स्व-अनुकूली तंत्र

From Vigyanwiki
कोडेक्स अटलांटिकस में लियोनार्डो दा विंची द्वारा प्रस्तावित आस्फालन पंख तंत्र।

स्व-अनुकूली तंत्र, जिन्हें कभी-कभी अभियांत्रिकी में अनुकूली तंत्र भी कहा जाता है, एक ऐसा अल्पक्रिया तंत्र (इंजीनियरिंग) हैं जो अपने पर्यावरण के अनुकूल हो सकते हैं। अतः इस प्रकार के तंत्र के सबसे प्रसिद्ध उदाहरणों में से हैं जैसे कि कम सक्रिय उंगलियां, ग्रिपर और रोबोटिक हाथ आदि। मानक कम क्रियान्वित तंत्रों के विपरीत जहां गति को प्रणाली की गतिशीलता (यांत्रिकी) द्वारा नियंत्रित किया जाता है, स्व-अनुकूली तंत्र की गति सामान्यतः तंत्र में चतुराई से स्थित अनुपालन तंत्र अवयवों द्वारा बाधित होती है।

परिभाषा

इस प्रकार से कम सक्रिय तंत्र में स्वतंत्रता की डिग्री (यांत्रिकी) की संख्या की तुलना में प्रेरक की संख्या कम होती है। द्वि-आयामी समतल (ज्यामिति) में, एक तंत्र में अधिकतम तीन डीओएफ (दो अनुवाद, घूर्णन) तक हो सकते हैं, और त्रि-आयामी आयामी यूक्लिडियन समष्टि में, छह (तीन अनुवाद, तीन घूर्णन) तक हो सकते हैं। अतः स्व-अनुकूली तंत्र की स्थिति में, प्रेरक की कमी की प्रतिकारिता निष्क्रिय अवयवों द्वारा की जाती है जो प्रणाली की गति को बाधित करते हैं। स्प्रिंग (उपकरण) ऐसे अवयवों का स्पष्ट उदाहरण है, परंतु अन्य का उपयोग तंत्र के प्रकार के आधार पर किया जा सकता है।

इस प्रकार से स्व-अनुकूली तंत्र का सबसे प्रथम उदाहरण कोडेक्स अटलांटिकस में लियोनार्डो दा विंची द्वारा प्रस्तावित आस्फालन पंख है।[1]

क्रियाहीन हाथ

ग्रंथन-संचालित अंगुली की स्व-अनुकूली गति।

अतः पहली सामान्यतः ज्ञात कम सक्रिय अंगुली मृदु-ग्रिपर थी जिसे 1970 के दशक के अंत में शिगियो हिरोसे द्वारा डिजाइन किया गया था।[2] इस प्रकार से स्व-अनुकूली हाथों में उपयोग किए जाने वाले सबसे सामान्य प्रकार के संचरण तंत्र ग्रंथन और कंडरा हैं।[3]

काइनेटोस्टैटिक्स

अतः कम सक्रिय उंगलियों और हाथों का विश्लेषण सामान्यतः प्रणाली की गतिशीलता के अतिरिक्त उनके किनेटोस्टैटिक्स (नगण्य गतिज ऊर्जा, गति में तंत्र का स्थैतिक विश्लेषण) के संबंध में किया जाता है, क्योंकि इन प्रणालियों की गतिज ऊर्जा सामान्यतः संग्रहीत संभावित ऊर्जा की तुलना में नगण्य होती है। इस प्रकार से निष्क्रिय अवयव असंचालित अंगुली की प्रत्येक अंगुलास्थि द्वारा लगाए गए बलों की गणना निम्नलिखित अभिव्यक्ति के साथ की जा सकती है:

जहां F लागू बलों से बना सदिश है, J जैकोबियन आव्यूह और अंगुली का निर्धारक, T* संचरण आव्यूह है, और T निर्मित बलाघूर्ण सदिश (प्रेरक और निष्क्रिय अवयव) है।[4]

अनुप्रयोग

अतः इस प्रकार से एक स्व-अनुकूली रोबोटिक हाथ, SARAH (स्व-अनुकूली रोबोट सहायक हाथ), डेक्सट्रे के टूलबॉक्स का भाग बनने के लिए डिजाइन और निर्मित किया गया था। डेक्सट्रे रोबोटिक रिमोट प्रकलक है जो अंतर्राष्ट्रीय अंतरिक्ष स्टेशन पर मोबाइल सर्विसिंग प्रणाली या कनाडर्म-2 के अंत में रहता है।[5] इस प्रकार से येल ओपनहैंड ओपन सोर्स स्व-अनुकूली तंत्र का उदाहरण है जिसे ऑनलाइन पाया जा सकता है।[6] अतः कुछ कंपनियाँ औद्योगिक उद्देश्यों के लिए स्व-अनुकूली हाथ भी बेच रही हैं।[7] कृत्रिम स्व-अनुकूली हाथों के लिए और अनुप्रयोग है। एक ज्ञात उदाहरण स्प्रिंग (प्राकृतिक पकड़ को पुनर्स्थापित करने के लिए स्व-अनुकूली कृत्रिम अंग) हाथ है।[8]

अन्य उदाहरण

इस प्रकार से स्व-अनुकूली तंत्र का उपयोग अन्य अनुप्रयोगों के लिए किया जा सकता है, जैसे कि चलने वाले रोबोट[9][10]

अतः इस प्रकार से अनुपालन तंत्र स्व-अनुकूली तंत्र का एक और उदाहरण है, जहां निष्क्रिय अवयव और संचरण तंत्र एकल एकाधार कक्ष हैं।[11]

संदर्भ

  1. Birglen, Lionel. "From flapping wings to underactuated fingers and beyond: a broad look to self-adaptive mechanisms" (PDF).
  2. Hirose, Shigeo; Umetani, Yoji (1978-01-01). "बहुमुखी रोबोट हाथ के लिए सॉफ्ट ग्रिपर का विकास". Mechanism and Machine Theory (in English). 13 (3): 351–359. doi:10.1016/0094-114X(78)90059-9. ISSN 0094-114X.
  3. Underactuated Robotic Hands | Lionel Birglen | Springer (in English).
  4. "कम सक्रिय उंगलियों की कठोरता का विश्लेषण और प्रोप्रियोसेप्टिव टैक्टाइल सेंसिंग के लिए इसका अनुप्रयोग - आईईईई जर्नल और पत्रिका" (in English). doi:10.1109/TMECH.2016.2589546. S2CID 27465071. {{cite journal}}: Cite journal requires |journal= (help)
  5. "बडी सिस्टम". Popular Science (in English). Retrieved 2018-08-14.
  6. "Yale OpenHand Project".
  7. "Robotiq: Adaptive Grippers".
  8. Pons, José L. (2008). Wearable Robots: Biomechatronic Exoskeletons. John Wiley & Sons. pp. 269–278. ISBN 978-0470987650.
  9. "ट्रिगर अनुरूप तत्व का उपयोग करके स्व-अनुकूली रोबोटिक पैर का डिज़ाइन - आईईईई जर्नल और पत्रिका" (in English). doi:10.1109/LRA.2017.2670678. S2CID 9935863. {{cite journal}}: Cite journal requires |journal= (help)
  10. ICI.Radio-Canada.ca, Zone Science -. "Perfectionner la démarche du robot de demain". Radio-Canada.ca (in français). Retrieved 2018-08-15.
  11. Howell, Larry L. (2001-08-03). अनुरूप तंत्र (in English). John Wiley & Sons. ISBN 9780471384786.