हर्मिटियन सहायक

From Vigyanwiki

गणित में, विशेष रूप से संकारक सिद्धांत में, आंतरिक उत्पाद स्थान पर प्रत्येक रैखिक संकारक नियम

के अनुसार उस स्थान पर एक हर्मिटियन सहायक (या सहायक) संकारक को परिभाषित करता है, जहां सदिश पर आंतरिक उत्पाद है।

चार्ल्स हर्मिट के बाद सहायक को हर्मिटियन संयुग्म या बस हर्मिटियन भी कहा जा सकता है।[1] इसे प्रायः A द्वारा दर्शाया जाता है भौतिकी जैसे क्षेत्रों में, विशेषतः जब क्वांटम यांत्रिकी में ब्रा-केट संकेत चिन्ह के साथ संयोजन में उपयोग किया जाता है। परिमित आयामों में जहां संकारकों को मैट्रिक्स (गणित) द्वारा दर्शाया जाता है, हर्मिटियन सहायक संयुग्म स्थानांतरण (जिसे हर्मिटियन ट्रांसपोज़ के रूप में भी जाना जाता है) द्वारा दिया जाता है।

सहायक संकारक की उपरोक्त परिभाषा हिल्बर्ट स्थान पर परिबद्ध संचालिका तक शब्दशः विस्तारित होती है। परिभाषा को आगे बढ़ाया गया है ताकि असीमित सघन रूप से परिभाषित संकारक को सम्मिलित किया जा सके, जिनका डोमेन स्थलाकृतिक रूप से सघन (टोपोलॉजी) है - लेकिन जरूरी नहीं कि के बराबर हो।

अनौपचारिक परिभाषा

हिल्बर्ट स्थानों के बीच रेखीय मानचित्र पर विचार करें। किसी भी विवरण का ध्यान रखे बिना, सहायक संकारक (अधिकांश स्थितियों में विशिष्ट रूप से परिभाषित) रैखिक संकारक है जो

को पूरा करता है,

जहां हिल्बर्ट स्थान में आंतरिक उत्पाद है, जो पहले निर्देशांक में रैखिक है और दूसरे निर्देशांक में प्रतिरेखीय है। उस विशेष स्थिति पर ध्यान दें जहां दोनों हिल्बर्ट स्थान समान हैं और उस हिल्बर्ट स्थान पर एक संकारक है।

जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का व्यापार करता है, तो वह एक संकारक के सहायक को परिभाषित कर सकता है, जिसे एक रैखिक मानचित्र का ट्रांसपोज़ भी कहा जाता है। , कहाँ संगत नॉर्म (गणित) के साथ बानाच रिक्त स्थान हैं । यहां (फिर से किसी तकनीकी पर विचार न करते हुए), इसके सहायक संकारक को के साथ के रूप में परिभाषित किया गया है अर्थात के लिए

हिल्बर्ट स्पेस समायोजना में उपरोक्त परिभाषा वास्तव में बानाच स्पेस केस का एक अनुप्रयोग है जब कोई हिल्बर्ट स्पेस को उसके दोहरे के साथ पहचानता है। तब यह स्वाभाविक ही है कि हम एक संकारक का सहायक भी प्राप्त कर सकते हैं , जहां एक हिल्बर्ट स्थान है और बानाच स्थान है। फिर दोहरे को के साथ के रूप में परिभाषित किया जाता है जैसे कि

बनच स्थान के बीच असीमित संकारकों के लिए परिभाषा

मान लीजिए बनच स्थान हैं। मान लीजिए , और , और मान लीजिए कि एक संभवतः असीमित रैखिक ऑपरेटर है जिसे सघन रूप से परिभाषित किया गया है (यानी में सघन है)। फिर इसका सहायक संकारक को इस प्रकार परिभाषित किया गया है। डोमेन

है।

अब स्वेच्छाचारी लेकिन निश्चित के लिए हम को के साथ सेट करते हैं। की पसंद और की परिभाषा के अनुसार, f, के रूप में पर समान रूप से निरंतर है। फिर हैन-बानाच प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से यह का विस्तार उत्पन्न करता है, जिसे सभी पर परिभाषित कहा जाता है। यह तकनीकीता बाद में के बजाय को संकारक के रूप में प्राप्त करने के लिए आवश्यक है। यह भी ध्यान दें कि इसका मतलब यह नहीं है कि को सभी पर विस्तृत किया जा सकता है, लेकिन विस्तारण केवल विशिष्ट तत्वों के लिए काम करता है।

अब हम के जोड़ को

के रूप में परिभाषित कर सकते हैं।

इस प्रकार मूल परिभाषित पहचान के लिए है।

हिल्बर्ट रिक्त स्थान के बीच परिबद्ध संकारकों के लिए परिभाषा

मान लीजिए H एक जटिल हिल्बर्ट स्थान है, आंतरिक उत्पाद है। एक सतत रैखिक संकारक A : HH पर विचार करें (रैखिक संकारकों के लिए, निरंतरता एक बंधे हुए संकारक होने के बराबर है)। फिर A का जोड़ सतत रैखिक संकारक A : HH है जो

को संतुष्ट करता है।

इस संकारक का अस्तित्व और विशिष्टता रिज़्ज़ प्रतिनिधित्व प्रमेय से अनुसरण करती है।[2]

इसे एक वर्ग मैट्रिक्स के सहायक मैट्रिक्स के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से जुड़ी समान गुण होते है।

गुण

परिबद्ध संकारक के हर्मिटियन सहायक के निम्नलिखित गुण तत्काल हैं:[2]

  1. अनैच्छिकता (गणित): A∗∗ = A
  2. अगर A व्युत्क्रमणीय है, तो के साथ A भी व्युत्क्रमणीय है
  3. विरोधी-रैखिकता:
    • (A + B) = A + B
    • (λA) = λA, जहां λ सम्मिश्र संख्या λ के सम्मिश्र संयुग्म को दर्शाता है
  4. वितरणात्मक विरोधी : (AB) = BA

यदि हम A के संकारक मानदंड को परिभाषित करते हैं

द्वारा

तब

[2]

इसके अतिरिक्त,

[2]

एक का कहना है कि एक मानदंड जो इस स्थिति को संतुष्ट करता है वह "सबसे बड़े मूल्य" की तरह व्यवहार करता है, जो स्व-सहायक संकारकों के प्रकरण से अलग है।

एक जटिल हिल्बर्ट स्थान H पर बंधे हुए रैखिक संकारकों का समूह सहायक संचालन और संकारक मानदंड के साथ मिलकर C*-बीजगणित का प्रतिमान बनाते हैं।

हिल्बर्ट रिक्त स्थान के बीच सघन रूप से परिभाषित असीमित संकारकों का जोड़

परिभाषा

मान लीजिए कि पहले तर्क में आंतरिक उत्पाद रैखिक है। जटिल हिल्बर्ट स्थान H से स्वयं तक सघन रूप से परिभाषित संकारक A एक रैखिक संचालिका है जिसका डोमेन D(A) H का सघन रैखिक उपस्थान है और जिसका मान H में निहित है।[3] परिभाषा के अनुसार, इसके सहायक A का डोमेन D(A) सभी yH का समुच्चय है जिसके लिए zH, को संतुष्ट करता है।

के घनत्व और रिज़्ज़ प्रतिनिधित्व प्रमेय के कारण, को विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा द्वारा।[4]

गुण 1.-5. डोमेन और कोडोमेन के बारे में उपयुक्त खंडों के साथ हैं।[clarification needed] उदाहरण के लिए, अंतिम संपत्ति अब यह बताती है कि (AB), BA का विस्तार है अगर A, B और AB सघन रूप से परिभाषित संकारक हैं।[5]

केर ए*=(मैं ए)

हरएक के लिए, रैखिक कार्यात्मक समान रूप से शून्य है, और इसलिए

इसके विपरीत, यह धारणा कि कार्यात्मकता के लिए समान रूप से शून्य होना का कारण बनता है। चूंकि कार्यात्मकता स्पष्ट रूप से परिबद्ध है, इसलिए की परिभाषा आश्वासन देता है। यह तथ्य कि, हर किसी के लिए यह दर्शाता है यह देखते हुए कि सघन है।

यह संपत्ति यह दर्शाती है तब भी एक स्थलाकृतिक रूप से बंद उपस्थान है जब नहीं है।

ज्यामितीय व्याख्या

यदि और हिल्बर्ट स्थान हैं, तो आंतरिक उत्पाद

के साथ एक हिल्बर्ट स्थान है, जहां और हैं।

मान लीजिए सिंपलेक्टिक मैपिंग है, यानी । तो का ग्राफ़ , का आयतीय पूरक है।

अभिअभिकथन समतुल्य

और

से अनुसरण करता है।

परिणाम

*बंद है

एक संकारक बंद करने योग्य है यदि ग्राफ़ , में सांस्थितिक संवरण है। सहायक संचालिका का ग्राफ़ एक उप-स्थान का आयतीय पूरक है, और इसलिए बंद है।

* सघन रूप से परिभाषित है ⇔ A बंद करने योग्य है

यदि ग्राफ़ का सांस्थितिक संवरण किसी फलन का ग्राफ़ है तो एक संकारक बंद हो सकता है। चूंकि एक (बंद) रैखिक उपस्थान है, इसलिए "फलन" शब्द को "रैखिक संकारक" से बदला जा सकता है। इसी कारण से, बंद करने योग्य है यदि और केवल यदि जब तक है।

सहायक को सघन रूप से परिभाषित किया गया है यदि और केवल यदि बंद करने योग्य है। यह इस तथ्य से निकलता है कि, प्रत्येक के लिए,

जो, बदले में, समतुल्यताओं की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:

** = एcl

समापन संकारक का वह संकारक है जिसका ग्राफ़ है यदि यह ग्राफ़ किसी फलन का प्रतिनिधित्व करता है। जैसा कि ऊपर बताया गया है, 'फलन "शब्द को "संकारक" से बदला जा सकता है। आगे, मतलब है कि

इसे सिद्ध करने के लिए, का अवलोकन करें अर्थात हरएक के लिए। वास्तव में,

विशेष रूप से, प्रत्येक के लिए और प्रत्येक उपस्थान तब भी है अगर और केवल अगर है। इस प्रकार, और प्रतिस्थापित करने पर प्राप्त होता है।

* = (एcl)*

एक बंद करने योग्य संकारक के लिए जिसका अर्थ है कि । वास्तव में,

विपरीतउदाहरण जहां सहायक को सघन रूप से परिभाषित नहीं किया गया है

मान लीजिए जहाँ रैखिक माप है। एक मापने योग्य, परिबद्ध, गैर-समान रूप से शून्य फलन चुनें और चुनें। परिभाषित करें

यह इस प्रकार है कि उपस्थान में सघन समर्थन के साथ सभी फलनश सम्‍मिलित हैं। चूँकि सघन रूप से परिभाषित किया गया है। प्रत्येक और के लिए

इस प्रकार, । सहायक संचालिका की परिभाषा के लिए इसकी आवश्यकता है कि । चूँकि यह तभी संभव है जब । इस कारण से, । इसलिए, सघन रूप से परिभाषित नहीं है और पर समान रूप से शून्य है। परिणामस्वरूप, बंद करने योग्य नहीं है और इसका कोई दूसरा सहायक नहीं है।

हर्मिटियन संकारक

एक परिबद्ध संचालिका A : HH को हर्मिटियन या स्व-सहायक संचालिका कहा जाता है यदि , जो के समतुल्य है।[6]

कुछ अर्थों में, ये संकारक वास्तविक संख्याओं की भूमिका निभाते हैं (अपने स्वयं के जटिल संयुग्म के बराबर होते हैं) और एक वास्तविक सदिश स्थल बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मूल्यवान अवलोकन योग्य वस्तुओं के प्रतिरूप के रूप में कार्य करते हैं। संपूर्ण उपचार के लिए स्व-सहायक संकारकों पर लेख देखें।

प्रतिरेखीय संकारकों के सहायक

एक प्रतिरेखीय मानचित्र के लिए जटिल संयुग्मन की क्षतिपूर्ति के लिए सहायक की परिभाषा को समायोजित करने की आवश्यकता है। जटिल हिल्बर्ट स्थान H पर प्रतिरेखीय संकारक A का सहायक संकारक एक प्रतिरेखीय संकारक A : HH है, जिसकी संपत्ति

है।

अन्य सहायक

समीकरण

औपचारिक रूप से श्रेणी सिद्धांत में सहायक प्रकार्यक के जोड़े के परिभाषित गुणों के समान है, और यहीं से सहायक संचालिका को अपना नाम मिला है।

यह भी देखें

संदर्भ

  1. Miller, David A. B. (2008). वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी. Cambridge University Press. pp. 262, 280.
  2. 2.0 2.1 2.2 2.3 Reed & Simon 2003, pp. 186–187; Rudin 1991, §12.9
  3. See unbounded operator for details.
  4. Reed & Simon 2003, p. 252; Rudin 1991, §13.1
  5. Rudin 1991, Thm 13.2
  6. Reed & Simon 2003, pp. 187; Rudin 1991, §12.11