स्पर्शोन्मुख समरूपीकरण

From Vigyanwiki

गणित और भौतिकी में, समरूपीकरण तीव्रता से दोलन गुणांकों के साथ आंशिक अंतर समीकरणों का अध्ययन करने की विधि है,[1][2][3] जैसे कि;

जहाँ अत्यधिक छोटा पैरामीटर है और

   1-आवधिक गुणांक है:

,

.

यह ज्ञात है कि इन समीकरणों का अध्ययन भौतिकी और अभियांत्रिकी में भी अधिक महत्वपूर्ण है, क्योंकि इस प्रकार के समीकरण इनहोमोजेनियस या विषम सामग्रियों के भौतिकी को नियंत्रित करते हैं। निःसंदेह, सभी पदार्थ किसी न किसी स्तर पर इनहोमोजेनियस होते हैं, किन्तु प्रायः इसे सजातीय मानना ​​सुविधाजनक होता है। उचित उदाहरण सातत्य अवधारणा है जिसका उपयोग सातत्य यांत्रिकी में किया जाता है। इस धारणा के अंतर्गत, तरल पदार्थ, ठोस आदि जैसी सामग्रियों को सजातीय सामग्री के रूप में माना जा सकता है और इन सामग्रियों के साथ अपरूपण मापांक, प्रत्यास्थ मॉड्यूल आदि जैसे भौतिक गुण जुड़े होते हैं।

अधिकांशतः, इनहोमोजेनियस सामग्री (जैसे मिश्रित सामग्री) में माइक्रोस्ट्रक्चर होता है और इसलिए उन्हें भार या फोर्सिंग के अधीन किया जाता है जो कि लंबाई के स्तर पर भिन्न होता है जो कि माइक्रोस्ट्रक्चर की विशेषता लंबाई के स्तर से कहीं अधिक होता है। इस स्थिति में, कोई प्रायःउपरोक्त समीकरण को फॉर्म के समीकरण से परिवर्तित हो सकता है:

जहाँ स्थिर टेंसर गुणांक है और इसे प्रश्न में सामग्री से जुड़े प्रभावी गुण के रूप में जाना जाता है। इसकी स्पष्ट रूप से गणना इस प्रकार की जा सकती है:

1-आवधिक फलन से संतुष्टि देने वाला है:

अत्यधिक दोलन गुणांक वाले समीकरण को सजातीय (समान) गुणांक वाले समीकरण से परिवर्तित करने की इस प्रक्रिया को समरूपीकरण के रूप में जाना जाता है। इसी कारण से यह विषय सूक्ष्म यांत्रिकी के विषय के साथ अटूट रूप से जुड़ा हुआ है।

समरूपीकरण में एक समीकरण को दूसरे द्वारा प्रतिस्थापित किया जाता है यदि अत्यधिक छोटे के लिए प्रदान किया गया, कुछ उपयुक्त पैरामीटर के रूप में है।

उपरोक्त के परिणामस्वरूप, समरूपीकरण को उन सामग्रियों की सातत्य अवधारणा के विस्तार के रूप में देखा जा सकता है जिनमें सूक्ष्म संरचना होती है। सातत्य अवधारणा में विभेदक तत्व का एनालॉग (जिसमें उस सामग्री का प्रतिनिधि होने के लिए पर्याप्त परमाणु या आणविक संरचना होती है), को समरूपीकरण और सूक्ष्म यांत्रिकी में प्रतिनिधि आयतन तत्व के रूप में जाना जाता है।[4] इस तत्व में सामग्री का प्रतिनिधि होने के लिए इनहोमोजेनियस माध्यम के सम्बन्ध में पर्याप्त सांख्यिकीय सूचना सम्मिलित है। इसलिए इस तत्व का औसत निकालने से प्रभावी गुण मिलता है जैसे ऊपर है।

समरूपीकरण सिद्धांत के शास्त्रीय परिणाम[1][2][3] आवधिक गुणांकों के साथ आंशिक अंतर समीकरणों द्वारा प्रतिरूपित आवधिक माइक्रोस्ट्रक्चर वाले मीडिया के लिए प्राप्त किए गए थे। इन परिणामों को अंत में स्थानिक रूप से सजातीय यादृच्छिक मीडिया में यादृच्छिक गुणांक वाले अंतर समीकरणों द्वारा सामान्यीकृत किया गया, जिनके सांख्यिकीय गुण अंतरिक्ष में प्रत्येक बिंदु पर समान हैं।[5][6] व्यवहार में, कई अनुप्रयोगों के लिए मॉडलिंग के अधिक सामान्य प्रकार की आवश्यकता होती है जो न तो आवधिक और न ही सांख्यिकीय रूप से सजातीय है। इस उद्देश्य के लिए समरूपीकरण सिद्धांत की विधि को आंशिक अंतर समीकरणों तक बढ़ाया गया है, जो गुणांक न तो आवधिक हैं और न ही सांख्यिकीय रूप से सजातीय (तथाकथित इच्छानुसार रूप से रफ गुणांक) हैं।[7][8]

स्पर्शोन्मुख समरूपीकरण की विधि

गणितीय समरूपीकरण सिद्धांत फ्रांसीसी, रूसी और इतालवी स्कूलों से प्राप्त होते हैं।[1][2][3][9] स्पर्शोन्मुख समरूपीकरण की विधि तीव्रचर को प्रस्तुत करके आगे बढ़ती है और औपचारिक विस्तार प्रस्तुत कर रहा है :

जो समस्याओं का पदानुक्रम उत्पन्न करता है। समरूप समीकरण प्राप्त किया जाता है और फलन के लिए तथाकथित सेल समस्याओं को हल करके प्रभावी गुणांक निर्धारित किए जाते हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Sanchez-Palencia, E. (1980). गैर-सजातीय मीडिया और कंपन सिद्धांत. Lecture Notes in Physics. Vol. 127. Springer Verlag. doi:10.1007/3-540-10000-8. ISBN 978-3-540-10000-3.
  2. 2.0 2.1 2.2 Bakhvalov, N.; Panasenko, G. (1989). Homogenisation: Averaging Processes in Periodic Media. Mathematics and its Applications. Dordrecht: Kluwer. doi:10.1007/978-94-009-2247-1. ISBN 978-94-010-7506-0.
  3. 3.0 3.1 3.2 Bensoussan, A.; Lions, J.L.; Papanicolaou, G. (1978). आवधिक संरचनाओं के लिए स्पर्शोन्मुख विश्लेषण. Studies in Mathematics and its Applications. Amsterdam: North-Holland. ISBN 0-444-85172-0.
  4. Ostoja-Starzewski, M. (2007). सामग्रियों में सूक्ष्म संरचनात्मक यादृच्छिकता और स्केलिंग. Modern Mechanics and Mathematics. Chapman and Hall/CRC Press. ISBN 9781584884170.
  5. Kozlov, S.M. (1979). "रैंडम ऑपरेटरों का समरूपीकरण।". Mat. Sbornik. 109 (151): 188–202. (English transl.: Math. USSR, Sb. 37:2, 1980, pp. 167-180)
  6. Papanicolaou, G. C.; Varadhan, S.R. (1981). "तेजी से दोलनशील गुणांकों के साथ सीमा मूल्य की समस्याएं" (PDF). Seria Colloq. Math. Society Janos Bolyai. Amsterdam. 27: 835–873.
  7. Berlyand, L.; Owhadi, H. (November 2010). "गैर-पृथक स्केल और उच्च कंट्रास्ट के साथ परिमित आयामी समरूपीकरण अनुमान के लिए फ्लक्स नॉर्म दृष्टिकोण". Archive for Rational Mechanics and Analysis. 198 (2): 677–721. arXiv:0901.1463. Bibcode:2010ArRMA.198..677B. doi:10.1007/s00205-010-0302-1. S2CID 1337370.
  8. Målqvist, A.; Peterseim, D. (2014). "अण्डाकार बहुस्तरीय समस्याओं का स्थानीयकरण". Mathematics of Computation. 83 (290): 2583–2603. doi:10.1090/S0025-5718-2014-02868-8.
  9. Dal Maso, G. (1993). An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser. doi:10.1007/978-1-4612-0327-8. ISBN 9780817636791.

संदर्भ