स्पर्शरेखा अर्ध-कोण सूत्र

From Vigyanwiki

त्रिकोणमिति में, स्पर्शरेखा अर्ध-कोण सूत्र किसी कोण के अर्ध भाग की स्पर्शरेखा को पूर्ण कोण के त्रिकोणमितीय कार्यों से जोड़ते हैं। अर्ध कोण की स्पर्शरेखा किसी रेखा पर वृत्त का त्रिविम प्रक्षेपण है। इनमें से निम्नलिखित सूत्र हैं:

इनसे अर्ध-कोणों की स्पर्शरेखाओं के कार्यों के रूप में साइन, कोज्या एवं स्पर्शरेखा को व्यक्त करने वाली पहचान प्राप्त की जा सकती है:

प्रमाण

बीजगणितीय प्रमाण

दोहरे कोण सूत्रों एवं पायथागॉरियन पहचान का उपयोग प्रदान करता है,

साइन एवं कोज्या उत्पादक के लिए सूत्रों का भागफल लेना

कोज्या के लिए पाइथागोरस पहचान को दोहरे कोण सूत्र के साथ जोड़कर, पुनर्व्यवस्थित करने एवं वर्गमूल लेने से परिणाम प्राप्त होते हैं,

एवं
जो विभाजन करने पर प्राप्त होता है,

वैकल्पिक रूप से,

इससे ज्ञात होता है कि इन अंतिम दो सूत्रों में निरपेक्ष मान चिह्न हटाये जा सकते हैं, चाहे α कोई भी चतुर्थांश में हो। निरपेक्ष मान पट्टियों के साथ या उसके अभाव में ये सूत्र तब प्रस्तावित नहीं होते जब दाहिनी ओर अंश एवं हर दोनों शून्य होते हैं।

इसके अतिरिक्त, साइन एवं कोज्या दोनों के लिए कोण जोड़ एवं घटाव सूत्रों का उपयोग करके कोई प्राप्त करता है:

उपरोक्त चार सूत्रों को जोड़ीवार जोड़ने से प्राप्त होता है:


समायोजन एवं एवं उपज को प्रतिस्थापित करना:

ज्याओं के योग को कोज्याओं के योग से विभाजित करने पर प्राप्त होता है:

ज्यामितीय प्रमाण

इस समचतुर्भुज की भुजाओं की लंबाई 1 है। क्षैतिज रेखा एवं दिखाए गए विकर्ण के मध्य का कोण 1/2 (a + b) है। यह विशेष स्पर्शरेखा अर्ध-कोण सूत्र को सिद्ध करने का ज्यामितीय उपाय है जो बताता है कि tan 1/2 (a + b) = (sin a + sin b) / (cos a + cos b) है। सूत्र sin 1/2(a + b) एवं cos 1/2(a + b) विकर्ण की लंबाई से वास्तविक दूरियों का अनुपात है।

ऊपर दिए गए सूत्रों को दाईं ओर समचतुर्भुज आकृति पर प्रस्तावित करने से यह सरलता से प्रदर्शित किया जा सकता है,

यूनिट सर्कल में, उपरोक्त का अनुप्रयोग यह प्रदर्शित करता है कि है। समरूप त्रिभुजों द्वारा,

यह इस प्रकार है,

अभिन्न कलन में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन

वीयरस्ट्रैस प्रतिस्थापन का ज्यामितीय प्रमाण

त्रिकोणमिति के विभिन्न अनुप्रयोगों में, नए चर के तर्कसंगत कार्यों के संदर्भ में त्रिकोणमितीय कार्यों (जैसे साइन एवं कोज्या) को पुनः लिखना उपयोगी है। की परिभाषा के कारण इन सर्वसमिकाओं को सामूहिक रूप से स्पर्शरेखा अर्ध-कोण सूत्र के रूप में जाना जाता है। ये पहचानें साइन एवं कोज्या में तर्कसंगत कार्यों को उनके प्रतिअवकलज की शोध के लिए t के कार्यों में परिवर्तित करने के लिए कैलकुलसन में उपयोगी हो सकती हैं।

ज्यामितीय रूप से, निर्माण इस प्रकार होता है: इकाई चक्र पर किसी भी बिंदु के लिए (cos φ, sin φ) के लिए, इससे होकर निकलने वाली रेखा एवं बिंदु के लिए (−1, 0) खींची जाती है। यह बिंदु किसी बिंदु y = t पर y-अक्ष को पार करता है। कोई सरल ज्यामिति का उपयोग करके यह दिखा सकता है कि t = tan(φ/2) है। खींची गई रेखा का समीकरण y = (1 + x)t है। रेखा एवं वृत्त के प्रतिच्छेदन का समीकरण तब द्विघात समीकरण होता है जिसमें t सम्मिलित होता है। इस समीकरण के दो समाधान हैं (−1, 0) एवं (cos φ, sin φ) हैं। यह हमें पश्चात वाले को t के तर्कसंगत कार्यों के रूप में लिखने की अनुमति देता है (समाधान नीचे दिए गए हैं)।

पैरामीटर t, प्रक्षेपण के केंद्र (−1, 0) के साथ y-अक्ष पर (cos φ, sin φ) के त्रिविम प्रक्षेपण का प्रतिनिधित्व करता है। इस प्रकार, स्पर्शरेखा अर्ध-कोण सूत्र त्रिविम निर्देशांक t एवं मानक कोणीय निर्देशांक पर φ के मध्य रूपांतरण देते हैं।

तो हमारे पास हैं,

एवं

सीधे ऊपर एवं की प्रारंभिक परिभाषा के मध्य फाई को समाप्त करके, कोई प्राकृतिक लघुगणक के संदर्भ में आर्कटिक स्पर्शरेखा के लिए निम्नलिखित उपयोगी संबंध पर पहुंचता है,
कैलकुलस में, वेयरस्ट्रैस प्रतिस्थापन का उपयोग sin φ एवं cos φ तर्कसंगत कार्यों के प्रतिअवकलन की शोध के लिए किया जाता है। समायोजन के पश्चात

इसका अर्थ यह है कि

कुछ पूर्णांक n के लिए, एवं इसलिए

अतिशयोक्तिपूर्ण पहचान कोई भी अतिशयोक्तिपूर्ण कार्यों के साथ पूर्ण रूप से अनुरूप खेल खेल सकता है। हाइपरबोला की (दाहिनी शाखा पर) बिंदु (cosh ψ, sinh ψ) द्वारा दिया जाता है। इसे केंद्र (−1, 0) से y-अक्ष पर प्रक्षेपित करने पर निम्नलिखित प्राप्त होता है:

पहचानों के साथ

एवं

t के संदर्भ में ψ शोध से व्युत्क्रम हाइपरबोलिक स्पर्शरेखा एवं प्राकृतिक लघुगणक के मध्य निम्नलिखित संबंध बनता है:

गुडरमैनियन फलन

अतिशयोक्तिपूर्ण पहचानों की अपेक्षा वृत्ताकार पहचानों से करने पर, कोई यह ध्यान देता है कि उनमें t के समान कार्य सम्मिलित हैं, अभी क्रमबद्ध किया गया है। यदि हम दोनों ही विषयों में पैरामीटर t की पहचान करते हैं तो हम वृत्ताकार फलनों एवं अतिपरवलयिक फलनों के मध्य संबंध पर पहुंचते हैं। अर्थात यदि

तब

जहाँ gd(ψ) गुडर्मनियन फलन है। गुडेरमैनियन फलन वृत्ताकार फलन एवं हाइपरबोलिक फलन के मध्य सीधा संबंध देता है जिसमें समष्टि संख्याएं सम्मिलित नहीं होती हैं। स्पर्शरेखा अर्ध-कोण सूत्रों के उपरोक्त विवरण (इकाई वृत्त एवं मानक हाइपरबोला को y-अक्ष प्रक्षेपित करें)। इस फलन की ज्यामितीय व्याख्या देते हैं।

तर्कसंगत मान एवं पायथागॉरियन त्रिगुण

भुजाओं की लंबाई वाले पाइथागोरस त्रिभुज से प्रारंभ करने पर जिसकी भुजाओं की लंबाई a, b, एवं c है, जो धनात्मक पूर्णांक हैं एवं संतुष्ट a2 + b2 = c2 को करते हैं, इससे तुरंत ज्ञात होता है कि त्रिभुज के प्रत्येक आंतरिक कोण में साइन एवं कोज्या के लिए तर्कसंगत मान हैं, क्योंकि ये केवल भुजाओं की लंबाई के अनुपात हैं। इस प्रकार, tan φ/2 = sin φ / (1 + cos φ) का उपयोग करते हुए, इनमें से प्रत्येक कोण के अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत मान होता है।

विपरीत भी सही है। यदि दो धनात्मक कोण हैं जिनका योग 90° है, प्रत्येक परिमेय अर्ध-कोण स्पर्शरेखा के साथ है, एवं तीसरा कोण समकोण है तो इन आंतरिक कोणों वाला त्रिभुज पाइथागोरस त्रिभुज के समान (ज्यामिति) हो सकता है। यदि तीसरे कोण का समकोण होना आवश्यक नहीं है, किन्तु वह कोण है जो तीन धनात्मक कोणों का योग 180° बनाता है तो तीसरे कोण के पास आवश्यक रूप से अपने अर्ध-कोण स्पर्शरेखा के लिए तर्कसंगत संख्या होगी जब पूर्व दो ऐसा करते हैं (स्पर्शरेखाओं के लिए कोण जोड़ एवं घटाव सूत्र का उपयोग करके) एवं त्रिभुज को हेरोनियन त्रिभुज में स्केल किया जा सकता है।

सामान्यतः, यदि K सम्मिश्र संख्याओं का उपक्षेत्र है तो tan φ/2 ∈ K ∪ {∞} का तात्पर्य है कि {sin φ, cos φ, tan φ, sec φ, csc φ, cot φ} ⊆ K ∪ {∞} होता है।

यह भी देखें

बाहरी संबंध