लैगुएरे बहुपद: Difference between revisions

From Vigyanwiki
(Created page with "File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerr...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i|thumb|लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक]]गणित में, [[एडमंड लागुएरे]] (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:
[[File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i|thumb|लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक]]गणित में, [[एडमंड लागुएरे|एडमंड लैगुएरे]] (1834-1886) के नाम पर '''लैगुएरे बहुपद''', मुख्य रूप से लैगुएरे के अंतर समीकरण के मान को प्रदर्शित करता हैं:<math display="block">xy'' + (1 - x)y' + ny = 0,     
<math display="block">xy'' + (1 - x)y' + ny = 0,     
y = y(x)</math>जो द्वितीय कोटि के रेखीय अवकल समीकरण को प्रदर्शित करता हैं। इस प्रकार यदि {{mvar|n}} गैर-ऋणात्मक पूर्णांक हो तब इस समीकरण का केवल ऐकक मान होता है। कभी-कभी लैगुएरे बहुपद नाम का उपयोग मान प्राप्त करने के लिए किया जाता है<math display="block">xy'' + (\alpha + 1 - x)y' + ny = 0~.</math>जहाँ {{mvar|n}} गैर-ऋणात्मक पूर्णांक है।
y = y(x)</math>
जो एक द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि {{mvar|n}} एक गैर-ऋणात्मक पूर्णांक है।


कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है
<math display="block">xy'' + (\alpha + 1 - x)y' + ny = 0~.</math>
कहाँ {{mvar|n}} अभी भी एक गैर-ऋणात्मक पूर्णांक है।
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, शायद ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref> [[निकोलाई याकोवलेविच सोनिन]])।


अधिक आम तौर पर, लैगुएरे फ़ंक्शन एक समाधान होता है जब {{mvar|n}} आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।
इस प्रकार इन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहाँ पर इसका उपयोग करके दिखाया गया हैं। (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी [[सोनिन बहुपद]] उनके आविष्कार के बाद [[निकोलाई याकोवलेविच सोनिन]] का उपयोग किया था।<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref>


लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है
अधिक सामान्य लैगुएरे फ़ंक्शन के कुछ मान होते है, इस प्रकार जब {{mvar|n}} आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं होते हैं। तब लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है।<math display="block">\int_0^\infty f(x) e^{-x} \, dx.</math>ये बहुपद सामान्यतः {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, [[बहुपद अनुक्रम]] द्वारा निरूपित होते हैं  जिसे रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,<math display="block">L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right) =\frac{1}{n!} \left( \frac{d}{dx} -1 \right)^n x^n,</math>निम्नलिखित खंड के बंद प्रारूप का कम उपयोग किया जाता हैं। वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद को प्रकट करते हैं।<math display="block">\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.</math>लैगुएरे बहुपदों का क्रम {{math|''n''! L<sub>''n''</sub>}} शेफ़र अनुक्रम है,<math display="block"> \frac{d}{dx} L_n = \left ( \frac{d}{dx} - 1 \right ) L_{n-1}.</math>कॉम्बिनेटरिक्स में [[किश्ती बहुपद]] कमोबेश लैगुएरे बहुपद के समान हैं, इस प्रकार वैरियेबल के प्राथमिक परिवर्तन तक इसे आगे के ट्रिकोमी-कार्लिट्ज़ बहुपद के रूप में उपयोग किया जाता हैं।<br />एक इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के मान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस सूत्र साधारण हार्मोनिक ऑसिलेटर में ऑसिलेटर प्रणाली के स्टैटिक विग्नर फंक्शन्स को भी वर्णन करते हैं। इस प्रकार [[मोर्स क्षमता]] और क्वांटम हार्मोनिक ऑसिलेटर उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं, जिसे 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर के रूप में प्रदर्शित किया जाता हैं।
<math display="block">\int_0^\infty f(x) e^{-x} \, dx.</math>
भौतिक विज्ञान कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n<nowiki>!</nowiki> के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी प्रकार कुछ भौतिक विज्ञान तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग करते हैं।)
ये बहुपद, आमतौर पर निरूपित होते हैं {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, एक [[बहुपद अनुक्रम]] है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
 
<math display="block">L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right) =\frac{1}{n!} \left( \frac{d}{dx} -1 \right)^n x^n,</math>
निम्नलिखित खंड के बंद रूप को कम करना।
 
वे एक आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं
<math display="block">\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.</math>
लैगुएरे बहुपदों का क्रम {{math|''n''! L<sub>''n''</sub>}} एक शेफ़र अनुक्रम है,
<math display="block"> \frac{d}{dx} L_n = \left ( \frac{d}{dx} - 1 \right ) L_{n-1}.</math>
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें।
 
एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे [[मोर्स क्षमता]] और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।
 
भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए एक परिभाषा का उपयोग करते हैं जो n<nowiki>!</nowiki> के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)


== पहले कुछ बहुपद ==
== पहले कुछ बहुपद ==
Line 62: Line 42:


== रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन ==
== रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन ==
पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है
पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है<math display="block">L_0(x) = 1</math><math display="block">L_1(x) = 1 - x</math>और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करना {{math|''k'' ≥ 1}}:<math display="block">L_{k + 1}(x) = \frac{(2k + 1 - x)L_k(x) - k L_{k - 1}(x)}{k + 1}. </math>इसी प्रकार आगे के मान इस प्रकार होंगे।<math display="block">  x L'_n(x) = nL_n (x) - nL_{n-1}(x).</math>कुछ सीमा तक प्राप्त होने वाले मानों से उत्पन्न होने वाली समस्याओं के मान में विशेष रूप से कुछ मान उपयोगी होते हैं:<math display="block">L_{k}(0) = 1, L_{k}'(0) = -k.  </math>इस प्रकार यह क्लोज्ड प्रारूप को प्रदर्शित करते हैं।<math display="block">L_n(x)=\sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{k!} x^k .</math>इनके लिए [[जनरेटिंग फ़ंक्शन]] भी इसी प्रकार है,<math display="block">\sum_{n=0}^\infty t^n L_n(x)=  \frac{1}{1-t} e^{-tx/(1-t)}.</math>ऋणात्मक सूचकांक के बहुपदों को धनात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:<math display="block">L_{-n}(x)=e^xL_{n-1}(-x).</math>
<math display="block">L_0(x) = 1</math>
<math display="block">L_1(x) = 1 - x</math>
और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना {{math|''k'' ≥ 1}}:
<math display="block">L_{k + 1}(x) = \frac{(2k + 1 - x)L_k(x) - k L_{k - 1}(x)}{k + 1}. </math>
आगे,
<math display="block">  x L'_n(x) = nL_n (x) - nL_{n-1}(x).</math>
कुछ सीमा मान समस्याओं के समाधान में, विशेषता मान उपयोगी हो सकते हैं:
<math display="block">L_{k}(0) = 1, L_{k}'(0) = -k.  </math>
बंद रूप है
<math display="block">L_n(x)=\sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{k!} x^k .</math>
उनके लिए [[जनरेटिंग फ़ंक्शन]] भी इसी प्रकार है,
<math display="block">\sum_{n=0}^\infty t^n L_n(x)=  \frac{1}{1-t} e^{-tx/(1-t)}.</math>
नकारात्मक सूचकांक के बहुपदों को सकारात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:
<math display="block">L_{-n}(x)=e^xL_{n-1}(-x).</math>
 


== बाइनरी फ़ंक्शंस से संबंध ==
== बाइनरी फ़ंक्शंस से संबंध ==
बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की एक विधि है <math>n</math>:
बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों <math>n</math> को सेट करने की विधि है :<math display="block">L_n(x)=\frac{x^n}{n!}b(\frac{4^n-1}{3}, x).</math>यहाँ<math display="block">b(n, x) = \frac{1}{x}b(\frac{n - 2^{f(n)}}{2}, x) + (-1)^nb(\left\lfloor\frac{2n - 2^{f(n)}}{2}\right\rfloor, x).</math>साथ में <math>b(0,x)=1</math> माना जाता हैं।<math display="block">f(2n+1)=0, f(2n)=f(n)+1.</math>यहाँ <math>f(n)</math> {{OEIS link|A007814}} है और <math>b(n)</math> {{OEIS link|A347204}} का सामान्यीकरण है।
<math display="block">L_n(x)=\frac{x^n}{n!}b(\frac{4^n-1}{3}, x).</math>
यहाँ
<math display="block">b(n, x) = \frac{1}{x}b(\frac{n - 2^{f(n)}}{2}, x) + (-1)^nb(\left\lfloor\frac{2n - 2^{f(n)}}{2}\right\rfloor, x).</math>
साथ <math>b(0,x)=1</math>.
 
भी
<math display="block">f(2n+1)=0, f(2n)=f(n)+1.</math>
यहाँ <math>f(n)</math> है {{OEIS link|A007814}} और <math>b(n)</math> का सामान्यीकरण है {{OEIS link|A347204}}.


== सामान्यीकृत लैगुएरे बहुपद ==
== सामान्यीकृत लैगुएरे बहुपद ==
मनमाना वास्तविक α के लिए अंतर समीकरण के बहुपद समाधान<ref>A&S p. 781</ref>
वास्तविक α का मान प्राप्त करने के लिए अंतर समीकरण के बहुपद मान सेट किया जाता हैं।<ref>A&S p. 781</ref><math display="block">x\,y'' + \left(\alpha +1 - x\right) y' + n\,y = 0</math>सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।<br />पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है<math display="block">L^{(\alpha)}_0(x) = 1</math><math display="block">L^{(\alpha)}_1(x) = 1 + \alpha - x</math>और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करता हैं जिसके लिए {{math|''k'' ≥ 1}} का मान सेट किया जाता हैं:<math display="block">L^{(\alpha)}_{k + 1}(x) = \frac{(2k + 1 + \alpha - x)L^{(\alpha)}_k(x) - (k + \alpha) L^{(\alpha)}_{k - 1}(x)}{k + 1}. </math>सरल लैगुएरे बहुपद विशेष स्थितियाँ हैं जहाँ पर {{math|1=''α'' = 0}} सामान्यीकृत लैगुएरे बहुपद हैं:<math display="block">L^{(0)}_n(x) = L_n(x).</math>उनके लिए रोड्रिग्स सूत्र है<math display="block">L_n^{(\alpha)}(x) = {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right)
<math display="block">x\,y'' + \left(\alpha +1 - x\right) y' + n\,y = 0</math>
= \frac{x^{-\alpha}}{n!}\left( \frac{d}{dx}-1\right)^nx^{n+\alpha}.</math>उनके लिए जनरेटिंग फंक्शन है<math display="block">\sum_{n=0}^\infty  t^n L^{(\alpha)}_n(x)=  \frac{1}{(1-t)^{\alpha+1}} e^{-tx/(1-t)}.</math>
सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।
[[File:Zugeordnete Laguerre-Polynome.svg|thumb|center|600px|पहले कुछ सामान्यीकृत लैगुएरे बहुपद, {{math|''L<sub>n</sub>''<sup>(''k'')</sup>(''x'')}}]]


पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है
==== सामान्यीकृत लैगुएरे बहुपद के स्पष्ट उदाहरण और गुण ====
<math display="block">L^{(\alpha)}_0(x) = 1</math>
* लैगुएरे फ़ंक्शंस को [[संगम हाइपरज्यामितीय समारोह|संगम हाइपरज्यामितीय फंक्शन]] और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है<ref>A&S p. 509</ref> <math display="block"> L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x).</math> जहाँ <math display="inline">{n+ \alpha \choose n}</math> सामान्यीकृत [[द्विपद गुणांक]] है। जिसमें {{mvar|n}} पूर्णांक होते है जो फ़ंक्शन डिग्री के बहुपद {{mvar|n}} तक कम हो जाता है, इसकी वैकल्पिक अभिव्यक्ति भी की जाती है<ref>A&S p. 510</ref> <math display="block">L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x)</math> कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में या दूसरा फ़ंक्शन उपयोग में लाया जाता हैं।
<math display="block">L^{(\alpha)}_1(x) = 1 + \alpha - x</math>
* डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप {{mvar|n}} है<ref>A&S p. 775</ref> <math display="block"> L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} </math> लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया जाता हैं, रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय होती हैं।
और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना {{math|''k'' ≥ 1}}:
* लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्  <math>D = \frac{d}{dx}</math> और अंतर ऑपरेटर <math>M=qxD^2+(\alpha+1)D</math> पर विचार करें, तब <math>\exp(-tM)x^n=(-1)^nq^nt^nn!L^{(\alpha)}_n\left(\frac{x}{qt}\right)</math> का मान होता हैं।
<math display="block">L^{(\alpha)}_{k + 1}(x) = \frac{(2k + 1 + \alpha - x)L^{(\alpha)}_k(x) - (k + \alpha) L^{(\alpha)}_{k - 1}(x)}{k + 1}. </math>
* पहले कुछ सामान्यीकृत लैगुएरे बहुपद हैं: <math display="block">\begin{align}
सरल लैगुएरे बहुपद विशेष मामले हैं {{math|1=''α'' = 0}} सामान्यीकृत लैगुएरे बहुपद:
<math display="block">L^{(0)}_n(x) = L_n(x).</math>
उनके लिए रोड्रिग्स सूत्र है
<math display="block">L_n^{(\alpha)}(x) = {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right)
= \frac{x^{-\alpha}}{n!}\left( \frac{d}{dx}-1\right)^nx^{n+\alpha}.</math>
उनके लिए जनरेटिंग फंक्शन है
<math display="block">\sum_{n=0}^\infty  t^n L^{(\alpha)}_n(x)=  \frac{1}{(1-t)^{\alpha+1}} e^{-tx/(1-t)}.</math>
[[File:Zugeordnete Laguerre-Polynome.svg|thumb|center|600px|पहले कुछ सामान्यीकृत लागुएरे बहुपद, {{math|''L<sub>n</sub>''<sup>(''k'')</sup>(''x'')}}]]
 
=== सामान्यीकृत लैगुएरे बहुपद === के स्पष्ट उदाहरण और गुण
* लैगुएरे फ़ंक्शंस को [[संगम हाइपरज्यामितीय समारोह]] और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है<ref>A&S p. 509</ref> <math display="block"> L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x).</math> कहाँ <math display="inline">{n+ \alpha \choose n}</math> सामान्यीकृत [[द्विपद गुणांक]] है। कब {{mvar|n}} एक पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है {{mvar|n}}. इसकी वैकल्पिक अभिव्यक्ति है<ref>A&S p. 510</ref> <math display="block">L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x)</math> कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
* डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप {{mvar|n}} है<ref>A&S p. 775</ref> <math display="block"> L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} </math> लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
* लैगुएरे बहुपदों में एक विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो <math>D = \frac{d}{dx}</math> और अंतर ऑपरेटर पर विचार करें <math>M=qxD^2+(\alpha+1)D</math>. तब <math>\exp(-tM)x^n=(-1)^nq^nt^nn!L^{(\alpha)}_n\left(\frac{x}{qt}\right)</math>.
* पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं: <math display="block">\begin{align}
L_0^{(\alpha)}(x) &= 1 \\
L_0^{(\alpha)}(x) &= 1 \\
L_1^{(\alpha)}(x) &= -x + (\alpha +1) \\
L_1^{(\alpha)}(x) &= -x + (\alpha +1) \\
Line 120: Line 63:
\end{align}</math>
\end{align}</math>
* अग्रणी पद का गुणांक है {{math|(−1)<sup>''n''</sup>/''n''<nowiki>!</nowiki>}};
* अग्रणी पद का गुणांक है {{math|(−1)<sup>''n''</sup>/''n''<nowiki>!</nowiki>}};
* स्थिर पद, जिसका मान 0 है, है <math display="block">L_n^{(\alpha)}(0) = {n+\alpha\choose n} = \frac{\Gamma(n + \alpha + 1)}{n!\, \Gamma(\alpha + 1)};</math>
* स्थिर पद, जिसका मान 0 है, है <math display="block">L_n^{(\alpha)}(0) = {n+\alpha\choose n} = \frac{\Gamma(n + \alpha + 1)}{n!\, \Gamma(\alpha + 1)};</math><math display="block">
<!-- \frac{n^\alpha}{\Gamma(\alpha+1)} + O\left(n^{\alpha-1}\right);</math> -->
* अगर {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> एक स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}}
* बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार {{mvar|n}}, लेकिन तय है {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> <math display="block">
\begin{align}
\begin{align}
& L_n^{(\alpha)}(x) = \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{\sqrt{\pi}} \frac{e^{\frac{x}{2}}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} \sin\left(2 \sqrt{nx}- \frac{\pi}{2}\left(\alpha-\frac{1}{2} \right) \right)+O\left(n^{\frac{\alpha}{2}-\frac{3}{4}}\right), \\[6pt]
& L_n^{(\alpha)}(x) = \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{\sqrt{\pi}} \frac{e^{\frac{x}{2}}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} \sin\left(2 \sqrt{nx}- \frac{\pi}{2}\left(\alpha-\frac{1}{2} \right) \right)+O\left(n^{\frac{\alpha}{2}-\frac{3}{4}}\right), \\[6pt]
& L_n^{(\alpha)}(-x) = \frac{(n+1)^{\frac{\alpha}{2}-\frac{1}{4}}}{2\sqrt{\pi}} \frac{e^{-x/2}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} e^{2 \sqrt{x(n+1)}} \cdot\left(1+O\left(\frac{1}{\sqrt{n+1}}\right)\right),
& L_n^{(\alpha)}(-x) = \frac{(n+1)^{\frac{\alpha}{2}-\frac{1}{4}}}{2\sqrt{\pi}} \frac{e^{-x/2}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} e^{2 \sqrt{x(n+1)}} \cdot\left(1+O\left(\frac{1}{\sqrt{n+1}}\right)\right),
\end{align}
\end{align}
</math> और संक्षेप में <math display="block">\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},</math> कहाँ <math>J_\alpha</math> बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।
</math>
<!-- \frac{n^\alpha}{\Gamma(\alpha+1)} + O\left(n^{\alpha-1}\right);</math> -->
* यदि {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] होती हैं, फ़ंक्शन का धनात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>
* इसमें से बड़े मान के लिए बहुपदों का स्पर्शोन्मुख मान {{mvar|n}} होता हैं, किन्तु {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है <ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> और संक्षेप में <math display="block">\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},</math>जहाँ <math>J_\alpha</math> बेसेल फ़ंक्शन असिम्प्टोटिक रूप है।


=== एक [[समोच्च अभिन्न]] === के रूप में
==== एक [[समोच्च अभिन्न]] के रूप में ====
ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है
ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है<math display="block">L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint_C\frac{e^{-xt/(1-t)}}{(1-t)^{\alpha+1}\,t^{n+1}} \; dt,</math>जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना वामावर्त दिशा में बार मूल को घेरता है
<math display="block">L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint_C\frac{e^{-xt/(1-t)}}{(1-t)^{\alpha+1}\,t^{n+1}} \; dt,</math>
जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना एक वामावर्त दिशा में एक बार मूल को घेरता है


=== पुनरावृत्ति संबंध ===
=== पुनरावृत्ति संबंध ===
लागुएरे बहुपदों के लिए अतिरिक्त सूत्र:<ref>A&S equation (22.12.6), p. 785</ref>
लैगुएरे बहुपदों के लिए अतिरिक्त सूत्र:<ref>A&S equation (22.12.6), p. 785</ref><math display="block">L_n^{(\alpha+\beta+1)}(x+y)= \sum_{i=0}^n L_i^{(\alpha)}(x) L_{n-i}^{(\beta)}(y) .</math>लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं<math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n L_{n-i}^{(\alpha+i)}(y)\frac{(y-x)^i}{i!},</math>विशेष रूप से<math display="block">L_n^{(\alpha+1)}(x)= \sum_{i=0}^n L_i^{(\alpha)}(x)</math>और<math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n {\alpha-\beta+n-i-1 \choose n-i} L_i^{(\beta)}(x),</math>या<math display="block">L_n^{(\alpha)}(x)=\sum_{i=0}^n {\alpha-\beta+n \choose n-i} L_i^{(\beta- i)}(x);</math>इसके अतिरिक्त<math display="block">\begin{align}
<math display="block">L_n^{(\alpha+\beta+1)}(x+y)= \sum_{i=0}^n L_i^{(\alpha)}(x) L_{n-i}^{(\beta)}(y) .</math>
लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं
<math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n L_{n-i}^{(\alpha+i)}(y)\frac{(y-x)^i}{i!},</math>
विशेष रूप से
<math display="block">L_n^{(\alpha+1)}(x)= \sum_{i=0}^n L_i^{(\alpha)}(x)</math>
और
<math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n {\alpha-\beta+n-i-1 \choose n-i} L_i^{(\beta)}(x),</math>
या
<math display="block">L_n^{(\alpha)}(x)=\sum_{i=0}^n {\alpha-\beta+n \choose n-i} L_i^{(\beta- i)}(x);</math>
इसके अतिरिक्त
<math display="block">\begin{align}
L_n^{(\alpha)}(x)- \sum_{j=0}^{\Delta-1} {n+\alpha \choose n-j} (-1)^j \frac{x^j}{j!}&= (-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(\alpha+\Delta)}(x)\\[6pt]
L_n^{(\alpha)}(x)- \sum_{j=0}^{\Delta-1} {n+\alpha \choose n-j} (-1)^j \frac{x^j}{j!}&= (-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(\alpha+\Delta)}(x)\\[6pt]
&=(-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha-i-1 \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(n+\alpha+\Delta-i)}(x)
&=(-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha-i-1 \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(n+\alpha+\Delta-i)}(x)
\end{align}</math>
\end{align}</math>उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है<math display="block">\begin{align}
उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है
<math display="block">\begin{align}
L_n^{(\alpha)}(x) &= L_n^{(\alpha+1)}(x) - L_{n-1}^{(\alpha+1)}(x) = \sum_{j=0}^k {k \choose j} L_{n-j}^{(\alpha+k)}(x), \\[10pt]
L_n^{(\alpha)}(x) &= L_n^{(\alpha+1)}(x) - L_{n-1}^{(\alpha+1)}(x) = \sum_{j=0}^k {k \choose j} L_{n-j}^{(\alpha+k)}(x), \\[10pt]
n L_n^{(\alpha)}(x) &= (n + \alpha )L_{n-1}^{(\alpha)}(x) - x L_{n-1}^{(\alpha+1)}(x), \\[10pt]
n L_n^{(\alpha)}(x) &= (n + \alpha )L_{n-1}^{(\alpha)}(x) - x L_{n-1}^{(\alpha+1)}(x), \\[10pt]
Line 159: Line 87:
n L_n^{(\alpha+1)}(x) &= (n-x) L_{n-1}^{(\alpha+1)}(x) + (n+\alpha)L_{n-1}^{(\alpha)}(x) \\[10pt]
n L_n^{(\alpha+1)}(x) &= (n-x) L_{n-1}^{(\alpha+1)}(x) + (n+\alpha)L_{n-1}^{(\alpha)}(x) \\[10pt]
x L_n^{(\alpha+1)}(x) &= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x);
x L_n^{(\alpha+1)}(x) &= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x);
\end{align}</math>
\end{align}</math>संयुक्त रूप से वे इसे अतिरिक्त, उपयोगी पुनरावर्तन संबंध देते हैं<math display="block">\begin{align}
संयुक्त रूप से वे इसे अतिरिक्त, उपयोगी पुनरावर्तन संबंध देते हैं<math display="block">\begin{align}
L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt]
L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt]
&= \frac{\alpha+1-x}n  L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x)
&= \frac{\alpha+1-x}n  L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x)
\end{align}</math>
\end{align}</math>तब से <math>L_n^{(\alpha)}(x)</math> डिग्री का मोनिक बहुपद <math>n</math> में <math>\alpha</math> हैं।
तब से <math>L_n^{(\alpha)}(x)</math> डिग्री का एक मोनिक बहुपद है <math>n</math> में <math>\alpha</math>,
 
[[आंशिक अंश अपघटन]] है
जो [[आंशिक अंश अपघटन]] है<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n}  
\frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n}  
&= 1- \sum_{j=1}^n (-1)^j \frac{j}{\alpha + j} {n \choose j}L_n^{(-j)}(x) \\
&= 1- \sum_{j=1}^n (-1)^j \frac{j}{\alpha + j} {n \choose j}L_n^{(-j)}(x) \\
&= 1- \sum_{j=1}^n \frac{x^j}{\alpha + j}\,\,\frac{L_{n-j}^{(j)}(x)}{(j-1)!} \\
&= 1- \sum_{j=1}^n \frac{x^j}{\alpha + j}\,\,\frac{L_{n-j}^{(j)}(x)}{(j-1)!} \\
&= 1-x \sum_{i=1}^n \frac{L_{n-i}^{(-\alpha)}(x) L_{i-1}^{(\alpha+1)}(-x)}{\alpha +i}.
&= 1-x \sum_{i=1}^n \frac{L_{n-i}^{(-\alpha)}(x) L_{i-1}^{(\alpha+1)}(-x)}{\alpha +i}.
\end{align}</math>
\end{align}</math>यहाँ पर दूसरी समानता निम्नलिखित पहचान द्वारा अनुसरण करती है, जो पूर्णांक i और {{mvar|n}} के लिए मान्य है, और इसकी अभिव्यक्ति से तत्काल [[चार्लीयर बहुपद]] <math>L_n^{(\alpha)}(x)</math> के संदर्भ में:<math display="block"> \frac{(-x)^i}{i!} L_n^{(i-n)}(x) = \frac{(-x)^n}{n!} L_i^{(n-i)}(x).</math>तीसरी समानता के लिए इस खंड की चौथी और पाँचवीं सर्वसमिकाएँ लागू की जाती हैं।
दूसरी समानता निम्नलिखित पहचान द्वारा अनुसरण करती है, जो पूर्णांक i और के लिए मान्य है {{mvar|n}} और की अभिव्यक्ति से तत्काल <math>L_n^{(\alpha)}(x)</math> [[चार्लीयर बहुपद]]ों के संदर्भ में:
<math display="block"> \frac{(-x)^i}{i!} L_n^{(i-n)}(x) = \frac{(-x)^n}{n!} L_i^{(n-i)}(x).</math>
तीसरी समानता के लिए इस खंड की चौथी और पाँचवीं सर्वसमिकाएँ लागू करें।


=== सामान्यीकृत लैगुएरे बहुपदों के डेरिवेटिव्स ===
=== सामान्यीकृत लैगुएरे बहुपदों के डेरिवेटिव्स ===
एक सामान्यीकृत लैगुएरे बहुपद के घात श्रेणी निरूपण में अंतर करना {{mvar|k}} बार की ओर जाता है
सामान्यीकृत लैगुएरे बहुपद के घात श्रेणी निरूपण में अंतर करना {{mvar|k}} क्रम की ओर जाता है।<math display="block">\frac{d^k}{d x^k} L_n^{(\alpha)} (x) = \begin{cases}
<math display="block">\frac{d^k}{d x^k} L_n^{(\alpha)} (x) = \begin{cases}
(-1)^k L_{n-k}^{(\alpha+k)}(x) & \text{if } k\le n, \\
(-1)^k L_{n-k}^{(\alpha+k)}(x) & \text{if } k\le n, \\
0 & \text{otherwise.}
0 & \text{otherwise.}
\end{cases}</math>
\end{cases}</math>यह विशेष स्थितियों ({{math|1=''α'' = 0}}) को इंगित करता है, उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है<math display="block">L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n+k}(x)}{dx^k},</math>इस क्रम के द्वारा {{mvar|k}} कभी-कभी व्युत्पन्न के लिए सामान्य कोष्ठक संकेतन के साथ भ्रम उत्पन्न करता है।
यह एक विशेष मामले की ओर इशारा करता है ({{math|1=''α'' = 0}}) उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है
<math display="block">L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n+k}(x)}{dx^k},</math>
द्वारा पारी {{mvar|k}} कभी-कभी व्युत्पन्न के लिए सामान्य कोष्ठक संकेतन के साथ भ्रम पैदा करता है।
 
इसके अलावा, निम्नलिखित समीकरण रखती है:
<math display="block">\frac{1}{k!} \frac{d^k}{d x^k} x^\alpha L_n^{(\alpha)} (x) = {n+\alpha \choose k} x^{\alpha-k} L_n^{(\alpha-k)}(x),</math>
जो एंटीडेरिवेटिव#एकीकरण की तकनीक|कॉची के सूत्र के साथ सामान्यीकरण करता है
<math display="block">L_n^{(\alpha')}(x) = (\alpha'-\alpha) {\alpha'+ n \choose \alpha'-\alpha} \int_0^x \frac{t^\alpha (x-t)^{\alpha'-\alpha-1}}{x^{\alpha'}} L_n^{(\alpha)}(t)\,dt.</math>
दूसरे चर के संबंध में व्युत्पन्न {{mvar|α}} का रूप है,<ref>{{Cite journal | doi=10.1080/10652469708819127 | title = ऑर्थोगोनल बहुपदों और विशेष कार्यों के परिवारों के लिए पहचान| journal=Integral Transforms and Special Functions | volume=5| issue=1–2| pages=69–102|year = 1997|last1 = Koepf|first1 = Wolfram| citeseerx=10.1.1.298.7657}}</ref>
<math display="block">\frac{d}{d \alpha}L_n^{(\alpha)}(x)= \sum_{i=0}^{n-1} \frac{L_i^{(\alpha)}(x)}{n-i}.</math>
यह नीचे समोच्च अभिन्न प्रतिनिधित्व से स्पष्ट है।
 
सामान्यीकृत लैगुएरे बहुपद अवकल समीकरण का पालन करते हैं
<math display="block">x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0,</math>
जिसकी तुलना सामान्य लैगुएरे बहुपद के k वें व्युत्पन्न द्वारा पालन किए गए समीकरण से की जा सकती है,
 
<math display="block">x L_n^{[k] \prime\prime}(x) + (k+1-x)L_n^{[k]\prime}(x) + (n-k) L_n^{[k]}(x)=0,</math>
कहाँ <math>L_n^{[k]}(x)\equiv\frac{d^kL_n(x)}{dx^k}</math> केवल इस समीकरण के लिए।
 
Sturm-Liouville सिद्धांत में|Sturm-Liouville फॉर्म का डिफरेंशियल इक्वेशन है
 
<math display="block">-\left(x^{\alpha+1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)' = n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),</math>
जो दर्शाता है {{math|''L''{{su|b=''n''|p=''(α)''}}}} eigenvalue के लिए एक eigenvector है {{mvar|n}}.


=== [[ओर्थोगोनल]]िटी ===
सामान्यीकृत Laguerre बहुपद ओर्थोगोनल ओवर हैं {{closed-open|0, ∞}} भार समारोह के साथ माप के संबंध में {{math|''x<sup>α</sup>'' ''e''<sup>−''x''</sup>}}:<ref>{{Cite web | url=http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | title=Associated Laguerre Polynomial}}</ref>


<math display="block">\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m},</math>
इसके अतिरिक्त, निम्नलिखित समीकरण रखती है:<math display="block">\frac{1}{k!} \frac{d^k}{d x^k} x^\alpha L_n^{(\alpha)} (x) = {n+\alpha \choose k} x^{\alpha-k} L_n^{(\alpha-k)}(x),</math>जो एंटीडेरिवेटिव एकीकरण की तकनीक या कॉची के सूत्र के साथ सामान्यीकरण करता है<math display="block">L_n^{(\alpha')}(x) = (\alpha'-\alpha) {\alpha'+ n \choose \alpha'-\alpha} \int_0^x \frac{t^\alpha (x-t)^{\alpha'-\alpha-1}}{x^{\alpha'}} L_n^{(\alpha)}(t)\,dt.</math>दूसरे चर के संबंध में व्युत्पन्न {{mvar|α}} का रूप है,<ref>{{Cite journal | doi=10.1080/10652469708819127 | title = ऑर्थोगोनल बहुपदों और विशेष कार्यों के परिवारों के लिए पहचान| journal=Integral Transforms and Special Functions | volume=5| issue=1–2| pages=69–102|year = 1997|last1 = Koepf|first1 = Wolfram| citeseerx=10.1.1.298.7657}}</ref><math display="block">\frac{d}{d \alpha}L_n^{(\alpha)}(x)= \sum_{i=0}^{n-1} \frac{L_i^{(\alpha)}(x)}{n-i}.</math>यह नीचे समोच्च अभिन्न प्रतिनिधित्व से स्पष्ट है।
जो इस प्रकार है
सामान्यीकृत लैगुएरे बहुपद अवकल समीकरण का पालन करते हैं<math display="block">x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0,</math>जिसकी तुलना सामान्य लैगुएरे बहुपद के k वें व्युत्पन्न द्वारा पालन किए गए समीकरण से की जा सकती है,<math display="block">x L_n^{[k] \prime\prime}(x) + (k+1-x)L_n^{[k]\prime}(x) + (n-k) L_n^{[k]}(x)=0,</math>जहाँ <math>L_n^{[k]}(x)\equiv\frac{d^kL_n(x)}{dx^k}</math> केवल इस समीकरण के लिए उपयोग की जाती हैं।


<math display="block">\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'+n \choose n} \Gamma(\alpha').</math>
अगर <math>\Gamma(x,\alpha+1,1)</math> गामा वितरण को दर्शाता है तो ऑर्थोगोनलिटी रिलेशन को इस रूप में लिखा जा सकता है


<math display="block">\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha+1,1) dx={n+ \alpha \choose n}\delta_{n,m},</math>
स्ट्रम-लियोविले सिद्धांत में| इस प्रारूप का अवकलन समीकरण है।<math display="block">-\left(x^{\alpha+1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)' = n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),</math>जो दर्शाता {{math|''L''{{su|b=''n''|p=''(α)''}}}} है जिसमें आइजन मान के लिए आइजन वैक्टर {{mvar|n}} का उपयोग करते हैं।
संबंधित, सममित कर्नेल बहुपद का प्रतिनिधित्व है (क्रिस्टोफ़ेल-डार्बौक्स सूत्र){{citation needed|date=October 2011}}<!--All of these formulas require citations.-->


<math display="block">\begin{align}
=== [[ओर्थोगोनल|ओर्थोगोनलि]]टी ===
सामान्यीकृत लैगुएरे बहुपद ओर्थोगोनल ओवर हैं {{closed-open|0, ∞}} भार फंक्शन के साथ माप {{math|''x<sup>α</sup>'' ''e''<sup>−''x''</sup>}} के संबंध में:<ref>{{Cite web | url=http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | title=Associated Laguerre Polynomial}}</ref><math display="block">\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m},</math>जो इस प्रकार है<math display="block">\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'+n \choose n} \Gamma(\alpha').</math>यदि <math>\Gamma(x,\alpha+1,1)</math> गामा वितरण को दर्शाता है तो ऑर्थोगोनलिटी रिलेशन को इस रूप में लिखा जा सकता है<math display="block">\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha+1,1) dx={n+ \alpha \choose n}\delta_{n,m},</math>संबंधित, सममित कर्नेल बहुपद का प्रतिनिधित्व है ( जिसमें क्रिस्टोफ़ेल-डार्बौक्स सूत्र इस प्रकार हैं।)<math display="block">\begin{align}
K_n^{(\alpha)}(x,y) &:= \frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha+i \choose i}}\\[4pt]
K_n^{(\alpha)}(x,y) &:= \frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha+i \choose i}}\\[4pt]
& =\frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha)}(x) L_{n+1}^{(\alpha)}(y) - L_{n+1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n+1} {n+\alpha \choose n}} \\[4pt]
& =\frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha)}(x) L_{n+1}^{(\alpha)}(y) - L_{n+1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n+1} {n+\alpha \choose n}} \\[4pt]
&= \frac{1}{\Gamma(\alpha+1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha+i)}(x) L_{n-i}^{(\alpha+i+1)}(y)}{{\alpha+n \choose n}{n \choose i}};
&= \frac{1}{\Gamma(\alpha+1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha+i)}(x) L_{n-i}^{(\alpha+i+1)}(y)}{{\alpha+n \choose n}{n \choose i}};
\end{align}</math>
\end{align}</math>रिकर्सिवली
रिकर्सिवली
<math display="block">K_n^{(\alpha)}(x,y)=\frac{y}{\alpha+1} K_{n-1}^{(\alpha+1)}(x,y)+ \frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha+1)}(x) L_n^{(\alpha)}(y)}{{\alpha+n \choose n}}.</math>इसके अतिरिक्त,<math display="block">y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \to \delta(y- \cdot).</math>तुरान की असमानताएँ यहाँ प्राप्त की जा सकती हैं, जो कि है<math display="block">L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n+1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha+n-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.</math>हाइड्रोजन परमाणु वेवफंक्शन के [[क्वांटम यांत्रिकी]] उपचार में निम्नलिखित [[अभिन्न]] की आवश्यकता है,<math display="block">\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)} (x)\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1).</math>
 
<math display="block">K_n^{(\alpha)}(x,y)=\frac{y}{\alpha+1} K_{n-1}^{(\alpha+1)}(x,y)+ \frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha+1)}(x) L_n^{(\alpha)}(y)}{{\alpha+n \choose n}}.</math>
इसके अतिरिक्त,{{clarify|post-text=Limit as n goes to infinity?|date=January 2016}}
 
<math display="block">y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \to \delta(y- \cdot).</math>
तुरान की असमानताएँ यहाँ प्राप्त की जा सकती हैं, जो कि है
<math display="block">L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n+1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha+n-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.</math>
हाइड्रोजन परमाणु # वेवफंक्शन के [[क्वांटम यांत्रिकी]] उपचार में निम्नलिखित [[अभिन्न]] की आवश्यकता है,
 
<math display="block">\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)} (x)\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1).</math>
 
 
=== श्रृंखला विस्तार ===
=== श्रृंखला विस्तार ===
एक समारोह में (औपचारिक) श्रृंखला विस्तार होने दें
यहाँ फंक्शन में (औपचारिक) श्रृंखला विस्तारित होते हैं। इस प्रकार फंक्शन को नीचे दिए गए प्रारूप में प्रदर्शित किया जाता हैं।<math display="block">f(x)= \sum_{i=0}^\infty f_i^{(\alpha)} L_i^{(\alpha)}(x).</math>तब<math display="block">f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i+ \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} \cdot f(x) \,dx .</math>श्रृंखला संबद्ध [[हिल्बर्ट अंतरिक्ष]] में अभिसरित होती है {{math|[[Lp space|''L''<sup>2</sup>[0, ∞)]]}} [[अगर और केवल अगर|यदि और केवल यदि]]<math display="block">\| f \|_{L^2}^2 := \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} | f(x)|^2 \, dx = \sum_{i=0}^\infty {i+\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty. </math>
<math display="block">f(x)= \sum_{i=0}^\infty f_i^{(\alpha)} L_i^{(\alpha)}(x).</math>
तब
<math display="block">f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i+ \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} \cdot f(x) \,dx .</math>
श्रृंखला संबद्ध [[हिल्बर्ट अंतरिक्ष]] में अभिसरित होती है {{math|[[Lp space|''L''<sup>2</sup>[0, ∞)]]}} [[अगर और केवल अगर]]
 
<math display="block">\| f \|_{L^2}^2 := \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} | f(x)|^2 \, dx = \sum_{i=0}^\infty {i+\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty. </math>
 


==== विस्तार के और उदाहरण ====
==== विस्तार के और उदाहरण ====
[[ एकपदीय ]] के रूप में प्रतिनिधित्व किया जाता है
[[ एकपदीय | एकपदीय]] के रूप में प्रतिनिधित्व किया जाता है।<math display="block">\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n+ \alpha \choose n-i} L_i^{(\alpha)}(x),</math>जबकि द्विपद गुणांक में पैरामीट्रिजेशन होता है।<math display="block">{n+x \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x+i)}(\alpha).</math>यह सीधे दिए गए समीकरण की ओर इंगित करता है<math display="block">e^{-\gamma x}= \sum_{i=0}^\infty \frac{\gamma^i}{(1+\gamma)^{i+\alpha+1}} L_i^{(\alpha)}(x) \qquad \text{convergent iff } \Re(\gamma) > -\tfrac{1}{2}</math>घातीय फंक्शन के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है<math display="block">\Gamma(\alpha,x)=x^\alpha e^{-x} \sum_{i=0}^\infty \frac{L_i^{(\alpha)}(x)}{1+i} \qquad \left(\Re(\alpha)>-1 , x > 0\right).</math>
<math display="block">\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n+ \alpha \choose n-i} L_i^{(\alpha)}(x),</math>
जबकि द्विपद गुणांक में पैरामीट्रिजेशन होता है
<math display="block">{n+x \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x+i)}(\alpha).</math>
यह सीधे की ओर जाता है
<math display="block">e^{-\gamma x}= \sum_{i=0}^\infty \frac{\gamma^i}{(1+\gamma)^{i+\alpha+1}} L_i^{(\alpha)}(x) \qquad \text{convergent iff } \Re(\gamma) > -\tfrac{1}{2}</math>
घातीय समारोह के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है
<math display="block">\Gamma(\alpha,x)=x^\alpha e^{-x} \sum_{i=0}^\infty \frac{L_i^{(\alpha)}(x)}{1+i} \qquad \left(\Re(\alpha)>-1 , x > 0\right).</math>
 


== क्वांटम यांत्रिकी में ==
== क्वांटम यांत्रिकी में ==
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में चरों को अलग करके बिल्कुल हल करने योग्य है। वेव फ़ंक्शन का रेडियल भाग एक (सामान्यीकृत) लैगुएरे बहुपद है।<ref>{{Cite book|title=रसायन विज्ञान में क्वांटम यांत्रिकी|last=Ratner, Schatz|first=Mark A., George C.|publisher=Prentice Hall|year=2001|location=0-13-895491-7| pages=90–91}}</ref>
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में वैरियेबल्स को अलग करके बिल्कुल मान करने योग्य बनाया जाता है। वेव फ़ंक्शन का रेडियल भाग (सामान्यीकृत) लैगुएरे बहुपद है।<ref>{{Cite book|title=रसायन विज्ञान में क्वांटम यांत्रिकी|last=Ratner, Schatz|first=Mark A., George C.|publisher=Prentice Hall|year=2001|location=0-13-895491-7| pages=90–91}}</ref>
फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जा सकता है।<ref>{{Cite journal|last1=Jong|first1=Mathijs de|last2=Seijo|first2=Luis|last3=Meijerink|first3=Andries| last4=Rabouw |first4=Freddy T.| date=2015-06-24|title=Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter |url=https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j|journal=Physical Chemistry Chemical Physics|language=en| volume=17 |issue=26|pages=16959–16969|doi=10.1039/C5CP02093J|pmid=26062123|bibcode=2015PCCP...1716959D|hdl=1874/321453| issn=1463-9084}}</ref>
 


फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जाता हैं।<ref>{{Cite journal|last1=Jong|first1=Mathijs de|last2=Seijo|first2=Luis|last3=Meijerink|first3=Andries| last4=Rabouw |first4=Freddy T.| date=2015-06-24|title=Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter |url=https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j|journal=Physical Chemistry Chemical Physics|language=en| volume=17 |issue=26|pages=16959–16969|doi=10.1039/C5CP02093J|pmid=26062123|bibcode=2015PCCP...1716959D|hdl=1874/321453| issn=1463-9084}}</ref>
== [[गुणन प्रमेय]] ==
== [[गुणन प्रमेय]] ==
आर्थर एर्डेली|एर्डेली निम्नलिखित दो गुणन प्रमेय देते हैं <ref>C. Truesdell, "[http://www.pnas.org/cgi/reprint/36/12/752.pdf On the Addition and Multiplication Theorems for the Special Functions]", ''Proceedings of the National Academy of Sciences, Mathematics'', (1950) pp. 752–757.</ref>
आर्थर एर्डेली|एर्डेली निम्नलिखित दो गुणन प्रमेय देते हैं <ref>C. Truesdell, "[http://www.pnas.org/cgi/reprint/36/12/752.pdf On the Addition and Multiplication Theorems for the Special Functions]", ''Proceedings of the National Academy of Sciences, Mathematics'', (1950) pp. 752–757.</ref><math display="block">\begin{align}
 
<math display="block">\begin{align}
& t^{n+1+\alpha} e^{(1-t) z} L_n^{(\alpha)}(z t)=\sum_{k=n}^\infty {k \choose n}\left(1-\frac 1 t\right)^{k-n} L_k^{(\alpha)}(z), \\[6pt]
& t^{n+1+\alpha} e^{(1-t) z} L_n^{(\alpha)}(z t)=\sum_{k=n}^\infty {k \choose n}\left(1-\frac 1 t\right)^{k-n} L_k^{(\alpha)}(z), \\[6pt]
& e^{(1-t)z} L_n^{(\alpha)}(z t)=\sum_{k=0}^\infty \frac{(1-t)^k z^k}{k!}L_n^{(\alpha+k)}(z).
& e^{(1-t)z} L_n^{(\alpha)}(z t)=\sum_{k=0}^\infty \frac{(1-t)^k z^k}{k!}L_n^{(\alpha+k)}(z).
\end{align}</math>
\end{align}</math>


== हर्मिट बहुपदों से संबंध ==
== हर्मिट बहुपदों से संबंध ==
सामान्यीकृत लैगुएरे बहुपद हर्मिट बहुपदों से संबंधित हैं:
सामान्यीकृत लैगुएरे बहुपद हर्मिट बहुपदों से संबंधित होता हैं:<math display="block">\begin{align}
<math display="block">\begin{align}
H_{2n}(x) &= (-1)^n 2^{2n} n! L_n^{(-1/2)} (x^2) \\[4pt]
H_{2n}(x) &= (-1)^n 2^{2n} n! L_n^{(-1/2)} (x^2) \\[4pt]
H_{2n+1}(x) &= (-1)^n 2^{2n+1} n! x L_n^{(1/2)} (x^2)
H_{2n+1}(x) &= (-1)^n 2^{2n+1} n! x L_n^{(1/2)} (x^2)
\end{align}</math>
\end{align}</math>जहाँ {{math|''H''<sub>''n''</sub>(''x'')}} मुख्य फलन पर आधारित हर्मिट बहुपद हैं। इस प्रकार {{math|exp(−''x''<sup>2</sup>)}} को तथाकथित भौतिक विज्ञान का संस्करण माना जा सकता हैं।
जहां {{math|''H''<sub>''n''</sub>(''x'')}} भार फलन पर आधारित हर्मिट बहुपद हैं {{math|exp(−''x''<sup>2</sup>)}}, तथाकथित भौतिक विज्ञानी का संस्करण।
इस कारण [[क्वांटम हार्मोनिक ऑसिलेटर]] के उपचार में सामान्यीकृत लैगुएरे बहुपद उत्पन्न होते हैं।


इस वजह से, [[क्वांटम हार्मोनिक ऑसिलेटर]] के उपचार में सामान्यीकृत लैगुएरे बहुपद उत्पन्न होते हैं।
== [[हाइपरज्यामितीय समारोह|हाइपरज्यामितीय फंक्शन]] से संबंध ==
 
लैगुएरे बहुपदों को हाइपरज्यामितीय कार्यों के संदर्भ में परिभाषित किया जा सकता है, विशेष रूप से संगम हाइपरज्यामितीय फंक्शन के रूप में प्रदर्शित करते हैं। <math display="block">L^{(\alpha)}_n(x) = {n+\alpha \choose n} M(-n,\alpha+1,x) =\frac{(\alpha+1)_n} {n!}  \,_1F_1(-n,\alpha+1,x)</math>जहाँ <math>(a)_n</math> पोश्चमर प्रतीक है (जो इस स्थिति में बढ़ते फैक्टोरियल मान का प्रतिनिधित्व करता है)।
== [[हाइपरज्यामितीय समारोह]] से संबंध ==
Laguerre बहुपदों को हाइपरज्यामितीय कार्यों के संदर्भ में परिभाषित किया जा सकता है, विशेष रूप से संगम हाइपरज्यामितीय कार्यों के रूप में
<math display="block">L^{(\alpha)}_n(x) = {n+\alpha \choose n} M(-n,\alpha+1,x) =\frac{(\alpha+1)_n} {n!}  \,_1F_1(-n,\alpha+1,x)</math>
कहाँ <math>(a)_n</math> Pochhammer प्रतीक है (जो इस मामले में बढ़ते फैक्टोरियल का प्रतिनिधित्व करता है)।


== हार्डी-हिल फॉर्मूला ==
== हार्डी-हिल फॉर्मूला ==
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं<ref>Szegő, p. 102.</ref><ref>W. A. Al-Salam (1964), [https://projecteuclid.org/euclid.dmj/1077375084 "Operational representations for Laguerre and other polynomials"], ''Duke Math J.'' '''31''' (1): 127–142.</ref>
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं<ref>Szegő, p. 102.</ref><ref>W. A. Al-Salam (1964), [https://projecteuclid.org/euclid.dmj/1077375084 "Operational representations for Laguerre and other polynomials"], ''Duke Math J.'' '''31''' (1): 127–142.</ref><math display="block">\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right),</math>जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है इस प्रकार <math>\alpha>-1</math> और <math>|t|<1</math> इसके सूत्र का उपयोग करता हैं।<math display="block">\,_0F_1(;\alpha + 1;z)=\,\Gamma(\alpha + 1) z^{-\alpha/2} I_\alpha\left(2\sqrt{z}\right),</math>(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है<math display="block">\sum_{n=0}^\infty \frac{n!}{\Gamma(1+\alpha+n)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y) t^n = \frac{1}{(xyt)^{\alpha/2}(1-t)}e^{-(x+y)t/(1-t)} I_\alpha \left(\frac{2\sqrt{xyt}}{1-t}\right).</math>यह सूत्र हर्मिट बहुपदों के लिए [[मेहलर कर्नेल]] का सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।
<math display="block">\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right),</math>
जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है <math>\alpha>-1</math> और <math>|t|<1</math>. पहचान का उपयोग करना
<math display="block">\,_0F_1(;\alpha + 1;z)=\,\Gamma(\alpha + 1) z^{-\alpha/2} I_\alpha\left(2\sqrt{z}\right),</math>
(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है
<math display="block">\sum_{n=0}^\infty \frac{n!}{\Gamma(1+\alpha+n)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y) t^n = \frac{1}{(xyt)^{\alpha/2}(1-t)}e^{-(x+y)t/(1-t)} I_\alpha \left(\frac{2\sqrt{xyt}}{1-t}\right).</math>
यह सूत्र हर्मिट बहुपदों के लिए [[मेहलर कर्नेल]] का एक सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।


== भौतिक विज्ञानी स्केलिंग कन्वेंशन ==
== भौतिक विज्ञान स्केलिंग कन्वेंशन ==


[[हाइड्रोजन परमाणु]] ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,<ref>{{cite book |last1=Griffiths |first1=David J. |title=क्वांटम यांत्रिकी का परिचय|date=2005 |publisher=Pearson Prentice Hall |location=Upper Saddle River, NJ |isbn=0131118927 |edition=2nd}}</ref><ref>{{cite book |last1=Sakurai |first1=J. J. |title=आधुनिक क्वांटम यांत्रिकी|date=2011 |publisher=Addison-Wesley |location=Boston |isbn=978-0805382914 |edition=2nd}}</ref><ref name="Merzbacher">{{cite book |last1=Merzbacher |first1=Eugen |title=क्वांटम यांत्रिकी|date=1998 |publisher=Wiley |location=New York |isbn=0471887021 |edition=3rd}}</ref> इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए एक अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है <ref>{{cite book |last1=Abramowitz |first1=Milton |title=सूत्र, रेखांकन और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका|date=1965 |publisher=Dover Publications |location=New York |isbn=978-0-486-61272-0}}</ref>
[[हाइड्रोजन परमाणु]] ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,<ref>{{cite book |last1=Griffiths |first1=David J. |title=क्वांटम यांत्रिकी का परिचय|date=2005 |publisher=Pearson Prentice Hall |location=Upper Saddle River, NJ |isbn=0131118927 |edition=2nd}}</ref><ref>{{cite book |last1=Sakurai |first1=J. J. |title=आधुनिक क्वांटम यांत्रिकी|date=2011 |publisher=Addison-Wesley |location=Boston |isbn=978-0805382914 |edition=2nd}}</ref><ref name="Merzbacher">{{cite book |last1=Merzbacher |first1=Eugen |title=क्वांटम यांत्रिकी|date=1998 |publisher=Wiley |location=New York |isbn=0471887021 |edition=3rd}}</ref> इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है <ref>{{cite book |last1=Abramowitz |first1=Milton |title=सूत्र, रेखांकन और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका|date=1965 |publisher=Dover Publications |location=New York |isbn=978-0-486-61272-0}}</ref><math display="block">L_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1) n!} \,_1F_1(-n; \alpha + 1; x),</math>जहाँ <math>\,_1F_1(a;b;x)</math> मिला हुआ हाइपरज्यामितीय कार्य है।


<math display="block">L_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1) n!} \,_1F_1(-n; \alpha + 1; x),</math>
कहाँ <math>\,_1F_1(a;b;x)</math> मिला हुआ हाइपरज्यामितीय कार्य है।
भौतिक विज्ञानी साहित्य में, जैसे <ref name="Merzbacher"" /> इसके बजाय सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है


<math display="block">\bar{L}_n^{(\alpha)}(x) = \frac{\left[\Gamma(\alpha + n + 1)\right]^2}{\Gamma(\alpha + 1)n!} \,_1F_1(-n; \alpha + 1; x).</math>
भौतिक विज्ञान साहित्य में, जैसे <ref name="Merzbacher" "="" /> इसके अतिरिक्त सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है<math display="block">\bar{L}_n^{(\alpha)}(x) = \frac{\left[\Gamma(\alpha + n + 1)\right]^2}{\Gamma(\alpha + 1)n!} \,_1F_1(-n; \alpha + 1; x).</math>भौतिक विज्ञान संस्करण द्वारा मानक संस्करण से संबंधित है<math display="block">\bar{L}_n^{(\alpha)}(x) = (n+\alpha)! L_n^{(\alpha)}(x).</math>भौतिक विज्ञान के साहित्य में और उक्त सूत्र का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस सूत्र के अनुसार लैगुएरे बहुपदों को संलग्न किया जाता है। <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref><math display="block">\tilde{L}_n^{(\alpha)}(x) = (-1)^{\alpha}\bar{L}_{n-\alpha}^{(\alpha)}.</math>
भौतिक विज्ञानी संस्करण द्वारा मानक संस्करण से संबंधित है
 
<math display="block">\bar{L}_n^{(\alpha)}(x) = (n+\alpha)! L_n^{(\alpha)}(x).</math>
भौतिक विज्ञान के साहित्य में एक और परिपाटी का प्रयोग किया जाता है, हालांकि इसकी आवृत्ति कम होती है। इस परिपाटी के तहत लैगुएरे बहुपदों को दिया जाता है <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref>
 
<math display="block">\tilde{L}_n^{(\alpha)}(x) = (-1)^{\alpha}\bar{L}_{n-\alpha}^{(\alpha)}.</math>




Line 318: Line 162:
* [[बेसेल बहुपद]]
* [[बेसेल बहुपद]]
* डेनिस्युक बहुपद
* डेनिस्युक बहुपद
* [[अनुप्रस्थ मोड]], वेवगाइड या लेजर बीम प्रोफाइल के भीतर क्षेत्र की तीव्रता का वर्णन करने के लिए लैगुएरे बहुपदों का एक महत्वपूर्ण अनुप्रयोग।
* [[अनुप्रस्थ मोड]], वेवगाइड या लेजर बीम प्रोफाइल के भीतर क्षेत्र की तीव्रता का वर्णन करने के लिए लैगुएरे बहुपदों का महत्वपूर्ण अनुप्रयोग।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 338: Line 182:
* {{MathWorld|title=Laguerre polynomial|id=LaguerrePolynomial}}
* {{MathWorld|title=Laguerre polynomial|id=LaguerrePolynomial}}


{{Authority control}}
[[Category:CS1 English-language sources (en)]]
[[Category: बहुपदों]] [[Category: ऑर्थोगोनल बहुपद]] [[Category: विशेष हाइपरज्यामितीय कार्य]]  
[[Category:CS1 maint]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:ऑर्थोगोनल बहुपद]]
[[Category:बहुपदों]]
[[Category:विशेष हाइपरज्यामितीय कार्य]]

Latest revision as of 10:18, 21 March 2023

Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक

गणित में, एडमंड लैगुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, मुख्य रूप से लैगुएरे के अंतर समीकरण के मान को प्रदर्शित करता हैं:

जो द्वितीय कोटि के रेखीय अवकल समीकरण को प्रदर्शित करता हैं। इस प्रकार यदि n गैर-ऋणात्मक पूर्णांक हो तब इस समीकरण का केवल ऐकक मान होता है। कभी-कभी लैगुएरे बहुपद नाम का उपयोग मान प्राप्त करने के लिए किया जाता है
जहाँ n गैर-ऋणात्मक पूर्णांक है।


इस प्रकार इन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहाँ पर इसका उपयोग करके दिखाया गया हैं। (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी सोनिन बहुपद उनके आविष्कार के बाद निकोलाई याकोवलेविच सोनिन का उपयोग किया था।[1]

अधिक सामान्य लैगुएरे फ़ंक्शन के कुछ मान होते है, इस प्रकार जब n आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं होते हैं। तब लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है।

ये बहुपद सामान्यतः L0L1, …, बहुपद अनुक्रम द्वारा निरूपित होते हैं जिसे रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
निम्नलिखित खंड के बंद प्रारूप का कम उपयोग किया जाता हैं। वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद को प्रकट करते हैं।
लैगुएरे बहुपदों का क्रम n! Ln शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, इस प्रकार वैरियेबल के प्राथमिक परिवर्तन तक इसे आगे के ट्रिकोमी-कार्लिट्ज़ बहुपद के रूप में उपयोग किया जाता हैं।
एक इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के मान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस सूत्र साधारण हार्मोनिक ऑसिलेटर में ऑसिलेटर प्रणाली के स्टैटिक विग्नर फंक्शन्स को भी वर्णन करते हैं। इस प्रकार मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं, जिसे 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर के रूप में प्रदर्शित किया जाता हैं। भौतिक विज्ञान कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी प्रकार कुछ भौतिक विज्ञान तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग करते हैं।)

पहले कुछ बहुपद

ये पहले कुछ लैगुएरे बहुपद हैं:

n
0
1
2
3
4
5
6
n
File:Laguerre poly.svg
पहले छह लैगुएरे बहुपद।

रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन

पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
इसी प्रकार आगे के मान इस प्रकार होंगे।
कुछ सीमा तक प्राप्त होने वाले मानों से उत्पन्न होने वाली समस्याओं के मान में विशेष रूप से कुछ मान उपयोगी होते हैं:
इस प्रकार यह क्लोज्ड प्रारूप को प्रदर्शित करते हैं।
इनके लिए जनरेटिंग फ़ंक्शन भी इसी प्रकार है,
ऋणात्मक सूचकांक के बहुपदों को धनात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:

बाइनरी फ़ंक्शंस से संबंध

बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की विधि है :

यहाँ
साथ में माना जाता हैं।
यहाँ A007814 है और A347204 का सामान्यीकरण है।

सामान्यीकृत लैगुएरे बहुपद

वास्तविक α का मान प्राप्त करने के लिए अंतर समीकरण के बहुपद मान सेट किया जाता हैं।[2]

सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।
पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है
और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद पुनरावृत्ति संबंधों का उपयोग करता हैं जिसके लिए k ≥ 1 का मान सेट किया जाता हैं:
सरल लैगुएरे बहुपद विशेष स्थितियाँ हैं जहाँ पर α = 0 सामान्यीकृत लैगुएरे बहुपद हैं:
उनके लिए रोड्रिग्स सूत्र है
उनके लिए जनरेटिंग फंक्शन है

File:Zugeordnete Laguerre-Polynome.svg
पहले कुछ सामान्यीकृत लैगुएरे बहुपद, Ln(k)(x)

सामान्यीकृत लैगुएरे बहुपद के स्पष्ट उदाहरण और गुण

  • लैगुएरे फ़ंक्शंस को संगम हाइपरज्यामितीय फंक्शन और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है[3]
    जहाँ सामान्यीकृत द्विपद गुणांक है। जिसमें n पूर्णांक होते है जो फ़ंक्शन डिग्री के बहुपद n तक कम हो जाता है, इसकी वैकल्पिक अभिव्यक्ति भी की जाती है[4]
    कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में या दूसरा फ़ंक्शन उपयोग में लाया जाता हैं।
  • डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
    लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया जाता हैं, रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय होती हैं।
  • लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात् और अंतर ऑपरेटर पर विचार करें, तब का मान होता हैं।
  • पहले कुछ सामान्यीकृत लैगुएरे बहुपद हैं:
  • अग्रणी पद का गुणांक है (−1)n/n!;
  • स्थिर पद, जिसका मान 0 है, है
  • यदि α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या होती हैं, फ़ंक्शन का धनात्मक रूट (ध्यान दें कि स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं
  • इसमें से बड़े मान के लिए बहुपदों का स्पर्शोन्मुख मान n होता हैं, किन्तु α और x > 0, द्वारा दिया गया है [6][7] और संक्षेप में
    जहाँ बेसेल फ़ंक्शन असिम्प्टोटिक रूप है।

एक समोच्च अभिन्न के रूप में

ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है

जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना वामावर्त दिशा में बार मूल को घेरता है

पुनरावृत्ति संबंध

लैगुएरे बहुपदों के लिए अतिरिक्त सूत्र:[8]

लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं
विशेष रूप से
और
या
इसके अतिरिक्त
उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है