स्प्लिट-स्टेप विधि

From Vigyanwiki

संख्यात्मक विश्लेषण में, स्प्लिट-स्टेप (फूरियर) विधि एक स्यूडो-वर्णक्रमीय संख्यात्मक विधि है जिसका उपयोग नॉनलाइनियर श्रोडिंगर समीकरण जैसे नॉनलाइनियर आंशिक अंतर समीकरणों का समाधान करने के लिए किया जाता है। यह नाम दो कारणों से उत्पन्न हुआ है। सबसे पहले, विधि छोटे चरणों में समाधान की गणना करने और रैखिक और गैर-रेखीय चरणों को अलग-अलग करने पर निर्भर करती है (नीचे देखें)। दूसरा, फूरियर को आगे और पीछे बदलना आवश्यक है क्योंकि रैखिक चरण आवृत्ति डोमेन में बनाया जाता है जबकि गैर-रेखीय चरण समय डोमेन में बनाया जाता है।

इस विधि के उपयोग का एक उदाहरण ऑप्टिकल फाइबर में प्रकाश पल्स प्रसार के क्षेत्र में है, जहां रैखिक और गैर-रेखीय तंत्र की बातचीत से सामान्य विश्लेषणात्मक समाधान ढूंढना मुश्किल हो जाता है। चूँकि, स्प्लिट-स्टेप विधि समस्या का संख्यात्मक समाधान प्रदान करती है। स्प्लिट-स्टेप विधि का एक और अनुप्रयोग जो 2010 के बाद से बहुत अधिक लोकप्रियता प्राप्त कर रहा है वह ऑप्टिकल माइक्रोरेसोनेटर में केर आवृत्ति काम्ब गतिशीलता का अनुकरण है।[1][2][3] उचित संख्यात्मक लागत के साथ लुगियाटो-लेफ़ेवर समीकरण के कार्यान्वयन की सापेक्ष आसानी, प्रयोगात्मक स्पेक्ट्रा को पुन: प्रस्तुत करने में इसकी सफलता के साथ-साथ इन माइक्रोरेसोनेटर में सॉलिटॉन व्यवहार की भविष्यवाणी ने विधि को बहुत लोकप्रिय बना दिया है।

विधि का विवरण

उदाहरण के लिए, अरेखीय श्रोडिंगर समीकरण पर विचार करें[4]

जहां स्थानिक स्थिति पर समय में पल्स लिफाफे का वर्णन करता है। समीकरण को एक रैखिक भाग में विभाजित किया जा सकता है,

और अरैखिक भाग,

रैखिक और अरेखीय दोनों भागों में विश्लेषणात्मक समाधान होते हैं, किन्तु दोनों भागों वाले अरेखीय श्रोडिंगर समीकरण में कोई सामान्य विश्लेषणात्मक समाधान नहीं होता है।

चूँकि, यदि के साथ केवल एक 'छोटा' चरण उठाया जाता है, तो केवल 'छोटी' संख्यात्मक त्रुटि के साथ दोनों भागों को अलग-अलग माना जा सकता है। इसलिए कोई भी पहले विश्लेषणात्मक समाधान का उपयोग करके एक छोटा गैर-रैखिक चरण

ले सकता है। ध्यान दें कि यह अंसत्ज़ लगाता है और इसके परिणामस्वरूप लगाता है।

प्रसार चरण में आवृत्ति डोमेन में विश्लेषणात्मक समाधान होता है, इसलिए फूरियर को का उपयोग करके रूपांतरित करना सबसे पहले आवश्यक है

,

जहाँ नाड़ी की केंद्र आवृत्ति है।

यह दिखाया जा सकता है कि फूरियर ट्रांसफॉर्म की उपरोक्त परिभाषा का उपयोग करके, रैखिक चरण का विश्लेषणात्मक समाधान, गैर-रेखीय चरण के लिए आवृत्ति डोमेन समाधान के साथ परिवर्तित किया जाता है।

का व्युत्क्रम फूरियर रूपांतरण लेने से प्राप्त होता है; इस प्रकार पल्स को एक छोटे चरण में प्रसारित किया गया है। उपरोक्त बार दोहराकर, पल्स को की लंबाई में प्रसारित किया जा सकता है।

ऊपर दिखाया गया है कि किसी समाधान को अंतरिक्ष में आगे बढ़ाने के लिए विधि का उपयोग कैसे किया जाए; चूँकि, कई भौतिकी अनुप्रयोगों, जैसे कि कण का वर्णन करने वाले तरंग पैकेट के विकास का अध्ययन, के लिए अंतरिक्ष के अतिरिक्त समय में समाधान को आगे बढ़ाने की आवश्यकता होती है। गैर-रैखिक श्रोडिंगर समीकरण, जब तरंग फ़ंक्शन के समय विकास को नियंत्रित करने के लिए उपयोग किया जाता है, तो रूप लेता है

जहां स्थिति और समय पर तरंग फ़ंक्शन का वर्णन करता है। ध्यान दें कि

और , और वह कण का द्रव्यमान है और से अधिक प्लैंक स्थिरांक है।

इस समीकरण का औपचारिक समाधान जटिल घातांक है, इसलिए हमारे पास वह है

.

तब से और ऑपरेटर हैं, वे सामान्य रूप से आवागमन नहीं करते हैं। चूँकि, बेकर-हॉसडॉर्फ फॉर्मूला यह दिखाने के लिए लागू किया जा सकता है कि यदि हम एक छोटा किन्तु सीमित समय चरण ले रहे हैं, तो उन्हें इस प्रकार मानने से त्रुटि क्रम की होगी। इसलिए हम लिख सकते हैं

.

से जुड़े इस समीकरण के भाग की गणना सीधे समय पर तरंग फ़ंक्शन का उपयोग करके की जा सकती है, किन्तु से जुड़े घातांक की गणना करने के लिए हम इस तथ्य का उपयोग करते हैं कि आवृत्ति स्थान में, आंशिक व्युत्पन्न ऑपरेटर को के लिए को प्रतिस्थापित करके एक संख्या में परिवर्तित किया जा सकता है। जहां आवृत्ति (या अधिक ठीक से, तरंग संख्या है, क्योंकि हम एक स्थानिक चर के साथ काम कर रहे हैं और इस प्रकार स्थानिक आवृत्तियों के स्थान में परिवर्तित हो रहे हैं - अर्थात् तरंग संख्या) जो कुछ भी संचालित किया जा रहा है उसके फूरियर रूपांतरण से जुड़ा हुआ है। इस प्रकार, हम फूरियर रूपांतरण लेते हैं

,

संबंधित तरंग संख्या पुनर्प्राप्त करें, मात्रा की गणना करें

,

और इसका उपयोग नीचे दिए गए आवृत्ति स्थान में और से जुड़े जटिल घातांक के उत्पाद को खोजने के लिए करें:

,

जहाँ फूरियर रूपांतरण को दर्शाता है। फिर हम व्युत्क्रम फूरियर इस अभिव्यक्ति को भौतिक स्थान में अंतिम परिणाम खोजने के लिए रूपांतरित करते हैं, जिससे अंतिम अभिव्यक्ति प्राप्त होती है

.

इस पद्धति का एक रूपांतर सममितीय विभाजन-चरण फूरियर विधि है, जो एक ऑपरेटर का उपयोग करके आधा समय चरण उठाती है, फिर केवल दूसरे के साथ एक पूर्णकालिक चरण उठाती है, और फिर केवल पहले के साथ फिर से दूसरा आधा समय चरण उठाती है। यह विधि सामान्य स्प्लिट-स्टेप फूरियर विधि में सुधार है क्योंकि इसकी त्रुटि समय चरण के लिए क्रम की है। इस एल्गोरिदम के फूरियर ट्रांसफॉर्म की गणना फास्ट फूरियर ट्रांसफॉर्म (एफएफटी) का उपयोग करके अपेक्षाकृत तेजी से की जा सकती है। इसलिए स्प्लिट-स्टेप फूरियर विधि विशिष्ट परिमित अंतर विधियों की तुलना में बहुत तेज़ हो सकती है।[5]


संदर्भ

  1. Erkintalo, Miro; Sylvestre, Thibaut; Randle, Hamish G.; Coen, Stéphane (2013-01-01). "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model". Optics Letters (in English). 38 (1): 37–39. arXiv:1211.1697. Bibcode:2013OptL...38...37C. doi:10.1364/OL.38.000037. ISSN 1539-4794. PMID 23282830. S2CID 7248349.
  2. Maleki, L.; Seidel, D.; Ilchenko, V. S.; Liang, W.; Savchenkov, A. A.; Matsko, A. B. (2011-08-01). "मोड-लॉक केर फ्रीक्वेंसी कॉम्ब्स". Optics Letters (in English). 36 (15): 2845–2847. Bibcode:2011OptL...36.2845M. doi:10.1364/OL.36.002845. ISSN 1539-4794. PMID 21808332.
  3. Hansson, Tobias; Wabnitz, Stefan (2016). "Dynamics of microresonator frequency comb generation: models and stability" (PDF). Nanophotonics. 5 (2): 231–243. Bibcode:2016Nanop...5...12H. doi:10.1515/nanoph-2016-0012. ISSN 2192-8606.
  4. Agrawal, Govind P. (2001). नॉनलीनियर फाइबर ऑप्टिक्स (3rd ed.). San Diego, CA, USA: Academic Press. ISBN 0-12-045143-3.
  5. T. R. Taha and M. J. Ablowitz (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation". J. Comput. Phys. 55 (2): 203–230. Bibcode:1984JCoPh..55..203T. doi:10.1016/0021-9991(84)90003-2.


बाहरी सन्दर्भ

श्रेणी:संख्यात्मक अंतर समीकरण श्रेणी:फाइबर ऑप्टिक्स