प्रचारक
| Quantum field theory |
|---|
| File:Feynmann Diagram Gluon Radiation.svg |
| History |
क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत में प्रचारक एक ऐसा फलन है जो किसी कण के लिए निश्चित समय में एक समष्टि से दूसरी समष्टि पर यात्रा करने या निश्चित ऊर्जा और गति के साथ यात्रा करने के लिए संभाव्यता आयाम निर्दिष्ट करता है फेनमैन आरेखों में जो क्वांटम क्षेत्र सिद्धांत में विस्थापन दर की गणना करने के लिए कार्य करते हैं आभासी कण संबंधित आरेख द्वारा वर्णित होने वाली घटना की दर में उनके प्रचारक का योगदान करते हैं इन्हें कण के लिए उपयुक्त तरंग संक्रियक के व्युत्क्रम के रूप में भी देखा जा सकता है दीर्घवृत्तीय लाप्लासियन ग्रीन फलन से अलग करने के कारण प्रायः इन्हे "ग्रीन फलन" कहा जाता है[1][2]
गैर-सापेक्षवादी प्रचारक
गैर-सापेक्षवादी क्वांटम यांत्रिकी में प्रचारक प्राथमिक कण के लिए स्थानिक बिंदु (x') से (t') समय में दूसरे स्थानिक बिंदु (x) पर (t) समय के बाद यात्रा करने के लिए संभावना आयाम प्रदान करता है।
हैमिल्टनियन (क्वांटम यांत्रिकी) H के साथ एक प्रणाली पर विचार करें जो श्रोडिंगर समीकरण के लिए ग्रीन फलन (मूल समाधान) का एक फलन है:
संतुष्टि करने वाला फलन
जहां Hx निर्देशांक के संदर्भ में लिखे गए हैमिल्टनियन δ(x) और डायराक डेल्टा-फलन Θ(t) को दर्शाता है जो हैवीसाइड चरण फलन K(x, t ;x′, t′) का कर्नेल है बड़े कोष्ठकों में श्रोडिंगर डिफरेंशियल संक्रियक के ऊपर समाकल परिवर्तन है इस संदर्भ में 'प्रचारक' शब्द का प्रयोग कभी-कभी G और K को संदर्भित करने के लिए किया जाता है यह आलेख इस शब्द का उपयोग K को संदर्भित करने के लिए करेगा इसके लिए ड्यूहमेल के सिद्धांत को देखें।
इस प्रचारक को संक्रमण आयाम के रूप में भी लिखा जा सकता है:
जहां Û(t, t′) समय t′ स्थिति को t समय पर ले जाने वाली प्रणाली के लिए एकात्मक समय-विकास संक्रियक द्वारा प्रयुक्त प्रारंभिक स्थिति पर ध्यान दें कि पथ समाकल सूत्रीकरण का उपयोग करके क्वांटम-यांत्रिकी प्रचारक भी पाया जा सकता है:
जहां पथ समाकल सीमा की स्थितियों मे q(t) = x, q(t′) = x′ सम्मिलित हैं यहाँ L प्रणाली के लाग्रंगियन यांत्रिकी को दर्शाता है सम्मिलित किए गए पथ केवल समय में आगे बढ़ते हैं और अंतर के साथ एकीकृत होते हैं समय में पथ का अनुसरण करते हुए गैर-सापेक्षवादी क्वांटम यांत्रिकी में प्रचारक एक प्रारंभिक तरंग फलन और समय अंतराल दिए जाने पर निकाय के तरंग फलन को खोजने देता है इस प्रकार नया तरंग फलन समीकरण द्वारा निर्दिष्ट किया गया है:
यदि K(x, t; x′, t′) केवल अंतर x − x′ पर निर्भर करता है तब यह प्रारंभिक तरंग फलन और प्रचारक का घूर्णन है।
मूल उदाहरण: मुक्त कण का प्रचारक और आवर्ती दोलक
सामान्यतः अपरिवर्तनीय प्रणाली के लिए प्रचारक केवल t − t′ समय के अंतर पर निर्भर करता है इसलिए इसे फिर से लिखा जा सकता है:
इसी प्रकार आयामी क्वांटम आवर्ती दोलक का प्रचारक मेहलर कर्नेल है:[3][4]
वैन कॉर्ट्रीक के SU(1,1) लाई समूह पहचान का उपयोग करने पर पिछले मुक्त-कण परिणाम से बाद वाले कण को प्राप्त किया जा सकता है:[5]
संक्रियकों के लिए मान और हाइजेनबर्ग संबंध को संतुष्ट करने के लिए N-आयामी स्थिति प्रचारक को निम्न उत्पाद द्वारा प्राप्त किया जा सकता है:
सापेक्षवादी प्रचारक
सापेक्षतावादी क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत में प्रचारक लारेन्ट्स मात्रक हैं वे एक कण को दो स्पेसटाइम बिंदुओं के बीच यात्रा करने के लिए आयाम प्रदान करते हैं।
अदिश प्रचारक
क्वांटम क्षेत्र सिद्धांत में एक मुक्त या गैर-अंतःक्रियात्मक अदिश क्षेत्र का सिद्धांत एक उपयोगी और सरल उदाहरण है जो अधिक जटिल सिद्धांतों के लिए आवश्यक अवधारणाओं को स्पष्ट करने के लिए कार्य करता है यह प्रचक्रण (भौतिकी) शून्य कणों का वर्णन करता है मुक्त अदिश क्षेत्र सिद्धांत के लिए कई संभावित प्रचारक हैं अब हम सबसे सामान्य का वर्णन करते हैं।
स्थिति समष्टि
क्लेन-गॉर्डन समीकरण के लिए स्थिति समष्टि प्रचारक ग्रीन फलन हैं इसका अर्थ है कि वे फलन G(x, y) को संतुष्ट करते हैं:
- x, y मिन्कोवस्की समष्टि-समय में दो बिंदु हैं।
- निर्देशांक पर कार्य करने वाला d' अलंबर्टियन संक्रियक है।
- δ(x − y) डिराक डेल्टा फलन है।
सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत गणनाओं में विशिष्ट के रूप में उन इकाइयों का उपयोग करते हैं जहां c प्रकाश की गति और प्लैंक स्थिरांक ħ इकाई है हम 4-आयामी मिन्कोव्स्की स्पेसटाइम पर ध्यान केंद्रित करेंगे। जिससे हम प्राप्त करने वाले प्रचारक के लिए समीकरण का फूरियर रूपांतरण कर सकते हैं:
इस समीकरण को वितरण (गणित) के अर्थ में व्युत्क्रमित किया जा सकता है यह देखते हुए कि समीकरण xf(x) = 1 का समाधान है जिसके लिए सोखोत्स्की-प्लेमेलज प्रमेय देखें:
जहाँ
इसलिए इनसे बचने के लिए अलग-अलग विकल्प अलग-अलग प्रचारकों के पास होते हैं।
कारणात्मक प्रचारक
मंदित प्रचारक
File:CausalRetardedPropagatorPath.svg
दोनों ध्रुवों पर दक्षिणावर्त जाने वाला एक समोच्च कारण मंद प्रवर्तक देता है यह शून्य होता है यदि x-y समष्टि जैसा है या यदि x ⁰< y ⁰ अर्थात यदि y, x आगे के मान के लिए है तब समोच्च का यह चुनाव निम्न सीमा की गणना के बराबर है:
- और
यह अभिव्यक्ति मुक्त अदिश क्षेत्र संक्रियक के दिक्परिवर्तक के वैक्यूम आपेक्षिक मान से संबंधित हो सकता है,
उन्नत प्रचारक
File:CausalAdvancedPropagatorPath.svg
दोनों ध्रुवों के नीचे वामावर्त जाने वाला एक समोच्च कारण उन्नत प्रचारक देता है यह शून्य है यदि x-y समष्टि या x ⁰> y ⁰ है अर्थात यदि y, x के अतीत में है तब समोच्च का यह चुनाव सीमा की गणना के बराबर है:[6]
फेनमैन प्रचारक
1948 में रिचर्ड फेनमैन द्वारा प्रस्तुत किए गए फेनमैन प्रचारक, बाएं ध्रुव के नीचे और दाएं ध्रुव के ऊपर जाने वाला एक समोच्च देता है।[7] जो समोच्च के चुनाव सीमा की गणना के बराबर है:[8]
यह अभिव्यक्ति प्रत्यक्ष क्षेत्र सिद्धांत से मुक्त अदिश क्षेत्र के समय-आदेशित उत्पाद के निर्वात अपेक्षित मान के रूप में प्राप्त की जा सकती है अर्थात, उत्पाद सदियाव ऐसा लिया जाता है जिसके कारण स्पेसटाइम बिंदुओं का समय क्रम समान होता है:
यह अभिव्यक्ति लोरेंत्ज़ अपरिवर्तनीय है जब तक कि क्षेत्र संक्रियक एक दूसरे के साथ तब तक चलते हैं जब बिंदु x और y को स्पेसलाइक अंतराल द्वारा अलग किया जाता है और सामान्य व्युत्पत्ति लोरेंत्ज़ सहसंयोजक सामान्यीकरण के साथ क्षेत्रों के बीच एकल-कण संवेग स्थिति का एक समुच्चय सम्मिलित करना है और फिर यह दिखाने के लिए कि Θ फलन समय आदेश प्रदान करने के लिए ऊर्जा अक्ष के साथ एक समोच्च समाकल द्वारा प्राप्त किया जा सकता है यदि ध्रुव को वास्तविक रेखा से दूर ले जाने के लिए समाकलन ऊपर जैसा है तो अत्यल्प काल्पनिक भाग प्रचारक को क्वांटम सिद्धांत के पथ समाकल सूत्रीकरण का उपयोग करके भी प्राप्त किया जा सकता है।
गति अंतरिक्ष प्रचारक
स्थिति समष्टि प्रचारक के फूरियर रूपांतरण को गति समष्टि में प्रचारक के रूप में सोचा जा सकता है। ये समष्टि प्रचारकों की तुलना में बहुत सरल रूप मे होते हैं और वे प्रायः एक ε स्पष्ट शब्द के साथ लिखे जाते हैं हालांकि इसको संक्षिप्त रूप में समझा जाता है जिसके विषय में समाकल समोच्च उपयुक्त है (ऊपर देखें)। यह ε शब्द सीमा शर्तों और करणीयता (नीचे देखें) को सम्मिलित करने के लिए सम्मिलित किया गया है।
4-गति के लिए p संवेग समष्टि में कारण फेनमैन प्रचारक हैं:
फेनमैन आरेख गणनाओं के प्रयोजनों के लिए सामान्य रूप से इन्हें एक अतिरिक्त समग्र फलन −i के साथ लिखना सुविधाजनक होता है।
प्रकाश की तुलना में तीव्र
This section needs additional citations for verification. (November 2022) (Learn how and when to remove this template message) |
फेनमैन प्रचारक के पास कुछ विशेष गुण हैं जो पहली बार में प्रभावी लगते हैं विशेष रूप से, दिकपरिवर्तक के विपरीत प्रचारक प्रकाश शंकु के बाहर शून्य नहीं है हालांकि यह मुख्य अंतराल के लिए तीव्रता से कम होता है कण की गति के लिए एक आयाम के रूप में व्याख्या की गई है कि यह प्रकाश की तुलना में तीव्रता से यात्रा करने वाले आभासी कण का अनुवाद करता है यह शीघ्र स्पष्ट नहीं होता है कि इसे फलन के साथ कैसे सामंजस्य स्थापित किया जा सकता है क्या हम प्रकाश-से-प्रकाश संदेशों को भेजने के लिए तीव्रता से प्रकाश आभासी कणों का उपयोग कर सकते हैं? उत्तर नहीं है: जबकि चिरसम्मत यांत्रिकी में अंतराल जिसके साथ कण और कारणात्मक प्रभाव यात्रा कर सकते हैं यह क्वांटम क्षेत्र सिद्धांत में अब सत्य नहीं है जहां यह दिकपरिवर्तक हैं जो निर्धारित करते हैं कि कौन से संक्रियक एक दूसरे को प्रभावित कर सकते है तब प्रचारक का स्पेसलाइक भाग क्या दर्शाता है? क्यूएफटी में निर्वात एक सक्रिय भागीदार है कण संख्या और क्षेत्र मान एक अनिश्चितता सिद्धांत से संबंधित हैं कण संख्या शून्य के लिए भी क्षेत्र मान अनिश्चित हैं यदि कोई इसे समष्टि रूप से मापता है या, अधिक शुद्ध होने के लिए यदि कोई एक छोटे क्षेत्र में क्षेत्र के औसत से प्राप्त संक्रियक को मापता है तो क्षेत्र के निर्वात मान में एक महत्वपूर्ण उतार-चढ़ाव का पता लगाने के लिए एक गैर-शून्य संभाव्यता आयाम है। इसके अतिरिक्त क्षेत्रों की गतिशीलता अपेक्षाकृत समष्टि रूप से सहसंबद्ध उतार-चढ़ाव का पक्ष लेती है स्पेसलाइक-पृथक क्षेत्रों के लिए गैर-शून्य समय-आदेशित उत्पाद तब इन वैक्यूम उतार-चढ़ाव में एक गैर-समष्टि सहसंबंध के लिए आयाम को मापता है जो ईपीआर विरोधाभास सहसंबंध के अनुरूप होता है अर्थात प्रचारक को प्रायः मुक्त क्षेत्र के लिए दो-बिंदु सहसंबंध फलन कहा जाता है।
चूंकि, क्वांटम क्षेत्र सिद्धान्त की अभिधारणाओं के अनुसार सभी प्रेक्षण योग्य संक्रियक स्पेसलाइक पृथक्करण पर एक दूसरे के साथ आवागमन करते हैं संदेश इन सहसंबंधों के माध्यम से किसी भी अन्य ईपीआर सहसंबंधों के माध्यम से नहीं भेजे जा सकते हैं प्रायः सहसंबंध यादृच्छिक चर में होते हैं।
आभासी कणों के संबंध में स्पेसलाइक पृथक्करण पर प्रचारक को आभासी कण-प्रतिपक्षी संबंध बनाने के लिए आयाम की गणना के साधन के रूप में माना जा सकता है जो अंततः वैक्यूम में लुप्त हो जाता है या वैक्यूम से उभरने वाली आभासी संबंध का पता लगाने के लिए फेनमैन की भाषा में, इस प्रकार के निर्माण और विनाश की प्रक्रिया एक आभासी कण के बराबर होती है जो आवर्तकाल के माध्यम से पीछे और आगे घूमते हैं और इसे प्रकाश शंकु के बाहर ले जा सकते हैं हालांकि समय में वापस संकेतन की स्वीकृति नहीं होती है।
सीमा का उपयोग करते हुए स्पष्टीकरण
द्रव्यमान रहित फोटॉन के लिए प्रचारक को निम्नलिखित रूप में लिखकर इसे और स्पष्ट किया जा सकता है:
यह सामान्य परिभाषा है लेकिन के एक कारक द्वारा सामान्यीकृत है का नियम यह है कि एक गणना के अंत में केवल की सीमा निर्धारित होती है:
इसका तात्पर्य यह है कि एक फोटॉन सदैव प्रकाश शंकु पर रहेगा। यह भी दिखाया गया है कि किसी भी समय एक फोटान के लिए कुल संभाव्यता को निम्न कारक के व्युत्क्रम द्वारा सामान्यीकृत किया जाता है:
फेनमैन आरेखों में प्रचारक
प्रचारक का सबसे सामान्य उपयोग फेनमैन आरेखों का उपयोग करके कण के पारस्परिक प्रभाव के लिए संभाव्यता आयाम की गणना करने में है ये गणना सामान्य रूप से गति समष्टि में की जाती हैं सामान्यतः आयाम प्रत्येक आंतरिक रेखा के लिए प्रचारक का कारक प्राप्त करता है अर्थात प्रत्येक पंक्ति जो प्रारंभिक या अंतिम स्थिति में आने वाले या बाहर जाने वाले कण का प्रतिनिधित्व नहीं करती है या प्रत्येक आंतरिक शीर्ष जहां रेखाएं मिलती हैं लैग्रैजियन सिद्धांत में एक अंतःक्रिया शब्द के समानुपातिक और समान रूप में एक कारक भी प्राप्त करेगा। इन कारणों को फेनमेन नियम के नाम से जाना जाता है।
आंतरिक रेखाएँ आभासी कणों के अनुरूप होती हैं चूंकि गति के चिरसम्मत समीकरणों द्वारा अस्वीकृत ऊर्जा और संवेग के संयोजन के लिए प्रचारक लुप्त नहीं होता है हम कहते हैं कि आभासी कणों को बाहर होने की स्वीकृति है वास्तव में चूंकि प्रचारक तरंग समीकरण को पुनः प्राप्त किया जाता है सामान्यतः इसमें दाब पर विलक्षणता होती है
प्रचारक में कण द्वारा वहन की जाने वाली ऊर्जा ऋणात्मक भी हो सकती है इसे केवल उस स्थिति के रूप में समझा जा सकता है जिसमें एक कण एक दिशा में जाने के अतिरिक्त इसका प्रतिकण दूसरी दिशा में जा रहा है और इसलिए धनात्मक ऊर्जा के विपरीत प्रवाह को ले जा रहा है प्रचारक दोनों संभावनाओं को सम्मिलित करता है इसका अर्थ यह है कि किसी को फ़र्मियन कि स्थिति में ऋण चिह्न के विषय में सावधान रहना होगा, जिनके प्रचारक ऊर्जा और संवेग में भी कार्य नहीं करते हैं।
आभासी कण ऊर्जा और संवेग का संरक्षण करते हैं हालाँकि चूँकि वे शृखला से बाहर हो सकते हैं जहाँ भी आरेख में एक संवृत लूप होता है लूप में भाग लेने वाले आभासी कणों की ऊर्जा और संवेग आंशिक रूप से अप्रतिबंधित होते है क्योंकि लूप में एक कण के लिए मात्रा में परिवर्तन द्वारा संतुलित किया जा सकता है दूसरे में एक समान और विपरीत परिवर्तन होता है इसलिए, फेनमैन आरेख में प्रत्येक लूप को संभावित ऊर्जा और गति की निरंतरता पर एक अभिन्न अंग की आवश्यकता होती है सामान्यतः प्रचारकों के उत्पादों के ये अभिन्न अंग विचलन कर सकते हैं एक ऐसी स्थिति जिसे पुन: सामान्यीकरण की प्रक्रिया द्वारा नियंत्रित किया जाता है।
अन्य सिद्धांत
प्रचक्रण 1⁄2
यदि कण के पास प्रचक्रण है तो इसका प्रचारक सामान्य रूप से कुछ अधिक जटिल होता है क्योंकि इसमें कण के प्रचक्रण या ध्रुवीकरण सूचकांक सम्मिलित होते है प्रचक्रण 1⁄2 कण के लिए प्रचारक द्वारा संतुष्ट अंतर समीकरण द्वारा दिया गया है:[9]
जहां I4 चार आयामों में इकाई आव्यूह है जो फेनमैन संकेत पद्धति को नियोजित करता है यह स्पेसटाइम में डेल्टा फलन स्रोत के लिए डिराक समीकरण मे गति प्रतिनिधित्व का उपयोग करना है:
जहां दाईं ओर चार-आयामी डेल्टा फलन का एक समाकल प्रतिनिधित्व का प्रयोग इस प्रकार किया जाता है:
बायें से गुणा करके
क्वांटम विद्युत् गतिकी में इलेक्ट्रॉन का प्रतिनिधित्व करने वाले डायराक समीकरण क्षेत्र के लिए फेनमैन आरेख में उपयोग किए जाने वाले संवेग-अंतरिक्ष प्रसारक का रूप पाया जाता है:
iε के नीचे p0 समतल में ध्रुवों को संभालने के प्रकारों के लिए यह एक विधि है यह ध्रुवों को उपयुक्त रूप से स्वतः फलित समाकल का फेनमैन समोच्च उत्पन्न करता है जिसको कभी-कभी निम्न रूप मे लिखा जाता है:
यह याद रखना चाहिए कि यह अभिव्यक्ति केवल (γμpμ − m)−1 के लिए आशुलिपि संकेतन है "वन ओवर आव्यूह" अन्यथा अतर्कसंगत होता है जिसके लिए एक स्थिति समष्टि है:
जहाँ .
प्रचक्रण 1
गेज सिद्धांत में गेज बोसॉन के लिए प्रचारक गेज को प्रयुक्त करने के लिए यह फलन की रुचि पर निर्भर करता है फेनमैन और अर्नस्ट स्टुएकेलबर्ग द्वारा उपयोग किए जाने वाले गेज के लिए एक फोटॉन प्रचारक है:
गेज पैरामीटर λ के साथ सामान्य रूप, समग्र चिह्न तक और i का कारक पढ़ता है:
बड़े पैमाने पर सदिश क्षेत्र के प्रचारक को स्टुकेलबर्ग लैग्रैंगियन से प्राप्त किया जा सकता है गेज पैरामीटर λ के साथ सामान्य रूप, समग्र चिह्न तक और i का कारक पढ़ता है:
इन सामान्य रूपों के साथ λ = 0 के लिए एकात्मक गेज में प्रचारक फेनमैन में प्रचारक या λ = 1 के लिए 'टी हूफ्ट गेज और λ = ∞ के लिए लैंडौ या लॉरेंज गेज में प्राप्त होता है अन्य संकेत पद्धति भी हैं जहां गेज पैरामीटर λ के व्युत्क्रम है सामान्यतः ξ (R ξ गेज देखें) को निरूपित किया जाता है प्रचारक का नाम, हालांकि, इसके अंतिम रूप को संदर्भित करता है और गेज पैरामीटर के मान के लिए आवश्यक नहीं होता है।
एकात्मक गेज:
फेनमैन ('टी हूफ्ट) गेज:
लैंडौ (लॉरेंज) गेज:
ग्रेविटन प्रचारक
सामान्य सापेक्षता में मिन्कोव्स्की समष्टि के लिए ग्रेविटॉन प्रचारक है:[10]
जहाँ हबल नियतांक है ध्यान दें कि सीमा और , लेने पर प्रचारक मिंकोवस्की प्रचारक को अपेक्षाकृत कम कर देता है।[11]
संबंधित एकल फलन
क्लेन-गॉर्डन समीकरण के लिए अदिश प्रचारक ग्रीन फलन हैं यह एक संबंधित विलक्षण फलन हैं जो क्वांटम क्षेत्र सिद्धांत में महत्वपूर्ण हैं हम ब्योर्केन और ड्रेल में संकेतन का अनुसरण करते हैं[12] बोगोलीबॉव और शिरकोव (परिशिष्ट ए) भी देखें।[12] जिसको क्षेत्र संक्रियकों के उत्पादों को वैक्यूम आपेक्षित मान के संदर्भ में इन फलन को सबसे सरल रूप से परिभाषित किया गया है।
क्लेन-गॉर्डन समीकरण के समाधान
पाउली-जॉर्डन फलन
दो अदिश क्षेत्र संक्रियकों के दिकपरिवर्तक वोल्फगैंग पाउली- पास्कल जॉर्डन फलन को द्वारा परिभाषित करते हैं:[13][14]
जिसके साथ
यह संतुष्ट करता है:
- और शून्य है यदि .
धनात्मक और ऋणात्मक आवृत्ति भागों (प्रचारकों में)
हम के धनात्मक और ऋणात्मक आवृत्ति भागों को परिभाषित कर सकते हैं जिन्हें कभी-कभी सापेक्ष रूप से अपरिवर्तनीय प्रकार से परिवर्तन प्रचारक कहा जाता हैं।
ये हमें धनात्मक आवृत्ति भाग को परिभाषित करने की स्वीकृति देते है:
और ऋणात्मक आवृत्ति भाग:
ये संतुष्ट करते हैं:[14]
और
सहायक फलन
दो अदिश क्षेत्र संक्रियकों के दिकपरिवर्तक को फलन द्वारा परिभाषित करता है:
और
यह संतुष्ट करता है:
क्लेन-गॉर्डन समीकरण के लिए ग्रीन फलन
ऊपर परिभाषित फलन फेनमैन प्रचारक क्लेन-गॉर्डन समीकरण के लिए ग्रीन फलन है ये फलन निम्न अद्वितीय फलनों से संबंधित हैं:[14]
जहाँ , का चिह्न है।
टिप्पणियाँ
- ↑ The mathematics of PDEs and the wave equation, p 32., Michael P. Lamoureux, University of Calgary, Seismic Imaging Summer School, August 7–11, 2006, Calgary.
- ↑ Ch.: 9 Green's functions, p 6., J Peacock, FOURIER ANALYSIS LECTURE COURSE: LECTURE 15.
- ↑ E. U. Condon, "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23, (1937) 158–164.
- ↑ Wolfgang Pauli, Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620. Section 44.
- ↑ Kolsrud, M. (1956). Exact quantum dynamical solutions for oscillator-like systems, Physical Review 104(4), 1186.
- ↑ Scharf, Günter (13 November 2012). परिमित क्वांटम विद्युतगतिकी, कारणात्मक दृष्टिकोण. Springer. p. 89. ISBN 978-3-642-63345-4.
- ↑ Feynman, R. P. (2005), "Space-Time Approach to Non-Relativistic Quantum Mechanics", Feynman's Thesis — A New Approach to Quantum Theory (in English), WORLD SCIENTIFIC, pp. 71–109, Bibcode:2005ftna.book...71F, doi:10.1142/9789812567635_0002, ISBN 978-981-256-366-8, retrieved 2022-08-17
- ↑ Huang, Kerson (1998). Quantum Field Theory: From Operators to Path Integrals. New York: John Wiley & Sons. p. 30. ISBN 0-471-14120-8.
- ↑ Greiner & Reinhardt 2008, Ch.2
- ↑ https://dspace.library.uu.nl/bitstream/handle/1874/4837/Quantum_theory_of_gravitation.pdf?sequence=2&isAllowed=y[bare URL PDF]
- ↑ "Graviton and gauge boson propagators in AdSd+1" (PDF).
- ↑ 12.0 12.1 Bogoliubov, N.; Shirkov, D. V. (1959). "Appendix A". परिमाणित क्षेत्रों के सिद्धांत का परिचय. Wiley-Interscience. ISBN 0-470-08613-0.
- ↑ Pauli, Wolfgang; Jordan, Pascual (1928). "चार्ज-फ्री फ़ील्ड्स के क्वांटम इलेक्ट्रोडायनामिक्स पर". Zeitschrift für Physik. 47 (3–4): 151–173. Bibcode:1928ZPhy...47..151J. doi:10.1007/BF02055793. S2CID 120536476.
- ↑ 14.0 14.1 14.2 Bjorken, James D.; Drell, Sidney David (1964). "Appendix C". सापेक्षवादी क्वांटम यांत्रिकी. International series in pure and applied physics. New York, NY: McGraw-Hill. ISBN 9780070054936.
संदर्भ
- Bjorken, J.; Drell, S. (1965). Relativistic Quantum Fields. New York: McGraw-Hill. ISBN 0-07-005494-0. (Appendix C.)
- Bogoliubov, N.; Shirkov, D. V. (1959). Introduction to the theory of quantized fields. Wiley-Interscience. ISBN 0-470-08613-0. (Especially pp. 136–156 and Appendix A)
- DeWitt-Morette, C.; DeWitt, B. (eds.). Relativity, Groups and Topology. Glasgow: Blackie and Son. ISBN 0-444-86858-5. (section Dynamical Theory of Groups & Fields, Especially pp. 615–624)
- Greiner, W.; Reinhardt, J. (2008). Quantum Electrodynamics (4th ed.). Springer Verlag. ISBN 9783540875604.
- Greiner, W.; Reinhardt, J. (1996). Field Quantization. Springer Verlag. ISBN 9783540591795.
walter greiner Classical Mechanics: Point Particles and Relativity.
- Griffiths, D. J. (1987). Introduction to Elementary Particles. New York: John Wiley & Sons. ISBN 0-471-60386-4.
- Griffiths, D. J. (2004). Introduction to Quantum Mechanics. Upper Saddle River: Prentice Hall. ISBN 0-131-11892-7.
- Halliwell, J.J.; Orwitz, M. (1993), "Sum-over-histories origin of the composition laws of relativistic quantum mechanics and quantum cosmology", Physical Review D, 48 (2): 748–768, arXiv:gr-qc/9211004, Bibcode:1993PhRvD..48..748H, doi:10.1103/PhysRevD.48.748, PMID 10016304, S2CID 16381314
- Huang, Kerson (1998). Quantum Field Theory: From Operators to Path Integrals. New York: John Wiley & Sons. ISBN 0-471-14120-8.
- Itzykson, C.; Zuber, J-B. (1980). Quantum Field Theory. New York: McGraw-Hill. ISBN 0-07-032071-3.
- Pokorski, S. (1987). Gauge Field Theories. Cambridge: Cambridge University Press. ISBN 0-521-36846-4. (Has useful appendices of Feynman diagram rules, including propagators, in the back.)
- Schulman, L. S. (1981). Techniques & Applications of Path Integration. New York: John Wiley & Sons. ISBN 0-471-76450-7.
- Scharf, G. (1995). Finite Quantum Electrodynamics, The Causal Approach. Springer. ISBN 978-3-642-63345-4.