सुसंगत अनुमानक

From Vigyanwiki
{T1, T2, T3, ...} पैरामीटर θ0 के लिए अनुमानकों का अनुक्रम है, जिसका सत्य मान 4 है। यह क्रम सुसंगत है: अनुमानक वास्तविक मान θ0 के समीप अधिक से अधिक केंद्रित हो रहे हैं; साथ ही, ये अनुमानक अभिनत हैं। अनुक्रम का सीमित बंटन एक पतित यादृच्छिक चर है जो संभाव्यता 1 के साथ θ0 के बराबर है।

आँकड़ों में, एक सुसंगत अनुमानक या उपगामी रूप से सुसंगत अनुमानक एक अनुमानक है - जो एक पैरामीटर 'θ0- के अनुमानों की गणना के लिए एक नियम है - जिसमें गुण होते हैं कि उपयोग किए जाने वाले डेटा बिंदुओं की संख्या अनिश्चित काल तक बढ़ जाती है, अनुमानों का परिणामी क्रम संभाव्यता में θ0 में परिवर्तित हो जाता है। इसका तात्पर्य यह है कि अनुमानों के बंटन अनुमानित पैरामीटर के वास्तविक मान के समीप अधिक से अधिक केंद्रित हो जाते हैं, जिससे कि अनुमानक के यादृच्छिक रूप से θ0 के समीप होने की संभावना एक में परिवर्तित हो जाती है।

परीक्षण में एक आकार n के उपलब्ध प्रतिदर्श के फलन के रूप में अनुमानक का निर्माण करता है, और फिर कल्पना करता है कि डेटा एकत्र करने और प्रतिदर्श विज्ञापन अनन्तता का विस्तार करने में सक्षम है। इस प्रकार से n द्वारा अनुक्रमित अनुमानों का एक क्रम प्राप्त होगा, और स्थिरता एक गुण है जो प्रतिदर्श आकार "अनंत तक बढ़ते है" के रूप में होती है। यदि अनुमानों के अनुक्रम को गणितीय रूप से संभाव्यता में वास्तविक मान θ0 में अभिसरण करने के लिए दिखाया जा सकता है, तो इसे एक सुसंगत अनुमानक कहा जाता है; अन्यथा अनुमानक को असंगत कहा जाता है।

यहाँ परिभाषित सुसंगत को कभी-कभी तनुता सुसंगत के रूप में संदर्भित किया जाता है। जब हम संभाव्यता में अभिसरण को लगभग सुनिश्चित अभिसरण से प्रतिस्थापित करते हैं, तो अनुमानक को दृढ़ता से सुसंगत कहा जाता है। सुसंगत पूर्वाग्रह से संबंधित है; पूर्वाग्रह बनाम निरंतरता देखें।

परिभाषा

विधिवत रूप से बोलते हुए, एक अनुमानक Tnपैरामीटर के θ को 'सुसंगत' कहा जाता है, यदि यह प्रायिकता में पैरामीटर के वास्तविक मान में अभिसरण करता है:[1]

अर्थात यदि, सभी ε> 0 के लिए

अधिक जटिल परिभाषा इस तथ्य को ध्यान में रखती है कि θ वस्तुतः अज्ञात है, और इस प्रकार संभाव्यता में अभिसरण इस पैरामीटर के प्रत्येक संभव मान के लिए होना चाहिए। मान लीजिए {pθ: θ ∈ Θ} बंटन का एक वर्ग है (पैरामीट्रिक मॉडल), और Xθ = {X1, X2, … : Xi ~ pθ} बंटन Pθ से एक अनंत सांख्यिकीय प्रतिदर्श है। माना {Tn(Xθ)} कुछ पैरामीटर g(θ) के लिए अनुमानकों का अनुक्रम है। सामान्यतः Tn प्रतिदर्श के पूर्व n अवलोकनों पर आधारित होगा। फिर इस क्रम {Tn} को (तनुता) 'सुसंगत' कहा जाता है यदि [2]

यह परिभाषा मात्र θ के अतिरिक्त g (θ) का उपयोग करती है, क्योंकि प्रायः एक निश्चित फलन या अंतर्निहित पैरामीटर के उप-सदिश का अनुमान लगाने में रुचि होती है। अगले उदाहरण में हम मॉडल के स्थान पैरामीटर का अनुमान लगाते हैं, परन्तु पैमाने का नहीं:

उदाहरण

एक सामान्य यादृच्छिक चर का प्रतिदर्श माध्य

मान लीजिए कि किसी के समीप एक सामान्य N(μ, s2) बंटन से सांख्यिकीय रूप से स्वतंत्र (संभाव्यता सिद्धांत) अवलोकन {X1, X2, ...} का अनुक्रम है। पूर्व n प्रेक्षणों के आधार पर μ का अनुमान लगाने के लिए, प्रतिदर्श माध्य का उपयोग किया जा सकता है: Tn= (X1 + ... + Xn) /n। यह प्रतिदर्श आकार n द्वारा अनुक्रमित अनुमानकों के अनुक्रम को परिभाषित करता है।

सामान्य बंटन के गुणों से, हम इस आँकड़े का प्रतिचयन बंटन जानते हैं: Tn औसत μ और विचरण σ2/n के साथ ही सामान्य रूप से वितरित किया जाता है। समतुल्य रूप से, का एक मानक सामान्य बंटन है:

जैसा कि n अनंत की ओर जाता है, किसी निश्चित ε > 0 के लिए। इसलिए, प्रतिदर्श माध्य का अनुक्रम Tn समष्टि माध्य μ के लिए सुसंगत है(यह याद करते हुए कि सामान्य बंटन का संचयी बंटन फलन है)।

सुसंगतता स्थापन

उपगामी सुसंगतता की धारणा बहुत समीप है, प्रायिकता में अभिसरण की धारणा का लगभग पर्यायवाची है। जैसे, कोई भी प्रमेय, लेम्मा, या गुण जो संभाव्यता में अभिसरण स्थापित करती है, का उपयोग सुसंगतता को सिद्ध करने के लिए किया जा सकता है। ऐसे कई उपकरण स्थित हैं:

  • परिभाषा से सीधे सुसंगतता प्रदर्शित करने के लिए असमानता[3]

का उपयोग कर सकते है, फलन h के लिए सबसे सामान्य विकल्प या तो निरपेक्ष मान(जिस स्थिति में इसे मार्कोव असमानता के रूप में जाना जाता है), या द्विघात फलन (क्रमशः चेबीशेव की असमानता) है।

  • अन्य उपयोगी परिणाम निरंतर मानचित्रण प्रमेय है: यदि Tnθ के लिए संगत है और g(·) बिंदु θ पर निरंतर एक वास्तविक-मानित फलन है, फिर g(Tn) g(θ) के लिए संगत होगा:[4]
  • स्लटस्की के प्रमेय का उपयोग कई अलग-अलग अनुमानकों, या गैर-यादृच्छिक अभिसरण अनुक्रम वाले अनुमानक को संयोजित करने के लिए किया जा सकता है। यदि Tndα, and Snpβ, तो[5]
  • यदि अनुमानक Tn स्पष्ट सूत्र द्वारा दिया गया है, तो सबसे अधिक संभावना है कि सूत्र यादृच्छिक चर के योगों को नियोजित करेगा, और फिर बड़ी संख्या के नियम का उपयोग किया जा सकता है: अनुक्रम {Xnके लिए} यादृच्छिक चर और उपयुक्त परिस्थितियों में,
  • यदि अनुमानक Tn निहित रूप से परिभाषित किया गया है, उदाहरण के लिए एक मान के रूप में जो निश्चित उद्देश्य फलन को अधिकतम करते है (अंतिम अनुमानक देखें), फिर अधिक जटिल तर्क जिसमें प्रसंभाव्य समानता सम्मिलित है, का उपयोग किया जाना है।[6]

पूर्वाग्रह बनाम सुसंगत

अनभिनत परन्तु सुसंगत नहीं

एक अनुमानक अभिनत अनुमानक हो सकता है परन्तु सुसंगत नहीं। उदाहरण के लिए, एक आईआईडी प्रतिदर्श {x
1
,..., x
n
} के लिए कोई T
n
(X) = X
n
का उपयोग माध्य E[X] के अनुमानक के रूप में कर सकता है। ध्यान दें कि यहाँ T
n
का प्रतिदर्श बंटन अंतर्निहित बंटन के समतुल्य है (किसी भी n के लिए, क्योंकि यह सभी बिंदुओं को छोड़कर अंतिम को अनदेखा करता है), इसलिए E[T
n
(X) ] = E[X] और यह अनभिनत है, परन्तु यह किसी भी मान में अभिसरण नहीं करता है।

यद्यपि, यदि अनुमानकों का क्रम अनभिनत है और एक मान में परिवर्तित हो जाता है, तो यह सुसंगत है, क्योंकि इसे सत्य मान पर अभिसरण करना चाहिए।

अभिनत परन्तु सुसंगत

वैकल्पिक रूप से, अनुमानक अभिनत परन्तु सुसंगत हो सकते है। उदाहरण के लिए, यदि माध्य अनुमान द्वारा लगाया जाता है तो यह अभिनत है, परन्तु , के रूप में, यह सत्य मान तक पहुँचता है, और इसलिए यह सुसंगत है।

महत्वपूर्ण उदाहरणों में प्रतिदर्श विचरण और प्रतिदर्श मानक विचलन सम्मिलित हैं। बेसेल के संशुद्धि के बिना (अर्थात, प्रतिदर्श आकार का उपयोग करते समय स्वतंत्रता की डिग्री (सांख्यिकी) के अतिरिक्त ), ये दोनों ऋणात्मक रूप से अभिनत परन्तु सुसंगत अनुमानक हैं। संशुद्धि के साथ, सत्य प्रतिदर्श विचलन अनभिनत है, जबकि सत्य प्रतिदर्श मानक विचलन अभी भी अभिनत है, परन्तु कम है, और दोनों अभी भी सुसंगत हैं: प्रतिदर्श आकार बढ़ने पर संशुद्धि कारक 1 में परिवर्तित हो जाता है।

यहाँ एक और उदाहरण है। माना के लिए अनुमानकों का एक क्रम हो।

हम देख सकते हैं कि , , और पूर्वाग्रह शून्य में परिवर्तित नहीं होता है।

यह भी देखें

टिप्पणियाँ

  1. Amemiya 1985, Definition 3.4.2.
  2. Lehman & Casella 1998, p. 332.
  3. Amemiya 1985, equation (3.2.5).
  4. Amemiya 1985, Theorem 3.2.6.
  5. Amemiya 1985, Theorem 3.2.7.
  6. Newey & McFadden 1994, Chapter 2.


संदर्भ

  • Amemiya, Takeshi (1985). Advanced Econometrics. Harvard University Press. ISBN 0-674-00560-0.
  • Lehmann, E. L.; Casella, G. (1998). Theory of Point Estimation (2nd ed.). Springer. ISBN 0-387-98502-6.
  • Newey, W. K.; McFadden, D. (1994). "Chapter 36: Large sample estimation and hypothesis testing". In Robert F. Engle; Daniel L. McFadden (eds.). Handbook of Econometrics. Vol. 4. Elsevier Science. ISBN 0-444-88766-0. S2CID 29436457.
  • Nikulin, M. S. (2001) [1994], "Consistent estimator", Encyclopedia of Mathematics, EMS Press
  • Sober, E. (1988), "Likelihood and convergence", Philosophy of Science, 55 (2): 228–237, doi:10.1086/289429.


बाहरी संबंध