स्प्लाईन (गणित)

From Vigyanwiki
1/3 और 2/3 पर सिंगल नॉट C2 पैरामीट्रिक सातत्यता के साथ तीन घन बहुपदों की स्प्लाईन स्थापित करते हैं। अंतराल के दोनों सिरों पर ट्रिपल नॉट्स सुनिश्चित करती हैं कि वक्र अंत बिंदुओं को प्रक्षेपित करता है

गणित में, स्प्लाईन एक विशेष प्रकार का फलन है जिसे बहुपदों द्वारा खंडशः परिभाषित किया जाता है। अंतर्वेशी (इंटरपोलेटिंग) समस्याओं में, स्प्लाईन अंतर्वेशन (इंटरपोलेशन) को प्रायः बहुपद अंतर्वेशन के लिए अधिमानित किया जाता है क्योंकि यह समान परिणाम प्रदान करता है, यहाँ तक कि निम्न कोटि बहुपद का उपयोग करते समय भी, उच्च कोटि के लिए रँगे की परिघटना से परिहरणित किया जाता है।

संगणक एडेड अभिकल्पना और संगणक ग्राफिक्स के संगणक विज्ञान उप-क्षेत्रों में, स्प्लाईन शब्द अधिक बार एक खंडशः बहुपद (पैरामीट्रिक) वक्र को संदर्भित करता है। इन उप-क्षेत्रों में स्प्लाईन प्रचलित वक्र हैं क्योंकि उनके निर्माण की सहजता, उनकी सुगमता और मूल्यांकन की यथार्थता, और वक्र समंजन और संवादात्मक वक्र अभिकल्पना के माध्यम से अनुमानित जटिल आकार प्रकार करने की क्षमता होती है।

स्प्लाईन शब्‍द नम्य स्प्लाईन उपकरणों से आता है जिसका उपयोग पोतनिर्माता (शिपबिल्डर्स) और नक्शानवीसों (ड्राफ्ट्समैन) द्वारा निष्कोण (स्मूथ) आकृति बनाने के लिए किया जाता है।

परिचय

"स्प्लाईन" शब्द का उपयोग फलनों की एक विस्तृत श्रेणी को संदर्भित करने के लिए किया जाता है जो डेटा अंतर्वेशन और/या स्मूथिंग की आवश्यकता वाले अनुप्रयोगों में उपयोग किए जाते हैं। डेटा एक-विमीय या बहु-विमीय हो सकता है। अंतर्वेशन के लिए स्प्लाईन फलन सामान्य रूप से अंतर्वेशन बाध्यताओं (कंस्ट्रेंट्स) के अधीन अपरिष्कृतता के उपयुक्त उपायों (उदाहरण के लिए अभिन्न वर्ग वक्रता) के न्यूनतमीकारक के रूप में निर्धारित किए जाते हैं। स्मूथिंग स्प्लाईन को अंतर्वेशन स्प्लाईन के सामान्यीकरण के रूप में देखा जा सकता है जहाँ फलन प्रेक्षित डेटा और अपरिष्कृतता माप पर औसत वर्ग सन्निकटन त्रुटि के भारित संयोजन को कम करने के लिए निर्धारित किए जाते हैं। अपरिष्कृतता की माप की कई अर्थपूर्ण परिभाषाओं के लिए, स्प्लाईन फलन प्रकृति में परिमित विमीय पाए जाते हैं, जो संगणना और निरूपण में उनकी उपयोगिता का प्राथमिक कारण है। इस खंड के शेष भागो के लिए, हम पूरी तरह से एक-विमीय, बहुपद विभाजन पर ध्यान केंद्रित करते हैं और इस प्रतिबंधित अर्थ में "स्प्लाईन" शब्द का उपयोग करते हैं।

परिभाषा

हम अपनी चर्चा को एक चर में बहुपदों तक सीमित रखते हुए शुरू करते हैं। इस स्थिति में, स्प्लाईन एक खंडशः बहुपद फलन है। यह फलन, इसे S से निरूपित किया जाता है, इनके मान अंतराल [a,b] से लिए जाते है और उन्हें वास्तविक संख्याओं के समुच्चय पर प्रतिचित्रित करता है,

हम चाहते हैं कि S को खंडश: के अनुसार परिभाषित किया जाए। इसे पूरा करने के लिए, अंतराल [a,b] को k क्रमित से समाविष्ट किया जाना चाहिए, असंयुक्‍त उप-अंतराल,

[a,b] के इन k "खंडों" में से प्रत्येक पर, हम एक बहुपद को परिभाषित करना चाहते हैं, इसे Pi से निरूपित किया जाता है।

.

[a,b] के iवें उपअंतराल पर, S को Pi द्वारा परिभाषित किया गया है,

दिए गए k+1 बिंदु ti को नॉट कहा जाता है। सदिश को स्प्लाईन के लिए नॉट सदिश कहा जाता है। यदि नॉट्स को अंतराल [a,b] में समान रूप से वितरित किया जाता है, अतः स्प्लाईन को एकसमान कहा जाता है, अन्यथा हम कहते हैं कि यह असमान है।

यदि बहुपद के खंड Pi में प्रत्येक की कोटि अधिक से अधिक n होती है, अतः स्प्लाईन को कोटि (या कोटि n+1) कहा जाता है।

यदि ti के पड़ोस में है, तो ti पर स्प्लाईन स्मूथ फलन (कम से कम) का कहा जाता है। अर्थात्, ti पर दो बहुपद खंड Pi-1 और Pi, 0 कोटि (फलन मान) के व्युत्पन्न से क्रम ri (दूसरे शब्दों में, दो आसन्न बहुपद खंड अधिक से अधिक n - ri की स्मूथनेस की हानि से जुड़ते हैं) के व्युत्पन्न के माध्यम से साझा व्युत्पन्न मान साझा करते हैं।

.

सदिश इस प्रकार है की स्प्लाईन में के लिए ti पर की स्मूथनेस होती है, इसे स्प्लाईन के लिए एक स्मूथनेस सदिश कहा जाता है।

नॉट सदिश , n कोटि, और के लिए एक स्मूथनेस सदिश को देखते हुए, कोई भी कोटि के सभी स्प्लाईन के समुच्चय पर विचार कर सकता है जिसमें नॉट सदिश और स्मूथनेस सदिश हो। दो फलनों को जोड़ने (बिंदुवार जोड़) और फलनों के वास्तविक गुणकों को लेने के संचालन से सुसज्जित, यह समुच्चय एक वास्तविक सदिश समष्टि बन जाता है। इस स्प्लाईन समष्टि को सामान्यतः से दर्शाया जाता है।

यह एक नॉट सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर सातत्य हानि को उस बिंदु पर स्थित कई विविध नॉट्स का परिणाम माना जा सकता है, और एक स्प्लाईन प्रकार को इसकी कोटि n और इसके विस्तारित नॉट सदिश द्वारा पूरी तरह से चित्रित किया जा सकता है।

जहाँ

यह एक नॉट सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर सातत्य हानि को उस बिंदु पर स्थित कई विविध नॉट्स का परिणाम माना जा सकता है, और एक स्प्लाईन प्रकार को इसकी कोटि n और इसके विस्तारित नॉट सदिश द्वारा पूरी तरह से चित्रित किया जा सकता है

जहाँ ti को के लिए ji बार पुनरावर्तित किया जाता है।

अंतराल पर पैरामीट्रिक वक्र [a,b]

एक स्प्लाईन वक्र है यदि X और Y दोनों उस अंतराल पर समान विस्तारित नॉट वाले सदिशों के साथ समान कोटि के स्प्लाईन फलन हैं।

उदाहरण

मान लें कि अंतराल [a,b] [0,3] है और उप-अंतराल [0,1], [1,2] और [2,3] हैं। मान लीजिए कि बहुपद के खंड की कोटि 2 हैं, और [0,1] और [1,2] पर खंड मूल्य और पहले व्युत्पन्न (t=1 पर) में सम्मिलित होना चाहिए जबकि [1,2] और [2,3] पर खंड केवल मूल्य (t = 2 पर) में सम्मिलित हो जाते हैं। यह एक प्रकार की स्प्लाईन S(t) को परिभाषित करेगा जिसके लिए

उसी प्रकार की इकाई होगी, और साथ ही, और साथ ही

उसी प्रकार की इकाई होगी। (ध्यान दें: जबकि बहुपद का खंड 2t द्विघात नहीं है, फिर भी परिणाम को द्विघात स्प्लाईन कहा जाता है। यह दर्शाता है कि एक स्प्लाईन की कोटि उसके बहुपद भागों की अधिकतम कोटि होती है।) इस प्रकार के स्प्लाईन के लिए विस्तारित नॉट सदिश (0, 1, 2, 2, 3) होगा।

सरलतम स्प्लाईन की कोटि 0 होती है। इसे सोपानी फलन (स्टेप फंक्शन) भी कहा जाता है। अगली सबसे साधारण स्लाइन की कोटि 1 है। इसे रैखिक स्प्लाईन भी कहा जाता है। समतल में एक संवृत रैखिक स्प्लाईन (अर्थात, पहली नॉट और अंतिम समान हैं) केवल एक बहुभुज होता है।

एक सामान्य स्प्लाईन सातत्यता C2 के साथ कोटि 3 की प्राकृतिक घनाकार स्प्लाईन है। "प्राकृतिक" शब्द का अर्थ है कि स्प्लाईन बहुपदों का दूसरा व्युत्पन्न प्रक्षेप के अंतराल के अंत बिंदुओं पर शून्य के बराबर समुच्चय किया गया है।

यह स्प्लाईन को अंतराल के बाहर एक सीधी रेखा होने के लिए मजबूर करता है, जबकि इसकी स्मूथनेस को बाधित नहीं करता है।

प्राकृतिक घनाकार स्प्लाईन की गणना के लिए एल्गोरिद्म

घनाकार स्प्लाईन निम्नलिखित रूप में होता है।
निर्देशांक के दिए गए समुच्चय को हम के समुच्चय को खोजना चाहते हैं, के लिए को विभाजित करते हैं।

  • .

आइए हम एक घनाकार स्प्लाईन को 5-टपल के रूप में परिभाषित करते हैं जहाँ और , पहले दिखाए गए रूप में गुणांक के अनुरूप हैं और के बराबर है।

प्राकृतिक घनाकार स्प्लाईन संगणना के लिए एल्गोरिद्म:

इनपुट: के साथ निर्देशांक का समुच्चय

आउटपुट: समुच्चय स्प्लाईन जो n 5-टुपल्स से बना है।

  1. माप n + 1 और के लिए एक नई सरणी बनाएँ समुच्चय
  2. n माप की नई सरणियाँ b और d बनाएँ।
  3. माप n और के लिए नई सरणी h बनाएँ समुच्चय
  4. माप n और के लिए नई सरणी α बनाएँ समुच्चय
  5. नई सरणियाँ c, l, μ, और z प्रत्येक माप बनाएँ
  6. समुच्चय
  7. के लिये
    1. समुच्चय
    2. समुच्चय .
    3. समुच्चय
  8. समुच्चय
  9. के लिये
    1. समुच्चय
    2. समुच्चय
    3. समुच्चय
  10. नई समुच्चय स्प्लाईन बनाएं और इसे आउटपुट_समुच्चय कहें। इसे n splines S से आबाद करें।
  11. के लिये
    1. समुच्चय Si,a = ai
    2. समुच्चय Si,b = bi
    3. समुच्चय Si,c = ci
    4. समुच्चय एSi,d = di
    5. समुच्चय Si,x = xi
  12. आउटपुट आउटपुट_समुच्चय

टिप्पणियाँ

यह पूछा जा सकता है कि एक नॉट सदिश में n एकाधिक नॉट्स से अधिक का क्या अर्थ है, क्योंकि इससे सातत्यता बनी रहेगी

इस उच्च बहुलता के स्थान पर। परिपाटी के अनुसार, ऐसी कोई भी स्थिति दो निकटस्थ बहुपद खंडों के बीच एक साधारण विच्छिन्नता को इंगित करती है। इसका अर्थ यह है कि यदि एक विस्तारित नॉट सदिश में एक नॉट ti, n + 1 बार से अधिक दिखाई देती है, तो इसके सभी उदाहरण (n + 1)वें से अधिक होने पर सभी गुणकों के बाद से स्प्लाईन के भूमिका को बदले बिना हटाया जा सकता है। n + 1, n + 2, n + 3, इत्यादि का एक ही अर्थ है। यह सामान्यतः माना जाता है कि किसी भी प्रकार की स्प्लाईन को परिभाषित करने वाले किसी भी नॉट सदिश का इस प्रकार चयन किया जा सकता है।

संख्यात्मक विश्लेषण में उपयोग की जाने वाली कोटि n के पारम्परिक स्प्लाईन प्रकार में सातत्यता होती है

जिसका अर्थ है कि प्रत्येक दो आसन्न बहुपद खंड उनके मान में मिलते हैं और प्रत्येक नॉट पर पहले n - 1 डेरिवेटिव। गणितीय स्प्लाईन जो चपटी स्प्लाईन को सबसे नज़दीकी से प्रतिरूपित करता है, एक घन (n = 3), दो बार लगातार भिन्न होने योग्य (C2), प्राकृतिक स्प्लाईन है, जो इस शास्त्रीय प्रकार का एक स्प्लाईन है जिसमें समापन बिंदु a और b पर लगाए गए अतिरिक्त शर्तें हैं।

एक अन्य प्रकार की स्प्लाईन जो ग्राफिक्स में बहुत अधिक उपयोग की जाती है, उदाहरण के लिए एडोब सिस्टम्स से एडोब इलस्ट्रेटर जैसे ड्राइंग प्रोग्राम में, ऐसे खंड होते हैं जो घनाकार होते हैं लेकिन सातत्यता केवल अधिकतम होती है

इस स्प्लाईन प्रकार का उपयोग पोस्टस्क्रिप्ट के साथ-साथ कुछ संगणक टाइपोग्राफिक फोंट की परिभाषा में भी किया जाता है।

कई संगणक-एडेड अभिकल्पना सिस्टम जो उच्च-अंत ग्राफिक्स और एनीमेशन के लिए अभिकल्पना किए गए हैं, विस्तारित नॉट सदिश का उपयोग करते हैं, उदाहरण के लिए ऑटोडेस्क माया। संगणक-एडेड डिजाइन सिस्टम प्रायः एक गैर-समान तर्कसंगत बी-स्प्लाईन (एनयूआरबीएस) के रूप में जाने वाली एक स्प्लाईन की एक विस्तारित अवधारणा का उपयोग करते हैं।

यदि किसी फलन या भौतिक वस्तु से नमूनाकृत डेटा उपलब्ध है, तो स्प्लाईन अंतर्वेशन एक स्प्लाईन बनाने की एक विधि है जो उस डेटा का अनुमान लगाता है।

C2 अंतर्वेशी घनाकार स्प्लाईन के लिए सामान्य व्यंजक

प्राकृतिक स्थिति के साथ एक बिंदु x पर iवें C2 प्रक्षेपित घन स्प्लाईन के लिए सामान्य अभिव्यक्ति सूत्र का उपयोग करके प्राप्त किया जा सकता है

जहाँ

  • iवें नॉट पर द्वितीय व्युत्पन्न के मान हैं।
  • iवें नॉट पर फलन के मान हैं।

निरूपण और नाम

किसी दिए गए अंतराल के लिए [a,b] और उस अंतराल पर दिए गए विस्तारित नॉट सदिश, कोटि n के स्प्लाईन एक सदिश समष्टि बनाते हैं। संक्षेप में इसका अर्थ यह है कि किसी दिए गए प्रकार के किसी भी दो स्प्लाईन को जोड़ने से उस दिए गए प्रकार के स्प्लाईन का उत्पादन होता है, और किसी दिए गए प्रकार के स्प्लाईन को किसी भी स्थिरांक से गुणा करने से उस दिए गए प्रकार का एक स्प्लाईन बनता है। एक निश्चित प्रकार के सभी स्प्लाईन युक्त स्थान का आयाम विस्तारित नॉट सदिश से गिना जा सकता है:

आयाम कोटि के योग के साथ-साथ गुणकों के बराबर है

यदि किसी प्रकार के स्प्लाईन पर अतिरिक्त रैखिक शर्तें लागू होती हैं, तो परिणामी स्प्लाईन एक उपसमष्टि में होगी। उदाहरण के लिए, सभी प्राकृतिक घनाकार स्प्लाईनों का स्थान, सभी घनाकार C2 स्प्लाईनों के स्थान का एक उपसमष्टि है।

स्प्लाईन का साहित्य विशेष प्रकार के स्प्लाईन के नामों से परिपूर्ण है। इन नामों को जोड़ा गया है:

  • स्प्लाईन को दर्शाने के लिए बनाए गए विकल्प, उदाहरण के लिए:
    • संपूर्ण स्प्लाईन के लिए बेसिस फलन का उपयोग करना (हमें बी-स्प्लाईन नाम देना)
    • प्रत्येक बहुपद खंड का प्रतिनिधित्व करने के लिए पियरे बेज़ियर द्वारा नियोजित बर्नस्टीन बहुपदों का उपयोग करना (हमें नाम बेज़ियर स्प्लाईन देना)
  • उदाहरण के लिए, विस्तारित नॉट सदिश बनाने में किए गए विकल्प:
    • Cn-1 सातत्यता के लिए सिंगल नॉट्स का उपयोग करना और इन नॉट्स को समान रूप से [a,b] पर रखना (हमें एक समान स्प्लाईन देना)
    • अंतराल पर बिना किसी प्रतिबंध के नॉट्स का उपयोग करना (हमें असमान स्प्लाईन देना)
  • स्प्लाईन पर लगाई गई कोई विशेष शर्तें, उदाहरण के लिए:
    • ए और बी पर शून्य सेकेंड डेरिवेटिव लागू करना (हमें प्राकृतिक स्प्लाईन देना)
    • आवश्यकता है कि दिए गए डेटा मान स्प्लाईन पर हों (हमें अंतर्वेशी स्प्लाईन देना)

ऊपर दी गई दो या अधिक मुख्य वस्तुओं को संतुष्ट करने वाली एक प्रकार की स्प्लाईन के लिए प्रायः एक विशेष नाम चुना गया था। उदाहरण के लिए, हर्मिट स्प्लाईन एक स्प्लाईन है जिसे प्रत्येक व्यक्तिगत बहुपद खंड का प्रतिनिधित्व करने के लिए हर्मिट बहुपद का उपयोग करके व्यक्त किया जाता है। ये सबसे अधिक बार n = 3 के साथ उपयोग किए जाते हैं; वह है, जैसा कि घनाकार हर्मिट स्प्लाईन। इस कोटि में उन्हें अतिरिक्त रूप से केवल स्पर्शरेखा-निरंतर (C1) के लिए चुना जा सकता है; जिसका अर्थ है कि सभी आंतरिक नॉट द्वैत होती है। दिए गए डेटा बिंदुओं में ऐसे स्प्लाईन्स को फिट करने के लिए कई तरीकों का आविष्कार किया गया है; अर्थात्, उन्हें अंतर्वेशी स्प्लाईन बनाने के लिए, और ऐसा करने के लिए प्रशंसनीय स्पर्शरेखा मूल्यों का अनुमान लगाकर ऐसा करना जहाँ प्रत्येक दो बहुपद खंड मिलते हैं (हमें कार्डिनल स्प्लाईन, कैटमुल-रोम स्प्लाईन और कोचनक-बार्टेल्स स्प्लाईन, प्रयुक्त विधि के आधार पर)।

प्रत्येक अभ्यावेदन के लिए, मूल्यांकन के कुछ साधन अवश्य खोजे जाने चाहिए ताकि माँग पर स्प्लाईन के मूल्यों का उत्पादन किया जा सके। उन निरूपणों के लिए जो कोटि n बहुपद के लिए कुछ आधार के संदर्भ में प्रत्येक व्यक्तिगत बहुपद Pi(t) को व्यक्त करते हैं, यह वैचारिक रूप से सीधा है:

  • तर्क t के दिए गए मान के लिए, वह अंतराल ज्ञात कीजिए जिसमें यह स्थित है
  • अंतराल के लिए चुने गए बहुपद के आधार को देखें
  • प्रत्येक आधार बहुपद का मान t: पर ज्ञात कीजिए
  • उन आधार बहुपदों के रैखिक संयोजन के गुणांकों को देखें जो उस अंतराल c0, ..., ck-2 पर स्प्लाईन देते हैं
  • t पर स्प्लाईन का मान प्राप्त करने के लिए आधार बहुपद मानों के उस रैखिक संयोजन को जोड़ें:

हालांकि, मूल्यांकन और योग के चरणों को प्रायः निपुणता से संयुक्त होते हैं। उदाहरण के लिए, बर्नस्टीन बहुपद बहुपदों के लिए एक आधार हैं जिनका विशेष पुनरावृत्ति संबंधों का उपयोग करके रैखिक संयोजनों में कुशलतापूर्वक मूल्यांकन किया जा सकता है। यह डी कैस्टेलजौ के एल्गोरिथम का सार है, जो बेज़ियर वक्रों और बेज़ियर स्प्लाईन्स में दिखाई देता है)।

एक प्रतिनिधित्व के लिए जो आधार स्प्लाईन के एक रैखिक संयोजन के रूप में एक स्प्लाईन को परिभाषित करता है, हालांकि, कुछ अधिक परिष्कृत की आवश्यकता है। डी बूर एल्गोरिथम बी-स्प्लाईन के मूल्यांकन के लिए एक कुशल विधि है।

इतिहास

संगणक का उपयोग करने से पहले संख्यात्मक गणना हाथ से की जाती थी। हालांकि खण्डशः परिभाषित फलनों जैसे साइन फलन या सोपानी फलन का उपयोग किया गया था, बहुपदों को सामान्यतः अधिमानित किया जाता था क्योंकि उनके साथ काम करना आसान था। संगणक के आगमन के माध्यम से स्प्लाईन्स को महत्व प्राप्त हुआ है। उन्हें पहले अंतर्वेशन में बहुपदों के प्रतिस्थापन के रूप में इस्तेमाल किया गया था, फिर संगणक ग्राफिक्स में चिकनी और लचीली आकृतियों के निर्माण के लिए एक उपकरण के रूप में।

यह सामान्यतः स्वीकार किया जाता है कि स्प्लाईन का पहला गणितीय संदर्भ स्कोनबर्ग द्वारा 1946 का पेपर है, जो संभवत: पहला स्थान है जहाँ "स्प्लाईन" शब्द का प्रयोग चिकनी, खंडों के अनुसार बहुपद सन्निकटन के संबंध में किया जाता है। हालांकि, विचारों की जड़ें समतल और जहाज निर्माण उद्योग में हैं। (बार्टेल्स एट अल।, 1987) की प्रस्तावना में, रॉबिन फॉरेस्ट ने "लोफ्टिंग" का वर्णन किया है, जो द्वितीय विश्व युद्ध के दौरान ब्रिटिश समतल उद्योग में इस्तेमाल की जाने वाली एक तकनीक है, जो पतली लकड़ी की पट्टियों (जिसे "स्प्लाईन" कहा जाता है) को बिंदुओं के माध्यम से हवाई जहाज के लिए टेम्पलेट बनाने के लिए उपयोग किया जाता है। एक बड़े डिजाइन के मचान के तल पर रखी गई, जहाज-पतवार डिजाइन से उधार ली गई एक तकनीक। वर्षों से जहाज डिजाइन के अभ्यास ने छोटे में डिजाइन करने के लिए मॉडल नियोजित किए थे। इसके बाद सफल डिजाइन को ग्राफ पेपर पर प्लॉट किया गया और प्लॉट के मुख्य बिंदुओं को बड़े ग्राफ पेपर पर पूर्ण आकार में फिर से प्लॉट किया गया। लकड़ी की पतली पट्टियों ने प्रमुख बिंदुओं को चिकने वक्रों में प्रक्षेपित किया। स्ट्रिप्स को असतत बिंदुओं (फॉरेस्ट द्वारा "बतख" कहा जाता है; स्कोनबर्ग ने "कुत्तों" या "चूहों" का इस्तेमाल किया) पर रखा जाएगा और इन बिंदुओं के बीच न्यूनतम तनाव ऊर्जा के आकार ग्रहण करेंगे। फॉरेस्ट के अनुसार, इस प्रक्रिया के लिए एक गणितीय मॉडल के लिए एक संभावित प्रेरणा एक पूरे समतल के लिए महत्वपूर्ण डिजाइन घटकों की संभावित हानि थी, अगर मचान दुश्मन के बम से टकरा जाए। इसने "शंकु लफ्टिंग" को जन्म दिया, जो बत्तखों के बीच वक्र की स्थिति को मॉडल करने के लिए शंकु वर्गों का उपयोग करता था। कॉनिक लोफ्टिंग को 1960 के दशक की शुरुआत में बोइंग में जे.सी. फर्ग्यूसन और (कुछ समय बाद) ब्रिटिश एयरक्राफ्ट कॉरपोरेशन में एमए सबिन द्वारा काम के आधार पर स्प्लाईन कहा जाएगा।

"स्प्लाईन" शब्द मूल रूप से एक पूर्व एंग्लियन बोली शब्द था।

ऐसा प्रतीत होता है कि ऑटोमोबाइल निकायों के मॉडलिंग के लिए स्प्लाईन के उपयोग की कई स्वतंत्र शुरुआत हुई हैं। सीट्रोएन में डी कास्टलजौ, रेनॉल्ट में पियरे बेज़ियर, और जनरल मोटर्स में बिरखॉफ, गारबेडियन और डी बूर की ओर से क्रेडिट का दावा किया जाता है (बिरखॉफ और डी बूर, 1965 देखें), सभी 1960 या 1950 के दशक के अंत में होने वाले काम के लिए। 1959 में डी कास्टलजाऊ का कम से कम एक पेपर प्रकाशित हुआ था, लेकिन व्यापक रूप से नहीं। जनरल मोटर्स में डी बूर के काम के परिणामस्वरूप 1960 के दशक की शुरुआत में कई पेपर प्रकाशित हुए, जिनमें बी-स्प्लाईन पर कुछ मौलिक फलन भी सम्मिलित थे।

प्रैट एंड व्हिटनी एयरक्राफ्ट में भी काम किया जा रहा था, जहाँ (अहल्बर्ग एट अल।, 1967) के दो लेखक - स्प्लाईन की पहली पुस्तक-लंबाई उपचार - फलनरत थे, और डेविड टेलर मॉडल बेसिन, फियोडोर थिइलहाइमर द्वारा। जनरल मोटर्स में फलन (बिरखॉफ, 1990) और (यंग, 1997) में अच्छी तरह से विस्तृत है। डेविस (1997) इस सामग्री में से कुछ का सार प्रस्तुत करता है।

संदर्भ

  • Ferguson, James C, Multi-variable curve interpolation, J. ACM, vol. 11, no. 2, pp. 221-228, Apr. 1964.
  • Ahlberg, Nielson, and Walsh, The Theory of Splines and Their Applications, 1967.
  • Birkhoff, Fluid dynamics, reactor computations, and surface representation, in: Steve Nash (ed.), A History of Scientific Computation, 1990.
  • Bartels, Beatty, and Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, 1987.
  • Birkhoff and de Boor, Piecewise polynomial interpolation and approximation, in: H. L. Garabedian (ed.), Proc. General Motors Symposium of 1964, pp. 164–190. Elsevier, New York and Amsterdam, 1965.
  • Davis, B-splines and Geometric design, SIAM News, vol. 29, no. 5, 1997.
  • Epperson, History of Splines, NA Digest, vol. 98, no. 26, 1998.
  • Stoer & Bulirsch, Introduction to Numerical Analysis. Springer-Verlag. p. 93-106. ISBN 0387904204
  • Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math., vol. 4, pp. 45–99 and 112–141, 1946.
  • Young, Garrett Birkhoff and applied mathematics, Notices of the AMS, vol. 44, no. 11, pp. 1446–1449, 1997.
  • Chapra, Canale, "Numerical Methods for Engineers" 5th edition.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • फलन (गणित)
  • एक बहुपद की कोटि
  • बहुपद प्रक्षेप
  • तकनीकी चित्रकारी
  • खंड अनुसार
  • संगणक एडेड डिजाइन
  • univariate
  • अलग करना समुच्चय
  • पूर्वी एंग्लियन अंग्रेजी
  • पॉल डी कैस्टेलजौ

बाहरी संबंध

Theory

Excel Function

Online utilities

Computer Code