स्थिति और संवेग स्थान

From Vigyanwiki


भौतिकी और ज्यामिति में, दो घनिष्ठ रूप से संबंधित सदिश समिष्ट होते हैं, सामान्यत: त्रि-आयामी होते हैं, किन्तु सामान्यत: किसी भी परिमित आयाम में हो सकते हैं। स्थिति समिष्ट (जिसे वास्तविक स्थान या निर्देशन समिष्ट भी कहा जाता है) यूक्लिडियन समिष्ट में सभी स्थिति सदिश r की समूह है, और यह लंबाई के आयाम होती हैं; सदिश समिष्ट में बिंदु को परिभाषित करता है। (यदि किसी बिंदु कण का स्थिति सदिश समय के साथ परिवर्तित करता है, तो यह पथ, कण के प्रक्षेपवक्र का पता लगाएगा।) संवेग समिष्ट भौतिक प्रणाली के सभी संवेग सदिश p का समूह है; जिनकी किसी भी कण प्रणाली को हो सकती है; किसी कण के गति सदिश का उसके आंदोलन के साथ संबंध होता है, और इसकी इकाइयाँ [मास][लंबाई][समय]−1 होती हैं।

गणितीय रूप से, स्थिति और गति के मध्य का द्वंद्व पोंट्रीगिन द्वंद्व का उदाहरण है। विशेष रूप से, यदि कोई फलन स्थिति स्थान, f(r) में दिया गया है, तो इसका फूरियर रूपांतरण गति स्थान, φ(p) में फलन प्राप्त करता है। इसके विपरीत, संवेग समिष्ट फलन का व्युत्क्रम फूरियर रूपांतरण स्थिति समिष्ट फलन है।

ये मात्राएँ और विचार सभी वैद्युत और क्वांटम भौतिकी के सभी क्षेत्रों को आवर्धित करते हैं, और भौतिक प्रणाली को या उसके घटक कणों की स्थिति, या उनके संवेग का उपयोग करके वर्णित किया जा सकता है, दोनों रूपांतरण समान रूप से विचाराधीन प्रणाली के बारे में समान जानकारी प्रदान करते हैं। तरंगों के संदर्भ में परिभाषित करने के लिए और मात्रा उपयोगी है। तरंग सदिश 'k' (या सिर्फ 'k'-सदिश) में पारस्परिक लंबाई के आयाम होते हैं, जो इसे कोणीय आवृत्ति ω का एनालॉग बनाता है जिसमें पारस्परिक समय के आयाम होते हैं। सभी तरंग सदिश का समुच्चय 'k-समिष्ट' है। सामान्यत: 'r' 'k' की समानता में अधिक सहज और सरल है, चूँकि इसका विपरीत भी सत्य हो सकता है, जैसे कि ठोस-अवस्था भौतिकी में है।

क्वांटम यांत्रिकी स्थिति और गति के मध्य द्वंद्व के दो मौलिक उदाहरण प्रदान करता है, हाइजेनबर्ग अनिश्चितता सिद्धांत ΔxΔpħ/2 जिसमें कहा गया है कि स्थिति और गति को साथ इच्छित स्पष्टता से नहीं जाना जा सकता है, और डी ब्रोगली संबंध p = ħk जो गति और तरंग सदिश को बताता है मुक्त कण के कण दूसरे के समानुपाती होते हैं।[1] इस संदर्भ में, जब यह स्पष्ट होता है, तो "संवेग" और "तरंग सदिश " शब्दों का परस्पर उपयोग किया जाता है। चूँकि, क्रिस्टल में डी ब्रोगली संबंध सत्य नहीं होता है।

मौलिक यांत्रिकी में स्थिति और संवेग स्थान

लैग्रेंजियन यांत्रिकी

लैग्रेंजियन यांत्रिकी में अधिकांशतः लैग्रैन्जियन L(q, dq/dt, t) कॉन्फ़िगरेशन समिष्ट (भौतिकी) में होता है, जहाँ 'q = (q1, q2,..., qn) सामान्यीकृत निर्देशांक का n- टपल है। गति स्थान के आयामों के लिए आयामी पलनी दिनांक की परिभाषा प्रस्तुत करने से आयाम-लाग्रेंजियन समीकरण बनती है:

(यहाँ ओवरडॉट समय की पलनी का विवक्षिक है)। प्रत्येक विशिष्टीकरणीय के लिए कैननिकल पलनी की परिभाषा प्रस्तुत करने से आयाम-लाग्रेंजियन समीकरणों की रूप में यह दिखाई देता है:
आयाम-लाग्रेंजियन समीकरण इस रूप में होते हैं:
लैग्रेंजियन को संवेग समिष्ट में भी व्यक्त किया जा सकता है,[2] जहाँ L′(p, dp/dt, t), को व्यक्तिगत पलनीयों की n-टपल p = (p1, p2, ..., pn) के रूप में प्रकट किया जा सकता है। लेजेंड्रे परिवर्तन किया जाता है जिससे विशिष्टीकरणीय स्थान परिभाषित किए जा सकें;
जहाँ सामान्यीकृत गति और यूलर-लैग्रेंज समीकरणों की परिभाषा ने L के आंशिक व्युत्पन्न को प्रतिस्थापित कर दिया है। अंतर के लिए उत्पाद नियम[nb 1] सामान्यीकृत गति और उनके समय व्युत्पन्न में अंतर के लिए सामान्यीकृत निर्देशांक और वेग में अंतर के आदान-प्रदान की अनुमति देता है,
जो प्रतिस्थापन के पश्चात सरलीकृत और पुनर्व्यवस्थित हो जाता है
अब, संवेग समिष्ट लैग्रेंजियन L' का कुल अंतर है
इसलिए लैग्रेंजियन, संवेग और उनके समय व्युत्पन्न के अंतरों की समानता से, संवेग समिष्ट लैग्रैन्जियन L′ और L′ से प्राप्त सामान्यीकृत निर्देशांक क्रमशः हैं
अंतिम दो समीकरणों के संयोजन से यूलर-लैग्रेंज समीकरणों को गति समिष्ट मिलता है
लीजेंड्रे ट्रांसफॉर्मेशन का लाभ यह है कि प्रक्रिया में नए और पुराने कार्यों और उनके वेरिएबल के मध्य संबंध प्राप्त होता है। समीकरण के निर्देशांक और संवेग दोनों रूप समतुल्य हैं और इनमें प्रणाली की गतिशीलता के बारे में समान जानकारी होती है। यह रूप तब अधिक उपयोगी हो सकता है जब संवेग या कोणीय संवेग लैग्रेंजियन में प्रवेश करता है।

हैमिल्टनियन यांत्रिकी

हैमिल्टनियन यांत्रिकी में, लैग्रेंजियन यांत्रिकी के विपरीत जो या तो सभी निर्देशांक या संवेग का उपयोग करता है, गति के हैमिल्टनियन समीकरण निर्देशांक और संवेग को समान स्तर पर रखते हैं। हैमिल्टनियन H('q', 'p', t) वाले प्रणाली के लिए, समीकरण हैं

क्वांटम यांत्रिकी में स्थिति और संवेग स्थान

क्वांटम यांत्रिकी में, कण को क्वांटम अवस्था द्वारा वर्णित किया जाता है। इस क्वांटम अवस्था को आधार अवस्थाओं के सुपरपोजिशन (अर्थात भारित योग के रूप में रैखिक संयोजन) के रूप में दर्शाया जा सकता है। सिद्धांत रूप में कोई भी आधार अवस्था के समूह को चुनने के लिए स्वतंत्र है, जब तक कि वे समिष्ट में फैले हों। यदि कोई आधार कार्यों के समूह के रूप में स्थिति संचालक के आइजेनफ़ंक्शन को चुनता है, तो वह स्थिति समिष्ट में तरंग फलन ψ(r) के रूप में स्थिति की बात करता है (लंबाई के संदर्भ में समिष्ट की हमारी सामान्य धारणा)। स्थिति r के संदर्भ में परिचित श्रोडिंगर समीकरण स्थिति प्रतिनिधित्व में क्वांटम यांत्रिकी का उदाहरण है।[3]

आधार कार्यों के समूह के रूप में भिन्न संचालक के आइजेनफ़ंक्शन को चुनकर, कोई ही अवस्था के अनेक भिन्न -भिन्न अभ्यावेदन पर पहुंच सकता है। यदि कोई आधार कार्यों के समूह के रूप में संवेग संचालक के आइजेनफ़ंक्शन को चुनता है, तो परिणामी तरंग फलन को संवेग समिष्ट में तरंग फलन कहा जाता है।[3]

क्वांटम यांत्रिकी की विशेषता यह है कि वेरिएबल ण समिष्ट विभिन्न प्रकारों की हो सकते हैं: असतत-वेरिएबल, रोटर, और निरंतर-वेरिएबल। निम्नलिखित तालिका में तीन प्रकार की चरण स्थानों में सम्मिलित कुछ संबंधों की संक्षेपित जानकारी दी गई है।[4]

असतत-वेरिएबल (DV), रोटर (ROT), और निरंतर-वेरिएबल (CV) वेरिएबल स्थानों में संयुग्म वेरिएबल के मध्य संबंधों की समानता और सारांश (arXiv:1709.04460 से लिया गया)। अधिकांश भौतिक रूप से प्रासंगिक वेरिएबल ण समिष्ट इन तीनों के संयोजन से बने होते हैं। प्रत्येक वेरिएबल ण समिष्ट में स्थिति और संवेग सम्मिलित होते हैं, जिनके संभावित मान स्थानीय रूप से कॉम्पैक्ट एबेलियन समूह और उसके दोहरे से लिए जाते हैं। क्वांटम यांत्रिक स्थिति को किसी भी वेरिएबल के संदर्भ में पूरी तरह से दर्शाया जा सकता है, और स्थिति और गति स्थानों के मध्य जाने के लिए उपयोग किया जाने वाला परिवर्तन, तीनों स्थितियों में से प्रत्येक में, फूरियर रूपांतरण का प्रकार है। तालिका ब्रा-केट नोटेशन के साथ-साथ कैनोनिकल कम्यूटेशन रिलेशंस (सीसीआर) का वर्णन करने वाली गणितीय शब्दावली का उपयोग करती है।

समिष्ट और पारस्परिक समिष्ट के मध्य संबंध

तरंग फलन का संवेग प्रतिनिधित्व फूरियर रूपांतरण और आवृत्ति डोमेन की अवधारणा से बहुत निकटता से संबंधित होती है। चूंकि क्वांटम यांत्रिक कण की आवृत्ति गति के समानुपाती होती है (डी ब्रोगली का समीकरण ऊपर दिया गया है), कण को ​​उसके गति घटकों के योग के रूप में वर्णित करना इसे आवृत्ति घटकों (अथार्त फूरियर रूपांतरण) के योग के रूप में वर्णित करने के समान है।[5] यह तब स्पष्ट हो जाता है जब हम स्वयं से पूछते हैं कि हम प्रतिनिधित्व से दूसरे प्रतिनिधित्व में कैसे परिवर्तित कर सकते हैं।

स्थिति समिष्ट में फलन और संचालक

मान लीजिए कि हमारे पास स्थिति समिष्ट ψ(r) में त्रि-आयामी तरंग फलन है, तो हम इस फलन को ऑर्थोगोनल आधार फलन ψj(r) के भारित योग के रूप में लिख सकते हैं:

या निरंतर स्थिति में अभिन्न के रूप में
यह स्पष्ट है कि यदि हम फलन समूह तय करें उदाहरण स्वरूप में पलनी ऑपरेटर की इजन-कार्याएँ के रूप में, तो फलन वास्तविक में ψ(r) को पुनर्निर्माण करने की सभी आवश्यक जानकारी रखता है और इसलिए विकल्पिक विवरण है दर्शाया जा सकता है जो रूप क्वांटम मैकेनिक्स में, पलनी ऑपरेटर द्वारा दिया जाता है

(हर नोटेशन के लिए आव्यूह कैलकुलस देखें) उचित डोमेन के साथ आइजेनफ़ंक्शन हैं
और आइजेनवैल्यू ​​ħ'k'. इसलिए
और हम देखते हैं कि संवेग प्रतिनिधित्व फूरियर रूपांतरण द्वारा स्थिति प्रतिनिधित्व से संबंधित है।[6]

संवेग समिष्ट में फलन और संचालक

इसके विपरीत, संवेग समिष्ट में त्रि-आयामी तरंग फलन को ऑर्थोगोनल आधार फलन के भारित योग के रूप में व्यक्त किया जा सकता है।

या अभिन्न के रूप में,
पद संचालक द्वारा दिया गया है
आइजेनफ़ंक्शन के साथ
और आइजेनवैल्यू r. तो इस ऑपरेटर के आइजेनफ़ंक्शन के संदर्भ में का समान अपघटन किया जा सकता है, जो विपरीत फूरियर रूपांतरण सिद्ध होता है,[6]

स्थिति और संवेग संचालक के मध्य एकात्मक तुल्यता

r और p ऑपरेटर एकात्मक रूप से समतुल्य हैं, एकात्मक संचालक को फूरियर रूपांतरण द्वारा स्पष्ट रूप से दिया जाता है, अर्थात् चरण समिष्ट में चौथाई-चक्र घूर्णन ऑसिलेटर हैमिल्टनियन द्वारा उत्पन्न होता है। इस प्रकार, उनके पास समान स्पेक्ट्रम होता है। भौतिक भाषा में, गति समिष्ट तरंग कार्यों पर अभिनय करने r वाला p, स्थिति समिष्ट तरंग कार्यों (फूरियर रूपांतरण की छवि के अनुसार) पर अभिनय करने के समान है।

पारस्परिक समिष्ट और क्रिस्टल

किसी इलेक्ट्रॉन (या अन्य कण) के लिए जो क्रिस्टल में है, उसके k का मूल्य अधिकांश वक्रमोमेंटम के साथ जुड़ा होता है, न कि उसके सामान्य मूल्यमोमेंटम से। इसलिए, k और p सिर्फ सरल अनुपातित नहीं होते हैं किंतु वे विभिन्न भूमिकाएँ निभाते हैं। उदाहरण के लिए k p परिवर्तन सिद्धांत देखें। क्रिस्टल मोमेंटम ऐसी लहर कविता है जो बताती है कि लहर यूनिट सेल से अगले यूनिट सेल तक कैसे परिवर्तित करती है, किन्तु प्रत्येक यूनिट सेल में लहर कैसे परिवर्तित करती है जो कि इसके बारे में कोई जानकारी नहीं देती है।

जब k वास्तविक मोमेंटम की बजाय क्रिस्टल मोमेंटम से संबंधित होता है, तो k-स्थान की अवधारणा अब भी मान्य और अत्यंत उपयोगी होती है, किन्तु यह ऊपर चर्चित गैर-क्रिस्टल k-स्थान से अनेक विधियों से भिन्न होती है। उदाहरण के लिए, क्रिस्टल के k-स्थान में, अनंत संख्यक बिंदु होते हैं, जिन्हें "संवर्धित लैटिस" कहा जाता है और जो k = 0 के "समान" होते हैं (यह संवर्धितता के सामान्यतः तुलनात्मक है)। उसी तरह, "प्रथम ब्रिलुआं जोन" ऐसा परिमित क्षेत्र होता है जो क्रिस्टल के k-स्थान में होता है, ऐसा कि प्रत्येक संभावित k इस क्षेत्र में ही बिंदु से "समान" होता है।

यह भी देखें

फ़ुटनोट

  1. For two functions u and v, the differential of the product is d(uv) = udv + vdu.

संदर्भ

  1. Eisberg, R.; Resnick, R. (1985). परमाणुओं, अणुओं, ठोसों, नाभिकों और कणों की क्वांटम भौतिकी (2nd ed.). John Wiley & Sons. ISBN 978-0-471-87373-0.
  2. Hand, Louis N; Finch, Janet D (1998). विश्लेषणात्मक यांत्रिकी. p. 190. ISBN 978-0-521-57572-0.
  3. 3.0 3.1 Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). क्वांटम यांत्रिकी (शाउम की रूपरेखा श्रृंखला) (2nd ed.). McGraw Hill. ISBN 978-0-07-162358-2.
  4. Albert, Victor V; Pascazio, Saverio; Devoret, Michel H (2017). "General phase spaces: from discrete variables to rotor and continuum limits". Journal of Physics A: Mathematical and Theoretical. 50 (50): 504002. arXiv:1709.04460. doi:10.1088/1751-8121/aa9314. S2CID 119290497.
  5. Abers, E. (2004). क्वांटम यांत्रिकी. Addison Wesley, Prentice Hall Inc. ISBN 978-0-13-146100-0.
  6. 6.0 6.1 R. Penrose (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.