लैगुएरे बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i|thumb|लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक]]गणित में, [[एडमंड लागुएरे]] (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:<math display="block">xy'' + (1 - x)y' + ny = 0,     
[[File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg|alt=Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i|thumb|लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक]]गणित में, [[एडमंड लागुएरे]] (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:<math display="block">xy'' + (1 - x)y' + ny = 0,     
y = y(x)</math>जो एक द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि {{mvar|n}} एक गैर-ऋणात्मक पूर्णांक है।
y = y(x)</math>जो द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि {{mvar|n}} गैर-ऋणात्मक पूर्णांक है।
कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है<math display="block">xy'' + (\alpha + 1 - x)y' + ny = 0~.</math>कहाँ {{mvar|n}} अभी भी एक गैर-ऋणात्मक पूर्णांक है।
कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है<math display="block">xy'' + (\alpha + 1 - x)y' + ny = 0~.</math>कहाँ {{mvar|n}} अभी भी गैर-ऋणात्मक पूर्णांक है।
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref> [[निकोलाई याकोवलेविच सोनिन]])।
फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद<ref>{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=[[Math. Ann.]]|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}}</ref> [[निकोलाई याकोवलेविच सोनिन]])।


अधिक सामान्यतः, लैगुएरे फ़ंक्शन एक समाधान होता है जब {{mvar|n}} आवश्यक रूप से एक गैर-ऋणात्मक पूर्णांक नहीं है।
अधिक सामान्यतः, लैगुएरे फ़ंक्शन समाधान होता है जब {{mvar|n}} आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं है।


लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है<math display="block">\int_0^\infty f(x) e^{-x} \, dx.</math>ये बहुपद, सामान्यतः निरूपित होते हैं {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, एक [[बहुपद अनुक्रम]] है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,<math display="block">L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right) =\frac{1}{n!} \left( \frac{d}{dx} -1 \right)^n x^n,</math>निम्नलिखित खंड के बंद रूप को कम करना।
लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है<math display="block">\int_0^\infty f(x) e^{-x} \, dx.</math>ये बहुपद, सामान्यतः निरूपित होते हैं {{math|''L''<sub>0</sub>}}, {{math|''L''<sub>1</sub>}}, …, [[बहुपद अनुक्रम]] है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,<math display="block">L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right) =\frac{1}{n!} \left( \frac{d}{dx} -1 \right)^n x^n,</math>निम्नलिखित खंड के बंद रूप को कम करना।
वे एक आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं<math display="block">\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.</math>लैगुएरे बहुपदों का क्रम {{math|''n''! L<sub>''n''</sub>}} एक शेफ़र अनुक्रम है,<math display="block"> \frac{d}{dx} L_n = \left ( \frac{d}{dx} - 1 \right ) L_{n-1}.</math>कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें।
वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं<math display="block">\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.</math>लैगुएरे बहुपदों का क्रम {{math|''n''! L<sub>''n''</sub>}} शेफ़र अनुक्रम है,<math display="block"> \frac{d}{dx} L_n = \left ( \frac{d}{dx} - 1 \right ) L_{n-1}.</math>कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें।
एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे [[मोर्स क्षमता]] और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।
एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे [[मोर्स क्षमता]] और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।


भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए एक परिभाषा का उपयोग करते हैं जो n<nowiki>!</nowiki> के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)
भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n<nowiki>!</nowiki> के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)


== पहले कुछ बहुपद ==
== पहले कुछ बहुपद ==
Line 50: Line 50:


== बाइनरी फ़ंक्शंस से संबंध ==
== बाइनरी फ़ंक्शंस से संबंध ==
बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की एक विधि है <math>n</math>:<math display="block">L_n(x)=\frac{x^n}{n!}b(\frac{4^n-1}{3}, x).</math>यहाँ<math display="block">b(n, x) = \frac{1}{x}b(\frac{n - 2^{f(n)}}{2}, x) + (-1)^nb(\left\lfloor\frac{2n - 2^{f(n)}}{2}\right\rfloor, x).</math>साथ <math>b(0,x)=1</math>.
बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की विधि है <math>n</math>:<math display="block">L_n(x)=\frac{x^n}{n!}b(\frac{4^n-1}{3}, x).</math>यहाँ<math display="block">b(n, x) = \frac{1}{x}b(\frac{n - 2^{f(n)}}{2}, x) + (-1)^nb(\left\lfloor\frac{2n - 2^{f(n)}}{2}\right\rfloor, x).</math>साथ <math>b(0,x)=1</math>.


भी<math display="block">f(2n+1)=0, f(2n)=f(n)+1.</math>यहाँ <math>f(n)</math> है {{OEIS link|A007814}} और <math>b(n)</math> का सामान्यीकरण है {{OEIS link|A347204}}.
भी<math display="block">f(2n+1)=0, f(2n)=f(n)+1.</math>यहाँ <math>f(n)</math> है {{OEIS link|A007814}} और <math>b(n)</math> का सामान्यीकरण है {{OEIS link|A347204}}.
Line 63: Line 63:
[[File:Zugeordnete Laguerre-Polynome.svg|thumb|center|600px|पहले कुछ सामान्यीकृत लागुएरे बहुपद, {{math|''L<sub>n</sub>''<sup>(''k'')</sup>(''x'')}}]]
[[File:Zugeordnete Laguerre-Polynome.svg|thumb|center|600px|पहले कुछ सामान्यीकृत लागुएरे बहुपद, {{math|''L<sub>n</sub>''<sup>(''k'')</sup>(''x'')}}]]


=== सामान्यीकृत लैगुएरे बहुपद === के स्पष्ट उदाहरण और गुण
==== सामान्यीकृत लैगुएरे बहुपद के स्पष्ट उदाहरण और गुण ====
* लैगुएरे फ़ंक्शंस को [[संगम हाइपरज्यामितीय समारोह]] और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है<ref>A&S p. 509</ref> <math display="block"> L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x).</math> कहाँ <math display="inline">{n+ \alpha \choose n}</math> सामान्यीकृत [[द्विपद गुणांक]] है। कब {{mvar|n}} एक पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है {{mvar|n}}. इसकी वैकल्पिक अभिव्यक्ति है<ref>A&S p. 510</ref> <math display="block">L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x)</math> कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
* लैगुएरे फ़ंक्शंस को [[संगम हाइपरज्यामितीय समारोह]] और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है<ref>A&S p. 509</ref> <math display="block"> L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x).</math> कहाँ <math display="inline">{n+ \alpha \choose n}</math> सामान्यीकृत [[द्विपद गुणांक]] है। कब {{mvar|n}} पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है {{mvar|n}}. इसकी वैकल्पिक अभिव्यक्ति है<ref>A&S p. 510</ref> <math display="block">L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x)</math> कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
* डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप {{mvar|n}} है<ref>A&S p. 775</ref> <math display="block"> L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} </math> लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
* डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप {{mvar|n}} है<ref>A&S p. 775</ref> <math display="block"> L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} </math> लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
* लैगुएरे बहुपदों में एक विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो <math>D = \frac{d}{dx}</math> और अंतर ऑपरेटर पर विचार करें <math>M=qxD^2+(\alpha+1)D</math>. तब <math>\exp(-tM)x^n=(-1)^nq^nt^nn!L^{(\alpha)}_n\left(\frac{x}{qt}\right)</math>.
* लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो <math>D = \frac{d}{dx}</math> और अंतर ऑपरेटर पर विचार करें <math>M=qxD^2+(\alpha+1)D</math>. तब <math>\exp(-tM)x^n=(-1)^nq^nt^nn!L^{(\alpha)}_n\left(\frac{x}{qt}\right)</math>.
* पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं: <math display="block">\begin{align}
* पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं: <math display="block">\begin{align}
L_0^{(\alpha)}(x) &= 1 \\
L_0^{(\alpha)}(x) &= 1 \\
Line 81: Line 81:
</math>
</math>
<!-- \frac{n^\alpha}{\Gamma(\alpha+1)} + O\left(n^{\alpha-1}\right);</math> -->
<!-- \frac{n^\alpha}{\Gamma(\alpha+1)} + O\left(n^{\alpha-1}\right);</math> -->
* यदि {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] है, एक फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> एक स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}}
* यदि {{math|''α''}} गैर-ऋणात्मक है, तो L<sub>''n''</sub><sup>(α)</sup> में n [[वास्तविक संख्या]] है, फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि <math>\left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n</math> स्टर्म श्रृंखला है), जो सभी [[अंतराल (गणित)]] में हैं <math>\left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].</math>{{citation needed|date=September 2011}}
* बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार {{mvar|n}}, किन्तु तय है {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> और संक्षेप में <math display="block">\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},</math> कहाँ <math>J_\alpha</math> बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।
* बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार {{mvar|n}}, किन्तु तय है {{mvar|α}} और {{math|''x'' > 0}}, द्वारा दिया गया है<ref>Szegő, p. 198.</ref><ref>D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", ''SIAM J. Numer. Anal.'', vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}</ref> और संक्षेप में <math display="block">\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},</math> कहाँ <math>J_\alpha</math> बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।


=== एक [[समोच्च अभिन्न]] === के रूप में
==== एक [[समोच्च अभिन्न]] के रूप में ====
ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है<math display="block">L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint_C\frac{e^{-xt/(1-t)}}{(1-t)^{\alpha+1}\,t^{n+1}} \; dt,</math>जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना एक वामावर्त दिशा में एक बार मूल को घेरता है
ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है<math display="block">L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint_C\frac{e^{-xt/(1-t)}}{(1-t)^{\alpha+1}\,t^{n+1}} \; dt,</math>जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना वामावर्त दिशा में बार मूल को घेरता है


=== पुनरावृत्ति संबंध ===
=== पुनरावृत्ति संबंध ===
Line 103: Line 103:
L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt]
L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt]
&= \frac{\alpha+1-x}n  L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x)
&= \frac{\alpha+1-x}n  L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x)
\end{align}</math>तब से <math>L_n^{(\alpha)}(x)</math> डिग्री का एक मोनिक बहुपद है <math>n</math> में <math>\alpha</math>,
\end{align}</math>तब से <math>L_n^{(\alpha)}(x)</math> डिग्री का मोनिक बहुपद है <math>n</math> में <math>\alpha</math>,
[[आंशिक अंश अपघटन]] है<math display="block">\begin{align}
[[आंशिक अंश अपघटन]] है<math display="block">\begin{align}
\frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n}  
\frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n}  
Line 115: Line 115:
(-1)^k L_{n-k}^{(\alpha+k)}(x) & \text{if } k\le n, \\
(-1)^k L_{n-k}^{(\alpha+k)}(x) & \text{if } k\le n, \\
0 & \text{otherwise.}
0 & \text{otherwise.}
\end{cases}</math>यह एक विशेष स्थितियोंकी ओर इशारा करता है ({{math|1=''α'' = 0}}) उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है
\end{cases}</math>यह विशेष स्थितियोंकी ओर इशारा करता है ({{math|1=''α'' = 0}}) उपरोक्त सूत्र का: पूर्णांक के लिए {{math|1=''α'' = ''k''}} सामान्यीकृत बहुपद लिखा जा सकता है
<math display="block">L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n+k}(x)}{dx^k},</math>द्वारा पारी {{mvar|k}} कभी-कभी व्युत्पन्न के लिए सामान्य कोष्ठक संकेतन के साथ भ्रम उत्पन्न करता है।
<math display="block">L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n+k}(x)}{dx^k},</math>द्वारा पारी {{mvar|k}} कभी-कभी व्युत्पन्न के लिए सामान्य कोष्ठक संकेतन के साथ भ्रम उत्पन्न करता है।


Line 121: Line 121:
सामान्यीकृत लैगुएरे बहुपद अवकल समीकरण का पालन करते हैं<math display="block">x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0,</math>जिसकी तुलना सामान्य लैगुएरे बहुपद के k वें व्युत्पन्न द्वारा पालन किए गए समीकरण से की जा सकती है,<math display="block">x L_n^{[k] \prime\prime}(x) + (k+1-x)L_n^{[k]\prime}(x) + (n-k) L_n^{[k]}(x)=0,</math>कहाँ <math>L_n^{[k]}(x)\equiv\frac{d^kL_n(x)}{dx^k}</math> केवल इस समीकरण के लिए।
सामान्यीकृत लैगुएरे बहुपद अवकल समीकरण का पालन करते हैं<math display="block">x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0,</math>जिसकी तुलना सामान्य लैगुएरे बहुपद के k वें व्युत्पन्न द्वारा पालन किए गए समीकरण से की जा सकती है,<math display="block">x L_n^{[k] \prime\prime}(x) + (k+1-x)L_n^{[k]\prime}(x) + (n-k) L_n^{[k]}(x)=0,</math>कहाँ <math>L_n^{[k]}(x)\equiv\frac{d^kL_n(x)}{dx^k}</math> केवल इस समीकरण के लिए।


Sturm-Liouville सिद्धांत में|Sturm-Liouville फॉर्म का डिफरेंशियल इक्वेशन है<math display="block">-\left(x^{\alpha+1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)' = n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),</math>जो दर्शाता है {{math|''L''{{su|b=''n''|p=''(α)''}}}} eigenvalue के लिए एक eigenvector है {{mvar|n}}.
Sturm-Liouville सिद्धांत में|Sturm-Liouville फॉर्म का डिफरेंशियल इक्वेशन है<math display="block">-\left(x^{\alpha+1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)' = n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),</math>जो दर्शाता है {{math|''L''{{su|b=''n''|p=''(α)''}}}} eigenvalue के लिए eigenvector है {{mvar|n}}.


=== [[ओर्थोगोनल]]िटी ===
=== [[ओर्थोगोनल|ओर्थोगोनलि]]टी ===
सामान्यीकृत Laguerre बहुपद ओर्थोगोनल ओवर हैं {{closed-open|0, ∞}} भार समारोह के साथ माप के संबंध में {{math|''x<sup>α</sup>'' ''e''<sup>−''x''</sup>}}:<ref>{{Cite web | url=http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | title=Associated Laguerre Polynomial}}</ref><math display="block">\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m},</math>जो इस प्रकार है<math display="block">\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'+n \choose n} \Gamma(\alpha').</math>यदि <math>\Gamma(x,\alpha+1,1)</math> गामा वितरण को दर्शाता है तो ऑर्थोगोनलिटी रिलेशन को इस रूप में लिखा जा सकता है<math display="block">\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha+1,1) dx={n+ \alpha \choose n}\delta_{n,m},</math>संबंधित, सममित कर्नेल बहुपद का प्रतिनिधित्व है (क्रिस्टोफ़ेल-डार्बौक्स सूत्र){{citation needed|date=October 2011}}<math display="block">\begin{align}
सामान्यीकृत Laguerre बहुपद ओर्थोगोनल ओवर हैं {{closed-open|0, ∞}} भार समारोह के साथ माप के संबंध में {{math|''x<sup>α</sup>'' ''e''<sup>−''x''</sup>}}:<ref>{{Cite web | url=http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | title=Associated Laguerre Polynomial}}</ref><math display="block">\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m},</math>जो इस प्रकार है<math display="block">\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'+n \choose n} \Gamma(\alpha').</math>यदि <math>\Gamma(x,\alpha+1,1)</math> गामा वितरण को दर्शाता है तो ऑर्थोगोनलिटी रिलेशन को इस रूप में लिखा जा सकता है<math display="block">\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha+1,1) dx={n+ \alpha \choose n}\delta_{n,m},</math>संबंधित, सममित कर्नेल बहुपद का प्रतिनिधित्व है (क्रिस्टोफ़ेल-डार्बौक्स सूत्र){{citation needed|date=October 2011}}<math display="block">\begin{align}
K_n^{(\alpha)}(x,y) &:= \frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha+i \choose i}}\\[4pt]
K_n^{(\alpha)}(x,y) &:= \frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha+i \choose i}}\\[4pt]
& =\frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha)}(x) L_{n+1}^{(\alpha)}(y) - L_{n+1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n+1} {n+\alpha \choose n}} \\[4pt]
& =\frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha)}(x) L_{n+1}^{(\alpha)}(y) - L_{n+1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n+1} {n+\alpha \choose n}} \\[4pt]
&= \frac{1}{\Gamma(\alpha+1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha+i)}(x) L_{n-i}^{(\alpha+i+1)}(y)}{{\alpha+n \choose n}{n \choose i}};
&= \frac{1}{\Gamma(\alpha+1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha+i)}(x) L_{n-i}^{(\alpha+i+1)}(y)}{{\alpha+n \choose n}{n \choose i}};
\end{align}</math>रिकर्सिवली<math display="block">K_n^{(\alpha)}(x,y)=\frac{y}{\alpha+1} K_{n-1}^{(\alpha+1)}(x,y)+ \frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha+1)}(x) L_n^{(\alpha)}(y)}{{\alpha+n \choose n}}.</math>इसके अतिरिक्त,{{clarify|post-text=Limit as n goes to infinity?|date=January 2016}}<math display="block">y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \to \delta(y- \cdot).</math>तुरान की असमानताएँ यहाँ प्राप्त की जा सकती हैं, जो कि है<math display="block">L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n+1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha+n-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.</math>हाइड्रोजन परमाणु # वेवफंक्शन के [[क्वांटम यांत्रिकी]] उपचार में निम्नलिखित [[अभिन्न]] की आवश्यकता है,<math display="block">\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)} (x)\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1).</math>
\end{align}</math>रिकर्सिवली<math display="block">K_n^{(\alpha)}(x,y)=\frac{y}{\alpha+1} K_{n-1}^{(\alpha+1)}(x,y)+ \frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha+1)}(x) L_n^{(\alpha)}(y)}{{\alpha+n \choose n}}.</math>इसके अतिरिक्त,<math display="block">y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \to \delta(y- \cdot).</math>तुरान की असमानताएँ यहाँ प्राप्त की जा सकती हैं, जो कि है<math display="block">L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n+1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha+n-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.</math>हाइड्रोजन परमाणु # वेवफंक्शन के [[क्वांटम यांत्रिकी]] उपचार में निम्नलिखित [[अभिन्न]] की आवश्यकता है,<math display="block">\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)} (x)\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1).</math>
=== श्रृंखला विस्तार ===
=== श्रृंखला विस्तार ===
एक समारोह में (औपचारिक) श्रृंखला विस्तार होने दें<math display="block">f(x)= \sum_{i=0}^\infty f_i^{(\alpha)} L_i^{(\alpha)}(x).</math>तब<math display="block">f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i+ \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} \cdot f(x) \,dx .</math>श्रृंखला संबद्ध [[हिल्बर्ट अंतरिक्ष]] में अभिसरित होती है {{math|[[Lp space|''L''<sup>2</sup>[0, ∞)]]}} [[अगर और केवल अगर|यदि और केवल यदि]]<math display="block">\| f \|_{L^2}^2 := \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} | f(x)|^2 \, dx = \sum_{i=0}^\infty {i+\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty. </math>
एक समारोह में (औपचारिक) श्रृंखला विस्तार होने दें<math display="block">f(x)= \sum_{i=0}^\infty f_i^{(\alpha)} L_i^{(\alpha)}(x).</math>तब<math display="block">f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i+ \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} \cdot f(x) \,dx .</math>श्रृंखला संबद्ध [[हिल्बर्ट अंतरिक्ष]] में अभिसरित होती है {{math|[[Lp space|''L''<sup>2</sup>[0, ∞)]]}} [[अगर और केवल अगर|यदि और केवल यदि]]<math display="block">\| f \|_{L^2}^2 := \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} | f(x)|^2 \, dx = \sum_{i=0}^\infty {i+\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty. </math>


==== विस्तार के और उदाहरण ====
==== विस्तार के और उदाहरण ====
[[ एकपदीय ]] के रूप में प्रतिनिधित्व किया जाता है<math display="block">\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n+ \alpha \choose n-i} L_i^{(\alpha)}(x),</math>जबकि द्विपद गुणांक में पैरामीट्रिजेशन होता है<math display="block">{n+x \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x+i)}(\alpha).</math>यह सीधे की ओर जाता है<math display="block">e^{-\gamma x}= \sum_{i=0}^\infty \frac{\gamma^i}{(1+\gamma)^{i+\alpha+1}} L_i^{(\alpha)}(x) \qquad \text{convergent iff } \Re(\gamma) > -\tfrac{1}{2}</math>घातीय समारोह के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है<math display="block">\Gamma(\alpha,x)=x^\alpha e^{-x} \sum_{i=0}^\infty \frac{L_i^{(\alpha)}(x)}{1+i} \qquad \left(\Re(\alpha)>-1 , x > 0\right).</math>
[[ एकपदीय | एकपदीय]] के रूप में प्रतिनिधित्व किया जाता है<math display="block">\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n+ \alpha \choose n-i} L_i^{(\alpha)}(x),</math>जबकि द्विपद गुणांक में पैरामीट्रिजेशन होता है<math display="block">{n+x \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x+i)}(\alpha).</math>यह सीधे की ओर जाता है<math display="block">e^{-\gamma x}= \sum_{i=0}^\infty \frac{\gamma^i}{(1+\gamma)^{i+\alpha+1}} L_i^{(\alpha)}(x) \qquad \text{convergent iff } \Re(\gamma) > -\tfrac{1}{2}</math>घातीय समारोह के लिए। अपूर्ण गामा फ़ंक्शन का प्रतिनिधित्व होता है<math display="block">\Gamma(\alpha,x)=x^\alpha e^{-x} \sum_{i=0}^\infty \frac{L_i^{(\alpha)}(x)}{1+i} \qquad \left(\Re(\alpha)>-1 , x > 0\right).</math>


== क्वांटम यांत्रिकी में ==
== क्वांटम यांत्रिकी में ==
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में चरों को अलग करके बिल्कुल हल करने योग्य है। वेव फ़ंक्शन का रेडियल भाग एक (सामान्यीकृत) लैगुएरे बहुपद है।<ref>{{Cite book|title=रसायन विज्ञान में क्वांटम यांत्रिकी|last=Ratner, Schatz|first=Mark A., George C.|publisher=Prentice Hall|year=2001|location=0-13-895491-7| pages=90–91}}</ref>
क्वांटम यांत्रिकी में हाइड्रोजन जैसे परमाणु के लिए श्रोडिंगर समीकरण गोलाकार निर्देशांक में चरों को अलग करके बिल्कुल हल करने योग्य है। वेव फ़ंक्शन का रेडियल भाग (सामान्यीकृत) लैगुएरे बहुपद है।<ref>{{Cite book|title=रसायन विज्ञान में क्वांटम यांत्रिकी|last=Ratner, Schatz|first=Mark A., George C.|publisher=Prentice Hall|year=2001|location=0-13-895491-7| pages=90–91}}</ref>
फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जा सकता है।<ref>{{Cite journal|last1=Jong|first1=Mathijs de|last2=Seijo|first2=Luis|last3=Meijerink|first3=Andries| last4=Rabouw |first4=Freddy T.| date=2015-06-24|title=Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter |url=https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j|journal=Physical Chemistry Chemical Physics|language=en| volume=17 |issue=26|pages=16959–16969|doi=10.1039/C5CP02093J|pmid=26062123|bibcode=2015PCCP...1716959D|hdl=1874/321453| issn=1463-9084}}</ref>
फ्रेंक-कॉन्डन सन्निकटन में वाइब्रोनिक युग्मन को लैगुएरे बहुपदों का उपयोग करके भी वर्णित किया जा सकता है।<ref>{{Cite journal|last1=Jong|first1=Mathijs de|last2=Seijo|first2=Luis|last3=Meijerink|first3=Andries| last4=Rabouw |first4=Freddy T.| date=2015-06-24|title=Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter |url=https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j|journal=Physical Chemistry Chemical Physics|language=en| volume=17 |issue=26|pages=16959–16969|doi=10.1039/C5CP02093J|pmid=26062123|bibcode=2015PCCP...1716959D|hdl=1874/321453| issn=1463-9084}}</ref>
== [[गुणन प्रमेय]] ==
== [[गुणन प्रमेय]] ==
Line 155: Line 155:


== हार्डी-हिल फॉर्मूला ==
== हार्डी-हिल फॉर्मूला ==
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं<ref>Szegő, p. 102.</ref><ref>W. A. Al-Salam (1964), [https://projecteuclid.org/euclid.dmj/1077375084 "Operational representations for Laguerre and other polynomials"], ''Duke Math J.'' '''31''' (1): 127–142.</ref><math display="block">\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right),</math>जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है <math>\alpha>-1</math> और <math>|t|<1</math>. पहचान का उपयोग करना<math display="block">\,_0F_1(;\alpha + 1;z)=\,\Gamma(\alpha + 1) z^{-\alpha/2} I_\alpha\left(2\sqrt{z}\right),</math>(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है<math display="block">\sum_{n=0}^\infty \frac{n!}{\Gamma(1+\alpha+n)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y) t^n = \frac{1}{(xyt)^{\alpha/2}(1-t)}e^{-(x+y)t/(1-t)} I_\alpha \left(\frac{2\sqrt{xyt}}{1-t}\right).</math>यह सूत्र हर्मिट बहुपदों के लिए [[मेहलर कर्नेल]] का एक सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।
सामान्यीकृत लैगुएरे बहुपद हार्डी-हिल सूत्र को संतुष्ट करते हैं<ref>Szegő, p. 102.</ref><ref>W. A. Al-Salam (1964), [https://projecteuclid.org/euclid.dmj/1077375084 "Operational representations for Laguerre and other polynomials"], ''Duke Math J.'' '''31''' (1): 127–142.</ref><math display="block">\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right),</math>जहां बाईं ओर की श्रंखला के लिए अभिसरित होती है <math>\alpha>-1</math> और <math>|t|<1</math>. पहचान का उपयोग करना<math display="block">\,_0F_1(;\alpha + 1;z)=\,\Gamma(\alpha + 1) z^{-\alpha/2} I_\alpha\left(2\sqrt{z}\right),</math>(सामान्यीकृत हाइपरजियोमेट्रिक फ़ंक्शन # श्रृंखला 0F1 देखें), इसे इस रूप में भी लिखा जा सकता है<math display="block">\sum_{n=0}^\infty \frac{n!}{\Gamma(1+\alpha+n)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y) t^n = \frac{1}{(xyt)^{\alpha/2}(1-t)}e^{-(x+y)t/(1-t)} I_\alpha \left(\frac{2\sqrt{xyt}}{1-t}\right).</math>यह सूत्र हर्मिट बहुपदों के लिए [[मेहलर कर्नेल]] का सामान्यीकरण है, जिसे ऊपर दिए गए लैगुएरे और हर्मिट बहुपदों के बीच संबंधों का उपयोग करके इससे पुनर्प्राप्त किया जा सकता है।


== भौतिक विज्ञानी स्केलिंग कन्वेंशन ==
== भौतिक विज्ञानी स्केलिंग कन्वेंशन ==


[[हाइड्रोजन परमाणु]] ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,<ref>{{cite book |last1=Griffiths |first1=David J. |title=क्वांटम यांत्रिकी का परिचय|date=2005 |publisher=Pearson Prentice Hall |location=Upper Saddle River, NJ |isbn=0131118927 |edition=2nd}}</ref><ref>{{cite book |last1=Sakurai |first1=J. J. |title=आधुनिक क्वांटम यांत्रिकी|date=2011 |publisher=Addison-Wesley |location=Boston |isbn=978-0805382914 |edition=2nd}}</ref><ref name="Merzbacher">{{cite book |last1=Merzbacher |first1=Eugen |title=क्वांटम यांत्रिकी|date=1998 |publisher=Wiley |location=New York |isbn=0471887021 |edition=3rd}}</ref> इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए एक अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है <ref>{{cite book |last1=Abramowitz |first1=Milton |title=सूत्र, रेखांकन और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका|date=1965 |publisher=Dover Publications |location=New York |isbn=978-0-486-61272-0}}</ref><math display="block">L_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1) n!} \,_1F_1(-n; \alpha + 1; x),</math>कहाँ <math>\,_1F_1(a;b;x)</math> मिला हुआ हाइपरज्यामितीय कार्य है।
[[हाइड्रोजन परमाणु]] ऑर्बिटल्स के लिए क्वांटम वेवफंक्शन का वर्णन करने के लिए सामान्यीकृत लैगुएरे बहुपदों का उपयोग किया जाता है। इस विषय पर परिचयात्मक साहित्य में,<ref>{{cite book |last1=Griffiths |first1=David J. |title=क्वांटम यांत्रिकी का परिचय|date=2005 |publisher=Pearson Prentice Hall |location=Upper Saddle River, NJ |isbn=0131118927 |edition=2nd}}</ref><ref>{{cite book |last1=Sakurai |first1=J. J. |title=आधुनिक क्वांटम यांत्रिकी|date=2011 |publisher=Addison-Wesley |location=Boston |isbn=978-0805382914 |edition=2nd}}</ref><ref name="Merzbacher">{{cite book |last1=Merzbacher |first1=Eugen |title=क्वांटम यांत्रिकी|date=1998 |publisher=Wiley |location=New York |isbn=0471887021 |edition=3rd}}</ref> इस आलेख में प्रस्तुत स्केलिंग की तुलना में सामान्यीकृत लैगुएरे बहुपदों के लिए अलग स्केलिंग का उपयोग किया जाता है। यहाँ ली गई परिपाटी में, सामान्यीकृत लैगुएरे बहुपदों को इस रूप में व्यक्त किया जा सकता है <ref>{{cite book |last1=Abramowitz |first1=Milton |title=सूत्र, रेखांकन और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका|date=1965 |publisher=Dover Publications |location=New York |isbn=978-0-486-61272-0}}</ref><math display="block">L_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1) n!} \,_1F_1(-n; \alpha + 1; x),</math>कहाँ <math>\,_1F_1(a;b;x)</math> मिला हुआ हाइपरज्यामितीय कार्य है।
भौतिक विज्ञानी साहित्य में, जैसे <ref name="Merzbacher" "="" /> इसके अतिरिक्त सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है<math display="block">\bar{L}_n^{(\alpha)}(x) = \frac{\left[\Gamma(\alpha + n + 1)\right]^2}{\Gamma(\alpha + 1)n!} \,_1F_1(-n; \alpha + 1; x).</math>भौतिक विज्ञानी संस्करण द्वारा मानक संस्करण से संबंधित है<math display="block">\bar{L}_n^{(\alpha)}(x) = (n+\alpha)! L_n^{(\alpha)}(x).</math>भौतिक विज्ञान के साहित्य में एक और परिपाटी का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस परिपाटी के अनुसार लैगुएरे बहुपदों को दिया जाता है <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref><math display="block">\tilde{L}_n^{(\alpha)}(x) = (-1)^{\alpha}\bar{L}_{n-\alpha}^{(\alpha)}.</math>
भौतिक विज्ञानी साहित्य में, जैसे <ref name="Merzbacher" "="" /> इसके अतिरिक्त सामान्यीकृत लैगुएरे बहुपदों को इस रूप में परिभाषित किया गया है<math display="block">\bar{L}_n^{(\alpha)}(x) = \frac{\left[\Gamma(\alpha + n + 1)\right]^2}{\Gamma(\alpha + 1)n!} \,_1F_1(-n; \alpha + 1; x).</math>भौतिक विज्ञानी संस्करण द्वारा मानक संस्करण से संबंधित है<math display="block">\bar{L}_n^{(\alpha)}(x) = (n+\alpha)! L_n^{(\alpha)}(x).</math>भौतिक विज्ञान के साहित्य में और परिपाटी का प्रयोग किया जाता है, चूंकि इसकी आवृत्ति कम होती है। इस परिपाटी के अनुसार लैगुएरे बहुपदों को दिया जाता है <ref>{{cite book |last1=Schiff |first1=Leonard I. |title=क्वांटम यांत्रिकी|date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}</ref><ref>{{cite book |last1=Messiah |first1=Albert |title=क्वांटम यांत्रिकी।|date=2014 |publisher=Dover Publications |isbn=9780486784557}}</ref><ref>{{cite book |last1=Boas |first1=Mary L. |title=भौतिक विज्ञान में गणितीय तरीके|date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}</ref><math display="block">\tilde{L}_n^{(\alpha)}(x) = (-1)^{\alpha}\bar{L}_{n-\alpha}^{(\alpha)}.</math>




Line 169: Line 169:
* [[बेसेल बहुपद]]
* [[बेसेल बहुपद]]
* डेनिस्युक बहुपद
* डेनिस्युक बहुपद
* [[अनुप्रस्थ मोड]], वेवगाइड या लेजर बीम प्रोफाइल के भीतर क्षेत्र की तीव्रता का वर्णन करने के लिए लैगुएरे बहुपदों का एक महत्वपूर्ण अनुप्रयोग।
* [[अनुप्रस्थ मोड]], वेवगाइड या लेजर बीम प्रोफाइल के भीतर क्षेत्र की तीव्रता का वर्णन करने के लिए लैगुएरे बहुपदों का महत्वपूर्ण अनुप्रयोग।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 189: Line 189:
* {{MathWorld|title=Laguerre polynomial|id=LaguerrePolynomial}}
* {{MathWorld|title=Laguerre polynomial|id=LaguerrePolynomial}}


{{Authority control}}
[[Category: बहुपदों]] [[Category: ऑर्थोगोनल बहुपद]] [[Category: विशेष हाइपरज्यामितीय कार्य]]  
[[Category: बहुपदों]] [[Category: ऑर्थोगोनल बहुपद]] [[Category: विशेष हाइपरज्यामितीय कार्य]]  



Revision as of 20:20, 16 March 2023

Complex color plot of the Laguerre polynomial L n(x) n के रूप में -1 को 9 से विभाजित किया गया और x को z के रूप में -2-2i से 2+2i
लैगुएरे बहुपद L n(x) के जटिल रंग प्लॉट को -1 के रूप में विभाजित किया गया 9 और x के रूप में z से 4 की घात -2-2i से 2+2i तक

गणित में, एडमंड लागुएरे (1834-1886) के नाम पर लैगुएरे बहुपद, लैगुएरे के अंतर समीकरण के समाधान हैं:

जो द्वितीय कोटि का रेखीय अवकल समीकरण है। इस समीकरण का केवल एकवचन समाधान है यदि n गैर-ऋणात्मक पूर्णांक है।

कभी-कभी लैगुएरे बहुपद नाम का उपयोग समाधान के लिए किया जाता है

कहाँ n अभी भी गैर-ऋणात्मक पूर्णांक है। फिर उन्हें सामान्यीकृत लैगुएरे बहुपद भी नाम दिया गया है, जैसा कि यहां किया जाएगा (वैकल्पिक रूप से जुड़े लैगुएरे बहुपद या, संभवतः ही कभी, सोनिन बहुपद, उनके आविष्कारक के बाद[1] निकोलाई याकोवलेविच सोनिन)।

अधिक सामान्यतः, लैगुएरे फ़ंक्शन समाधान होता है जब n आवश्यक रूप से गैर-ऋणात्मक पूर्णांक नहीं है।

लैगुएरे बहुपदों का उपयोग गॉसियन चतुर्भुज के रूप में संख्यात्मक रूप से पूर्णांकों की गणना करने के लिए किया जाता है

ये बहुपद, सामान्यतः निरूपित होते हैं L0L1, …, बहुपद अनुक्रम है जिसे रोड्रिग्स सूत्र#रॉड्रिक्स सूत्र द्वारा परिभाषित किया जा सकता है,
निम्नलिखित खंड के बंद रूप को कम करना। वे आंतरिक उत्पाद के संबंध में ओर्थोगोनल बहुपद हैं
लैगुएरे बहुपदों का क्रम n! Ln शेफ़र अनुक्रम है,
कॉम्बिनेटरिक्स में किश्ती बहुपद कमोबेश लैगुएरे बहुपद के समान हैं, चर के प्राथमिक परिवर्तन तक। आगे ट्रिकोमी-कार्लिट्ज़ बहुपद देखें। एक-इलेक्ट्रॉन परमाणु के लिए श्रोडिंगर समीकरण के समाधान के रेडियल भाग में लैगुएरे बहुपद क्वांटम यांत्रिकी में उत्पन्न होते हैं। वे फेज स्पेस फॉर्म्युलेशन # सिंपल हार्मोनिक ऑसिलेटर में ऑसिलेटर सिस्टम के स्टैटिक विग्नर फंक्शन्स का भी वर्णन करते हैं। वे आगे मोर्स क्षमता और क्वांटम हार्मोनिक ऑसिलेटर # उदाहरण के क्वांटम यांत्रिकी में प्रवेश करते हैं: 3 डी आइसोट्रोपिक हार्मोनिक ऑसिलेटर।

भौतिक विज्ञानी कभी-कभी लैगुएरे बहुपदों के लिए परिभाषा का उपयोग करते हैं जो n! के गुणक द्वारा यहां उपयोग की गई परिभाषा से बड़ी होती है। (इसी तरह, कुछ भौतिक विज्ञानी तथाकथित संबंधित लैगुएरे बहुपदों की कुछ भिन्न परिभाषाओं का उपयोग कर सकते हैं।)

पहले कुछ बहुपद

ये पहले कुछ लैगुएरे बहुपद हैं:

n
0
1
2
3
4
5
6
n
पहले छह लैगुएरे बहुपद।

रिकर्सिव डेफिनिशन, क्लोज्ड फॉर्म और जनरेटिंग फंक्शन

पहले दो बहुपदों को परिभाषित करते हुए लैगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
आगे,
कुछ सीमा मान समस्याओं के समाधान में, विशेषता मान उपयोगी हो सकते हैं:
बंद रूप है
उनके लिए जनरेटिंग फ़ंक्शन भी इसी प्रकार है,
नकारात्मक सूचकांक के बहुपदों को सकारात्मक सूचकांक वाले लोगों का उपयोग करके व्यक्त किया जा सकता है:

बाइनरी फ़ंक्शंस से संबंध

बाइनरी विस्तार से संबंधित कार्यों का उपयोग करके लैगुएरे बहुपदों को सेट करने की विधि है :

यहाँ
साथ .

भी

यहाँ है A007814 और का सामान्यीकरण है A347204.

सामान्यीकृत लैगुएरे बहुपद

मनमाना वास्तविक α के लिए अंतर समीकरण के बहुपद समाधान[2]

सामान्यीकृत लैगुएरे बहुपद कहलाते हैं, या संबंधित लैगुएरे बहुपद कहलाते हैं।


पहले दो बहुपदों को परिभाषित करते हुए सामान्यीकृत लेगुएरे बहुपदों को पुनरावर्ती रूप से भी परिभाषित किया जा सकता है

और फिर किसी भी के लिए निम्नलिखित ओर्थोगोनल बहुपद#पुनरावृत्ति संबंधों का उपयोग करना k ≥ 1:
सरल लैगुएरे बहुपद विशेष स्थितियोंहैं α = 0 सामान्यीकृत लैगुएरे बहुपद:
उनके लिए रोड्रिग्स सूत्र है
उनके लिए जनरेटिंग फंक्शन है

पहले कुछ सामान्यीकृत लागुएरे बहुपद, Ln(k)(x)

सामान्यीकृत लैगुएरे बहुपद के स्पष्ट उदाहरण और गुण

  • लैगुएरे फ़ंक्शंस को संगम हाइपरज्यामितीय समारोह और कुमेर के परिवर्तन के रूप में परिभाषित किया गया है[3]
    कहाँ सामान्यीकृत द्विपद गुणांक है। कब n पूर्णांक है जो फ़ंक्शन डिग्री के बहुपद तक कम हो जाता है n. इसकी वैकल्पिक अभिव्यक्ति है[4]
    कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन के संदर्भ में | दूसरी तरह का कुमार का फ़ंक्शन।
  • डिग्री के इन सामान्यीकृत लैगुएरे बहुपदों के लिए बंद रूप n है[5]
    लीबनिज नियम (सामान्यीकृत उत्पाद नियम) लागू करके प्राप्त किया गया | रोड्रिग्स के फार्मूले से उत्पाद के विभेदन के लिए लाइबनिज की प्रमेय।
  • लैगुएरे बहुपदों में विभेदक संकारक प्रतिनिधित्व होता है, जो बहुत निकट से संबंधित हर्मिट बहुपदों की तरह होता है। अर्थात्, चलो और अंतर ऑपरेटर पर विचार करें . तब .
  • पहले कुछ सामान्यीकृत लागुएरे बहुपद हैं:
  • अग्रणी पद का गुणांक है (−1)n/n!;
  • स्थिर पद, जिसका मान 0 है, है
  • यदि α गैर-ऋणात्मक है, तो Ln(α) में n वास्तविक संख्या है, फ़ंक्शन का सख्ती से सकारात्मक रूट (ध्यान दें कि स्टर्म श्रृंखला है), जो सभी अंतराल (गणित) में हैं [citation needed]
  • बड़े के लिए बहुपदों का स्पर्शोन्मुख व्यवहार n, किन्तु तय है α और x > 0, द्वारा दिया गया है[6][7] और संक्षेप में
    कहाँ बेसेल फ़ंक्शन#असिम्प्टोटिक रूप है।

एक समोच्च अभिन्न के रूप में

ऊपर निर्दिष्ट जनरेटिंग फ़ंक्शन को देखते हुए, बहुपदों को समोच्च अभिन्न के रूप में व्यक्त किया जा सकता है

जहां समोच्च 1 पर आवश्यक विलक्षणता को बंद किए बिना वामावर्त दिशा में बार मूल को घेरता है

पुनरावृत्ति संबंध

लागुएरे बहुपदों के लिए अतिरिक्त सूत्र:[8]

लैगुएरे के बहुपद पुनरावर्तन संबंधों को संतुष्ट करते हैं
विशेष रूप से
और
या
इसके अतिरिक्त
उनका उपयोग चार 3-बिंदु-नियमों को प्राप्त करने के लिए किया जा सकता है