुणांक के साथ प्यूसेक्स श्रृंखला K एक क्षेत्र बनाते हैं। जो संघ है-
औपचारिक लॉरेंट श्रृंखला के क्षेत्रों में अनिश्चित के रूप में माना जाता है।
यह प्रत्यक्ष सीमा के संदर्भ में प्यूसेक्स श्रृंखला के क्षेत्र की वैकल्पिक परिभाषा देता है। प्रत्येक धनात्मक पूर्णांक n के लिए होने देना एक अनिश्चित हो (प्रतिनिधित्व करने के लिए अर्थात् ) और में औपचारिक लॉरेंट श्रृंखला का क्षेत्र हो। यदि m, n को विभाजित करता है और मैपिंग एक क्षेत्र समरूपता को प्रेरित करता है और ये समरूपताएं प्रत्यक्ष प्रणाली बनाती हैं। जिसमें प्रत्यक्ष सीमा के रूप में प्यूसेक्स श्रृंखला का क्षेत्र होता है। यह प्रमाण है कि प्रत्येक क्षेत्र समरूपता अंतःक्षेपी है। यह प्रदर्शित करता है कि इस सीधी सीमा को उपरोक्त संघ के साथ पहचाना जा सकता है और यह कि दो परिभाषाएँ समतुल्य हैं (एक समरूपता तक)।
मूल्यांकन
एक गैर-शून्य प्यूसेक्स श्रृंखला को विशिष्ट रूप से लिखा जा सकता है-
साथ मूल्यांकन-
का परिमेय संख्याओं के प्राकृतिक क्रम और संबंधित गुणांक को प्रारंभिक गुणांक या मूल्यांकन गुणांक f कहा जाता है। शून्य श्रृंखला का मूल्यांकन है।
फलन v मूल्यांकन (बीजगणित) है और योगात्मक समूह के साथ प्यूसेक्स श्रृंखला को इसके मूल्यांकन समूह के रूप में परिमेय संख्याओं का महत्वपूर्ण क्षेत्र बनाता है।
प्रत्येक वैल्यूड फ़ील्ड के लिए मूल्यांकन सूत्र द्वारा अल्ट्रामेट्रिक स्पेस को परिभाषित करता है। इस दूरी के लिए प्यूसेक्स श्रृंखला का क्षेत्र मीट्रिक स्थान है। जिसका अंकन-
अभिव्यक्त करता है कि प्यूसेक्स अपने आंशिक योगों की सीमा है। चूंकि प्यूसेक्स श्रृंखला का क्षेत्र पूर्ण मीट्रिक स्थान नहीं है। नीचे देखें § लेवी-सिविता क्षेत्र.
अभिसरण प्यूसेक्स श्रृंखला
- न्यूटन-प्यूसेक्स प्रमेय न्यूटन-प्यूसेक्स द्वारा प्रदान की गई। प्यूसेक्स श्रृंखला अभिसरण श्रृंखला इस अर्थ में है कि शून्य का निकटतं है। जिसमें वे अभिसारी हैं। इसमें 0 को बाहर रखा गया है। यदि मूल्यांकन धनात्मक है।
अधिक स्पष्ट है-
सम्मिश्र संख्या गुणांकों वाली प्यूसेक्स श्रृंखला हो। r एक वास्तविक संख्या है। जिसे अभिसरण की त्रिज्या कहा जाता है। जैसे कि श्रृंखला अभिसरण करती है। T को अशून्य सम्मिश्र संख्या t के लिए प्रतिस्थापित किया जाता है। निरपेक्ष मान r से कम और r इस गुण के साथ सबसे बड़ी संख्या है। एक प्यूसेक्स श्रृंखला अभिसरण है। यदि इसमें अभिसरण का शून्येतर त्रिज्या है।
क्योंकि n एक अशून्य सम्मिश्र संख्या होती है। प्रतिस्थापन के लिए कुछ सावधानी चाहिए। T की एक विशिष्ट n वीं रूट, x कहते हैं, चुना जाना चाहिए। फिर प्रतिस्थापन में द्वारा प्रतिस्थापन प्रत्येक के लिए k होता है।
अभिसरण की त्रिज्या का अस्तित्व पावर श्रृंखला के समान अस्तित्व से उत्पन्न होता है। जिस पर f निर्धारित होता है। जिसे एक पावर श्रृंखला के रूप में माना जाता है।
यह न्यूटन-प्यूसेक्स प्रमेय का एक भाग है। जो प्रदान की गई प्यूसेक्स श्रृंखला में अभिसरण का धनात्मक क्षेत्र है और इस प्रकार शून्य के कुछ निकटतम में (बहुमूल्य फलन) विश्लेषणात्मक फलन को परिभाषित करता है (शून्य स्वयं संभवतः बाहर रखा गया है)।
गुणांकों पर मूल्यांकन और क्रम
यदि आधार क्षेत्र आदेश दिया गया क्षेत्र है। फिर प्यूसेक्स श्रृंखला का क्षेत्र नष्ट हो गया है। भी स्वाभाविक रूप से ("शब्दकोशीय क्रम") निम्नानुसार आदेश दिया गया है। गैर-शून्य प्यूसेक्स श्रृंखला 0 के साथ धनात्मक घोषित किया जाता है। जब भी इसका मूल्यांकन गुणांक ऐसा होता है। अनिवार्य रूप से इसका अर्थ है कि अनिश्चित की कोई धनात्मक तर्कसंगत पावर धनात्मक बनाया जाता है। किन्तु आधार क्षेत्र में किसी भी धनात्मक तत्व से छोटा होता है।
यदि आधार क्षेत्र मूल्यांकन से संपन्न है। जिससे हम प्यूसेक्स श्रृंखला के क्षेत्र पर अलग मूल्यांकन का निर्माण कर सकते हैं। मूल्यांकन देकर होना। जहाँ पहले परिभाषित मूल्यांकन है ( पहला गैर-शून्य गुणांक है) और अधिक रूप से बड़ा है (दूसरे शब्दों में का मान समूह है। शाब्दिक रूप से आदेश दिया जहां का मान समूह है।) अनिवार्य रूप से इसका अर्थ यह है कि पहले परिभाषित मूल्यांकन मूल्यांकन को ध्यान में रखने के लिए अतिसूक्ष्म राशि द्वारा आधार क्षेत्र पर दिया गया है।
न्यूटन-प्यूसेक्स प्रमेय
1671 की प्रारम्भ में[3] आइज़ैक न्यूटन ने स्पष्ट रूप से प्यूसेक्स श्रृंखला का उपयोग किया और श्रृंखला (गणित) के साथ अनुमान लगाने के लिए निम्नलिखित प्रमेय को बीजगणितीय समीकरणों के फलन के शून्य के रूप में सिद्ध किया। जिनके गुणांक फलन हैं। जो स्वयं श्रृंखला या बहुपदों के साथ अनुमानित हैं। इस उद्देश्य के लिए उन्होंने न्यूटन बहुभुज का परिचय दिया। जो इस संदर्भ में मूलभूत उपकरण बना हुआ है। न्यूटन ने काट-छाँट की श्रृंखला के साथ काम किया और यह केवल 1850 में विक्टर प्यूसेक्स है।[2] प्यूसेक्स श्रृंखला की अवधारणा को प्रस्तुत किया और उस प्रमेय को सिद्ध किया, जिसे अब प्यूसेक्स के प्रमेय या न्यूटन-प्यूसेक्स प्रमेय के रूप में जाना जाता है।[4] प्रमेय का अधिकार है कि एक बीजगणितीय समीकरण दिया गया है। जिसके गुणांक बहुपद हैं या अधिक सामान्यतः विशिष्ट शून्य के क्षेत्र (गणित) पर प्यूसेक्स श्रृंखला समीकरण के प्रत्येक समाधान को प्यूसेक्स श्रृंखला के रूप में व्यक्त किया जा सकता है। इसके अतिरिक्त प्रमाण इन प्यूसेक्स श्रृंखला की गणना के लिए एल्गोरिदम प्रदान करता है और जब जटिल संख्याओं पर काम करते हैं। जिससे परिणामी श्रृंखला अभिसरण होती है।
आधुनिक शब्दावली में प्रमेय को इस प्रकार दोहराया जा सकता है: विशेषता शून्य के क्षेत्र पर प्यूसेक्स श्रृंखला का क्षेत्र और जटिल संख्याओं पर अभिसारी प्यूसेक्स श्रृंखला का क्षेत्र दोनों बीजगणितीय रूप से बंद हैं।
न्यूटन बहुभुज
होने देना
एक बहुपद हो। जिसका अशून्य गुणांक बहुपद, घात श्रेणी या यहाँ तक कि x प्यूसेक्स श्रृंखला भी हैं। इस खंड में मूल्यांकन का का निम्नतम घातांक x में है (निम्नलिखित में से अधिकांश सामान्यतः किसी भी महत्वपूर्ण क्षेत्र में गुणांकों पर अधिक निर्धारित होते हैं।)
प्यूसेक्स श्रृंखला P (जो क्रियात्मक समीकरण का हल है ), जो एक फलन के शून्य हैं, की गणना करने के लिए सर्वप्रथम जड़ों के मूल्यांकन की गणना करना है। यह न्यूटन बहुभुज की भूमिका है।
कार्तीय तल में निर्देशांकों के बिंदुओं पर विचार करें। न्यूटन का बहुभुज P इन बिंदुओं का निचला उत्तल पतवार है। अर्थात् न्यूटन बहुभुज के किनारे इन दो बिंदुओं को जोड़ने वाले रेखा खंड हैं। जैसे कि ये सभी बिंदु खंड का समर्थन करने वाली रेखा से नीचे नहीं हैं (जैसा कि सामान्यतः, दूसरे निर्देशांक के मान के सापेक्ष होता है)।
प्यूसेक्स श्रृंखला को देखते हुए मूल्यांकन का , कम से कम न्यूनतम संख्या है और इस न्यूनतम के बराबर है। यदि यह न्यूनतम केवल i के लिए पहुंचा है। अभी तक के लिए तो का मूल होना P न्यूनतम कम से कम दो बार पहुंचा जाना चाहिए। अर्थात् दो मान और का i होने चाहिए। ऐसा है कि और प्रत्येक के लिए i.
वह और है। न्यूटन बहुभुज के किनारे से संबंधित होना चाहिए और
संक्षेप में, P की जड़ का मूल्यांकन न्यूटन बहुपद के किनारे के ढलान के विपरीत होना चाहिए।
प्यूसेक्स श्रृंखला के समाधान का प्रारंभिक गुणांक सरलता से निकाला जा सकता है। का प्रारंभिक गुणांक हो अर्थात् का गुणांक में होने देना। न्यूटन बहुभुज का ढलान हो और के संबंधित प्यूसेक्स श्रृंखला समाधान की प्रारंभिक अवधि हो। यदि कोई रद्दीकरण नहीं होगा। तो का प्रारंभिक गुणांक होगा।
जहाँ I सूचकांकों का समूह i है। ऐसा है कि ढलान के किनारे के अंतर्गत न्यूटन बहुभुज का आता है। तो, मूल होने के लिए प्रारंभिक गुणांक बहुपद का शून्येतर मूल होना चाहिए।
संक्षेप में न्यूटन बहुपद प्यूसेक्स श्रृंखला के सभी संभावित प्रारंभिक शब्दों की सरल गणना की अनुमति देता है। जो समाधान हैं।
न्यूटन-प्यूसेक्स प्रमेय के प्रमाण में इन प्रारंभिक नियमों से पुनरावर्ती रूप से प्यूसेक्स श्रृंखला समाधानों की अगली नियमों की गणना करना सम्मिलित होगा।
रचनात्मक प्रमाण
मान लीजिए कि पहला कार्यकाल एक प्यूसेक्स श्रृंखला के समाधान का पिछले अनुभाग की विधि द्वारा गणना की गई है। हिसाब करना बाकी है इसके लिए हमने सेट किया और टेलर का विस्तार लिखिए P पर
यह एक बहुपद है z जिसके गुणांक प्यूसेक्स श्रेणी में हैं x. कोई इस पर न्यूटन बहुभुज की विधि लागू कर सकता है, और एक के बाद एक प्यूसेक्स श्रृंखला की नियमों को प्राप्त करने के लिए पुनरावृति कर सकता है। किन्तु इसका बीमा कराने के लिए कुछ सावधानी बरतने की जरूरत होती है और दिखा रहा है कि एक प्यूसेक्स श्रृंखला प्राप्त करता है, अर्थात, के घातांक के हर x बंधे रहते हैं।
के संबंध में व्युत्पत्ति y मूल्यांकन में परिवर्तन नहीं करता है x गुणांक; वह है,
और समानता होती है अगर और केवल अगर कहाँ पिछले खंड का बहुपद है। अगर m की बहुलता है की जड़ के रूप में इसका परिणाम यह होता है कि असमानता के लिए एक समानता है शर्तें ऐसी हैं जहां तक मूल्यांकन का संबंध है, भुलाया जा सकता है और मतलब
इसका मतलब यह है कि, न्यूटन बहुभुज की विधि को पुनरावृत्त करने के लिए, किसी को केवल न्यूटन बहुभुज के उस भाग पर विचार करना चाहिए जिसका पहला निर्देशांक अंतराल से संबंधित है दो मामलों पर अलग से विचार किया जाना है और अगले उपखंडों का विषय होगा, तथाकथित विखंडित मामला, जहां m > 1, और नियमित मामला जहां m = 1.
नियमित मामला
This section is empty. You can help by adding to it. (October 2021) |
रामिफाइड केस
न्यूटन बहुभुज की विधि को पुनरावर्ती रूप से लागू करने का तरीका पहले वर्णित किया गया है। जैसा कि विधि के प्रत्येक अनुप्रयोग में वृद्धि हो सकती है, शाखायुक्त मामले में, घातांकों के हर (मूल्यांकन), यह साबित करने के लिए रहता है कि पुनरावृत्तियों की एक परिमित संख्या के बाद नियमित मामले तक पहुँचता है (अन्यथा परिणामी श्रृंखला के घातांकों के हर) बाध्य नहीं होगा, और यह श्रृंखला एक प्यूसेक्स श्रृंखला नहीं होगी। वैसे, यह भी सिद्ध किया जाएगा कि किसी को उम्मीद के मुताबिक सटीक रूप से कई प्यूसेक्स श्रृंखला के समाधान मिलते हैं, जो कि डिग्री है में y.
सामान्यता के नुकसान के बिना, कोई यह मान सकता है वह है, दरअसल, प्रत्येक कारक y का एक ऐसा समाधान प्रदान करता है जो शून्य प्यूसियक्स श्रृंखला है, और ऐसे कारकों का कारक निकाला जा सकता है।
जैसा कि विशेषता को शून्य माना जाता है, कोई यह भी मान सकता है एक वर्ग-मुक्त बहुपद है, जिसका समाधान है सब अलग हैं। दरअसल, वर्ग मुक्त गुणनखंडन फ़ैक्टरिंग के लिए केवल गुणांक के क्षेत्र के संचालन का उपयोग करता है वर्ग-मुक्त कारकों में अलग से हल किया जा सकता है। (विशेषता शून्य की परिकल्पना की आवश्यकता है, क्योंकि विशेषता में p, वर्ग-मुक्त अपघटन अलघुकरणीय कारक प्रदान कर सकता है, जैसे जिसकी एक बीजगणितीय विस्तार पर कई जड़ें हैं।)
इस संदर्भ में, एक न्यूटन बहुभुज के किनारे की लंबाई को इसके अंतिम बिंदुओं के भुज के अंतर के रूप में परिभाषित करता है। बहुभुज की लंबाई उसके किनारों की लंबाई का योग है। परिकल्पना के साथ न्यूटन के बहुभुज की लंबाई P इसकी डिग्री है y, वह इसकी जड़ों की संख्या है। न्यूटन बहुभुज के किनारे की लंबाई किसी दिए गए मूल्यांकन की जड़ों की संख्या है। यह संख्या पहले परिभाषित बहुपद की डिग्री के बराबर है इस प्रकार रेमीफाइड मामला दो (या अधिक) समाधानों से मेल खाता है जिनकी प्रारंभिक अवधि समान है। चूंकि इन समाधानों को अलग होना चाहिए (वर्ग-मुक्त परिकल्पना), उन्हें पुनरावृत्तियों की एक सीमित संख्या के बाद अलग होना चाहिए। यानी, अंततः एक बहुपद प्राप्त होता है यह वर्ग मुक्त है, और गणना प्रत्येक रूट के लिए नियमित मामले में जारी रह सकती है चूंकि नियमित मामले की पुनरावृत्ति घातांक के हर में वृद्धि नहीं करती है, इससे पता चलता है कि विधि प्यूसेक्स श्रृंखला के रूप में सभी समाधान प्रदान करती है, अर्थात, जटिल संख्या पर प्यूसेक्स श्रृंखला का क्षेत्र एक बीजीय रूप से बंद क्षेत्र है जिसमें एकतरफा बहुपद होता है जटिल गुणांक के साथ अंगूठी।
सकारात्मक विशेषता में विफलता
न्यूटन-प्यूसेक्स प्रमेय सकारात्मक विशेषता वाले क्षेत्रों पर मान्य नहीं है। उदाहरण के लिए, समीकरण समाधान हैं
और
(पहली कुछ नियमों पर सरलता से जांच की जाती है कि इन दो श्रृंखलाओं का योग और उत्पाद 1 और है क्रमश; यह तब मान्य होता है जब आधार फ़ील्ड K की विशेषता 2 से भिन्न होती है)।
जैसा कि पिछले उदाहरण के गुणांकों के हरों में 2 की शक्तियां किसी को विश्वास करने के लिए प्रेरित कर सकती हैं, प्रमेय का कथन सकारात्मक विशेषता में सत्य नहीं है। आर्टिन-श्रेयर सिद्धांत का उदाहरण | आर्टिन-श्रेयर समीकरण यह दिखाता है: वैल्यूएशन के साथ तर्क से पता चलता है कि एक्स का वैल्यूएशन होना चाहिए , और अगर हम इसे फिर से लिखते हैं तब
और एक ऐसा ही दिखाता है मूल्यांकन होना चाहिए , और इस तरह आगे बढ़ने से श्रृंखला प्राप्त होती है
चूँकि इस श्रृंखला का प्यूज़ेक्स श्रृंखला के रूप में कोई मतलब नहीं है - क्योंकि घातांकों में असीम भाजक हैं - मूल समीकरण का कोई हल नहीं है। हालांकि, इस तरह के ईसेनस्टीन की कसौटी अनिवार्य रूप से केवल एक समाधान नहीं है, क्योंकि, अगर बीजगणितीय रूप से विशेषता से बंद है , फिर प्यूसेक्स श्रृंखला का क्षेत्र खत्म हो गया के अधिकतम टेमिली रेमिफिकेशन (गणित) विस्तार का पूर्ण समापन है .[4]
इसी तरह बीजगणितीय बंद होने के मामले में, वास्तविक बंद क्षेत्र के लिए एक समान प्रमेय है: यदि एक वास्तविक बंद क्षेत्र है, तो प्यूसेक्स श्रृंखला का क्षेत्र खत्म हो गया है औपचारिक लॉरेंट श्रृंखला के क्षेत्र के खत्म होने का वास्तविक समापन है .[5] (यह पूर्व प्रमेय का तात्पर्य है क्योंकि विशेषता शून्य के बीजगणितीय रूप से बंद क्षेत्र कुछ वास्तविक-बंद क्षेत्र का अद्वितीय द्विघात विस्तार है।)
p-adically Closed field|p-adic Closer: if के लिए एक अनुरूप परिणाम भी है एक है मूल्यांकन के संबंध में -आदर्श रूप से बंद क्षेत्र , फिर प्यूसेक्स श्रृंखला का क्षेत्र खत्म हो गया ई आल्सो -आदर्श रूप से बंद।[6]
बीजगणितीय वक्रों और कार्यों का प्यूसेक्स विस्तार
बीजगणितीय वक्र
होने देना एक बीजगणितीय वक्र हो[7] एक affine समीकरण द्वारा दिया गया बीजगणितीय रूप से बंद क्षेत्र पर विशेषता शून्य की, और एक बिंदु पर विचार करें पर जिसे हम मान सकते हैं . हम यह भी मानते हैं निर्देशांक अक्ष नहीं है . फिर एक प्यूसेक्स विस्तार (द का समन्वय) पर प्यूसेक्स श्रृंखला है सकारात्मक मूल्यांकन होने के नाते .
अधिक सटीक रूप से, आइए हम की शाखाओं को परिभाषित करें पर अंक होना नोथेर सामान्यीकरण लेम्मा का का किस मानचित्र पर . ऐसे प्रत्येक के लिए , एक स्थानीय समन्वय है का पर (जो एक चिकना बिंदु है) जैसे कि निर्देशांक और की औपचारिक शक्ति श्रृंखला के रूप में व्यक्त किया जा सकता है , कहना (तब से बीजगणितीय रूप से बंद है, हम मान सकते हैं कि मूल्यांकन गुणांक 1) और : तब फॉर्म की एक अनूठी प्यूसेक्स श्रृंखला है (एक शक्ति श्रृंखला में ), ऐसा है कि (बाद की अभिव्यक्ति तब से अर्थपूर्ण है में एक अच्छी तरह से परिभाषित शक्ति श्रृंखला है ). यह का प्यूसेक्स विस्तार है पर जो की दी हुई शाखा से संबंधित बताया जाता है (या बस, उस शाखा का प्यूसेक्स विस्तार ), और प्रत्येक प्यूसेक्स का विस्तार पर की एक अनूठी शाखा के लिए इस प्रकार दिया जाता है पर .[8][9] एक बीजगणितीय वक्र या फलन की शाखाओं के एक औपचारिक पैरामीट्रिजेशन के अस्तित्व को प्यूसेक्स के प्रमेय के रूप में भी संदर्भित किया जाता है: इसमें यकीनन वही गणितीय सामग्री है जो इस तथ्य के रूप में है कि प्यूसेक्स श्रृंखला का क्षेत्र बीजगणितीय रूप से बंद है और ऐतिहासिक रूप से अधिक सटीक वर्णन है मूल लेखक का कथन।[10] उदाहरण के लिए, वक्र (जिसका सामान्यीकरण समन्वय के साथ एक रेखा है और नक्शा ) की दो शाखाएँ दोहरे बिंदु (0,0) पर होती हैं, जो बिंदुओं के अनुरूप होती हैं और सामान्यीकरण पर, जिनके प्यूसेक्स विस्तार हैं और क्रमशः (यहाँ, दोनों घात श्रेणी हैं क्योंकि समन्वय Étale morphism|étale सामान्यीकरण में संबंधित बिंदुओं पर है)। चिकने बिंदु पर (जो है सामान्यीकरण में), इसकी एक ही शाखा है, जिसे प्यूसेक्स विस्तार द्वारा दिया गया है (द समन्वय इस बिंदु पर शाखा करता है, इसलिए यह एक शक्ति श्रृंखला नहीं है)।
वक्र (जिसका सामान्यीकरण फिर से समन्वय वाली एक रेखा है और नक्शा ), दूसरी ओर, कस्प (विलक्षणता) पर एक ही शाखा है , जिसका प्यूसेक्स विस्तार है .
विश्लेषणात्मक अभिसरण
कब सम्मिश्र संख्याओं का क्षेत्र है, एक बीजगणितीय वक्र (जैसा कि ऊपर परिभाषित किया गया है) का प्यूसेक्स विस्तार इस अर्थ में अभिसरण का त्रिज्या है कि किसी दिए गए विकल्प के लिए -वाँ मूल , वे काफी छोटे के लिए अभिसरण करते हैं , इसलिए की प्रत्येक शाखा के एक विश्लेषणात्मक parametrization को परिभाषित करें के पड़ोस में (अधिक सटीक रूप से, पैरामीट्रिजेशन इसके द्वारा है -वाँ मूल ).
सामान्यीकरण
लेवी-सिविता क्षेत्र
प्यूसेक्स श्रृंखला का क्षेत्र मीट्रिक स्थान के रूप में पूर्ण मीट्रिक स्थान नहीं है। इसकी पूर्णता, जिसे लेवी-सीविटा क्षेत्र कहा जाता है, का वर्णन इस प्रकार किया जा सकता है: यह रूप की औपचारिक अभिव्यक्ति का क्षेत्र है जहां गुणांकों का समर्थन (अर्थात, ई का सेट ऐसा है ) परिमेय संख्याओं के बढ़ते क्रम की श्रेणी है जो या तो परिमित है या जिसकी ओर झुकाव है . दूसरे शब्दों में, ऐसी श्रंखला असीमित भाजक के घातांकों को स्वीकार करती है, बशर्ते कि घातांक के बहुत से पद इससे कम हों किसी दिए गए बंधन के लिए . उदाहरण के लिए, प्यूसेक्स श्रृंखला नहीं है, किन्तु यह प्यूसेक्स श्रृंखला के कॉची अनुक्रम की सीमा है; विशेष रूप से, यह की सीमा है जैसा . चूंकि, यह पूर्णता अभी भी इस अर्थ में अधिकतम रूप से पूर्ण नहीं है कि यह गैर-तुच्छ विस्तारों को स्वीकार करती है जो समान मूल्य समूह और अवशेष क्षेत्र वाले मूल्यवान क्षेत्र हैं,[11][12] इसलिए इसे और भी पूरा करने का अवसर।
हैन श्रृंखला
हैन श्रृंखला, प्यूसेक्स श्रृंखला का एक और (बड़ा) सामान्यीकरण है, जिसे हंस हैन (गणितज्ञ) ने 1907 में अपने हैन एम्बेडिंग प्रमेय के प्रमाण के दौरान प्रस्तुत किया था और फिर हिल्बर्ट की सत्रहवीं समस्या के प्रति उनके दृष्टिकोण में उनके द्वारा अध्ययन किया गया था। एक हैन श्रृंखला में, घातांकों को परिबद्ध भाजक की आवश्यकता के बजाय उन्हें एक अच्छी तरह से आदेश बनाने की आवश्यकता होती है। मूल्य समूह का सुव्यवस्थित उपसमुच्चय (सामान्यतः या ). इन्हें बाद में अनातोली माल्टसेव और बर्नहार्ड न्यूमैन द्वारा एक गैर-कम्यूटेटिव सेटिंग के लिए सामान्यीकृत किया गया था (इसलिए उन्हें कभी-कभी हैन-मालसेव-न्यूमैन श्रृंखला के रूप में जाना जाता है)। हैन श्रृंखला का उपयोग करना, सकारात्मक विशेषता में बिजली श्रृंखला के क्षेत्र के बीजगणितीय समापन का विवरण देना संभव है जो कुछ हद तक प्यूसेक्स श्रृंखला के क्षेत्र के अनुरूप है।[13]
टिप्पणियाँ
- ↑ Newton (1960)
- ↑ 2.0 2.1 Puiseux (1850, 1851)
- ↑ Newton (1736)
- ↑ 4.0 4.1 cf. Kedlaya (2001), introduction
- ↑ Basu &al (2006), chapter 2 ("Real Closed Fields"), theorem 2.91 (p. 75)
- ↑ Cherlin (1976), chapter 2 ("The Ax–Kochen–Ershof Transfer Principle"), §7 ("Puiseux series fields")
- ↑ We assume that is irreducible or, at least, that it is reduced and that it does not contain the coordinate axis.
- ↑ Shafarevich (1994), II.5, pp. 133–135
- ↑ Cutkosky (2004), chapter 2, pp. 3–11
- ↑ Puiseux (1850), p. 397
- ↑ Poonen, Bjorn (1993). "ज़्यादा से ज़्यादा पूरे फ़ील्ड". Enseign. Math. 39: 87–106.
- ↑ Kaplansky, Irving (1942). "वैल्यूएशन के साथ मैक्सिमल फील्ड्स". Duke Math. J. 9 (2): 303–321. doi:10.1215/s0012-7094-42-00922-0.
- ↑ Kedlaya (2001)
यह भी देखें
- लॉरेंट श्रृंखला
- माधव श्रृंखला
- न्यूटन बहुपद|न्यूटन का विभाजित अंतर प्रक्षेप
- पदे सन्निकट
संदर्भ
- Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (2006). Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics 10 (2nd ed.). Springer-Verlag. doi:10.1007/3-540-33099-2. ISBN 978-3-540-33098-1.
- Cherlin, Greg (1976). Model Theoretic Algebra Selected Topics. Lecture Notes in Mathematics 521. Springer-Verlag. ISBN 978-3-540-07696-4.[dead link]
- Cutkosky, Steven Dale (2004). Resolution of Singularities. Graduate Studies in Mathematics 63. American Mathematical Society. ISBN 0-8218-3555-6.
- Eisenbud, David (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer-Verlag. ISBN 3-540-94269-6.
- Kedlaya, Kiran Sridhara (2001). "The algebraic closure of the power series field in positive characteristic". Proc. Amer. Math. Soc. 129 (12): 3461–3470. doi:10.1090/S0002-9939-01-06001-4.
- Newton, Isaac (1736) [1671], The method of fluxions and infinite series; with its application to the geometry of curve-lines, translated by Colson, John, London: Henry Woodfall, p. 378 (Translated from Latin)
- Newton, Isaac (1960). "letter to Oldenburg dated 1676 Oct 24". The correspondence of Isaac Newton. Vol. II. Cambridge University press. pp. 126–127. ISBN 0-521-08722-8.
- Puiseux, Victor Alexandre (1850). "Recherches sur les fonctions algébriques" (PDF). J. Math. Pures Appl. 15: 365–480.
- Puiseux, Victor Alexandre (1851). "Nouvelles recherches sur les fonctions algébriques" (PDF). J. Math. Pures Appl. 16: 228–240.
- Shafarevich, Igor Rostislavovich (1994). Basic Algebraic Geometry (2nd ed.). Springer-Verlag. ISBN 3-540-54812-2.
- Walker, R.J. (1978). Algebraic Curves (PDF) (Reprint ed.). Springer-Verlag. ISBN 0-387-90361-5.