सामान्य गुण

From Vigyanwiki

गणित में, विशिष्ट उदाहरणों के लिए उपयोग किए जाने वाले गुणों को सामान्य गुण कहा जाता है। उदाहरण के लिए, फलन (गणित) के एक वर्ग की एक सामान्य गुण वह है जो लगभग सभी कार्यों के लिए सत्य है, जैसा कि कथनों में है, एक सामान्य बहुपद में शून्य पर एक फलन का शून्य नहीं होता है, या एक सामान्य वर्ग होता है आव्यूह व्युत्क्रमणीय आव्यूह है. एक अन्य उदाहरण के रूप में, किसी स्थान की सामान्य गुण वह गुण है जो स्थान के लगभग सभी बिंदुओं पर होती है, जैसा कि कथन में है, यदि f : MN स्मूथ मैनिफोल्ड्स के मध्य एक सुचारू कार्य है, तो N का एक सामान्य बिंदु f का महत्वपूर्ण मूल्य नहीं है।" (यह सार्ड के प्रमेय द्वारा है।)

गणित में जेनेरिक (लगभग सभी का क्या अर्थ है) की कई अलग-अलग धारणाएं हैं, जिनके अनुरूप द्वंद्व (गणित) लगभग कोई नहीं (उपेक्षणीय समुच्चय ) है;जिसमे दो मुख्य वर्ग हैं:

  • माप सिद्धांत में, एक सामान्य गुण वह होती है जो लगभग हर जगह उपस्थित होती है, दोहरी अवधारणा शून्य समुच्चय होती है जिसका अर्थ है "संभावना 0 के साथ" है।
  • टोपोलॉजी और बीजगणितीय ज्यामिति में, एक सामान्य गुण वह होता है जो घने समुच्चय विवर्त समुच्चय पर या अधिक समान्यत:अवशिष्ट समुच्चय पर होता है, दोहरी अवधारणा कहीं भी घने समुच्चय नहीं होती है, या अधिक समान्यत:एक अल्प समुच्चय होती है।

ऐसे कई प्राकृतिक उदाहरण हैं जहां ये धारणाएं समान नहीं हैं।[1] उदाहरण के लिए, लिउविले संख्याओं का समुच्चय टोपोलॉजिकल अर्थ में सामान्य है, किंतु लेबेस्ग का माप शून्य है।[2]

माप सिद्धांत मे

माप सिद्धांत में, एक सामान्य गुण वह है जो लगभग हर जगह उपस्थित होती है। दोहरी अवधारणा एक शून्य समुच्चय है, अथार्त माप शून्य का एक समुच्चय है।

प्रायिकता में

संभाव्यता में, एक सामान्य गुण एक ऐसी घटना है जो लगभग निश्चित रूप से घटित होती है, जिसका अर्थ है कि यह संभावना 1 के साथ घटित होती है। उदाहरण के लिए, बड़ी संख्या का नियम कहता है कि नमूना माध्य लगभग निश्चित रूप से जनसंख्या माध्य में परिवर्तित होता है। संभाव्यता स्थान के लिए विशेषीकृत माप सिद्धांत स्थिति में यह परिभाषा है।

असतत गणित में

असतत गणित में, कोई व्यक्ति लगभग सभी शब्द का उपयोग कोफिनिट (परिमित रूप से कई को छोड़कर सभी), पर्याप्त रूप से बड़ी संख्याओं के लिए, सहगणनीय (गिनने योग्य कई को छोड़कर सभी), या, कभी-कभी, असममित रूप से लगभग निश्चित रूप से करता है। यादृच्छिक ग्राफ के अध्ययन में यह अवधारणा विशेष रूप से महत्वपूर्ण है।

टोपोलॉजी में

टोपोलॉजी और बीजगणितीय ज्यामिति में, एक सामान्य गुण वह होता है जो एक घने समुच्चय विवर्त समुच्चय पर, या अधिक समान्यत:एक अवशिष्ट समुच्चय (घने विवर्त समुच्चयों का एक गणनीय प्रतिच्छेदन) पर होता है, दोहरी अवधारणा एक संवर्त कहीं भी घने समुच्चय या अधिक होती है समान्यत:एक अल्प समुच्चय (कहीं नहीं घने संवर्त समुच्चयों का एक गणनीय संघ) है ।

चूँकि अकेले घनत्व किसी सामान्य गुण को चिह्नित करने के लिए पर्याप्त नहीं है। इसे वास्तविक संख्याओं में भी देखा जा सकता है, जहां परिमेय संख्याएं और उनकी पूरक, अपरिमेय संख्याएं, दोनों घनी होती हैं। चूँकि यह कहने का कोई अर्थ नहीं है कि एक समुच्चय और उसका पूरक दोनों विशिष्ट व्यवहार प्रदर्शित करते हैं, तर्कसंगत और अपरिमेय दोनों ही विशिष्ट होने के लिए पर्याप्त बड़े समुच्चय के उदाहरण नहीं हो सकते हैं। परिणाम स्वरुप हम ऊपर दी गई शक्तिशाली परिभाषा पर विश्वास करते हैं जिसका तात्पर्य है कि तर्कहीन सामान्य हैं और तर्कसंगत नहीं हैं।

अनुप्रयोगों के लिए, यदि कोई गुण एक अवशिष्ट समुच्चय पर ठहरी हुई है, तो यह हर बिंदु के लिए नहीं ठहर सकती है, किंतु इसे थोड़ा परेशान करने से समान्यत:अवशिष्ट समुच्चय के अंदर आ जाएगा (अल्प समुच्चय के घटकों के घनत्व से कहीं नहीं), और ये इस प्रकार हैं प्रमेयों और एल्गोरिदम में संबोधित करने के लिए सबसे महत्वपूर्ण स्थिति है।

फलन स्थान में

एक गुण Cr में सामान्य है यदि इस गुण को रखने वाले समुच्चय में Cr टोपोलॉजी में एक अवशिष्ट उपसमुच्चय सम्मिलित है। यहां Cr फलन स्थान है जिसके सदस्य मैनिफोल्ड M से मैनिफोल्ड N तक r निरंतर डेरिवेटिव के साथ निरंतर फलन हैं।

M और N के मध्य Cr मैपिंग का स्थान Cr(M, N), एक बेयर स्थान है, इसलिए कोई भी अवशिष्ट समुच्चय सघन है। फलन स्थान की यह गुण सामान्य गुणों को विशिष्ट बनाती है।

बीजगणितीय ज्यामिति में

बीजगणितीय विविध

एक अघुलनशील बीजगणितीय विविध X के गुण को सत्य कहा जाता है सामान्यतः यदि यह X के एक उचित ज़ारिस्की-संवर्त उपसमुच्चय को छोड़कर धारण करता है, दूसरे शब्दों में, यदि यह एक गैर-रिक्त ज़ारिस्की-विवर्त उपसमुच्चय पर धारण करता है। यह परिभाषा उपरोक्त टोपोलॉजिकल परिभाषा से सहमत है, क्योंकि इरेड्यूसिबल बीजगणितीय विविधो के लिए कोई भी गैर-रिक्त विवर्त समुच्चय सघन है।

उदाहरण के लिए, नियमितता के लिए जैकोबियन मानदंड के अनुसार, विशेषता शून्य के क्षेत्र पर विविधता का एक सामान्य बिंदु सुचारू होता है। (इस कथन को सामान्य स्मूथ्नेस के रूप में जाना जाता है।) यह सच है क्योंकि जैकोबियन मानदंड का उपयोग उन बिंदुओं के लिए समीकरण खोजने के लिए किया जा सकता है जो स्मूथ नहीं हैं: वे बिल्कुल ऐसे बिंदु हैं जहां x के एक बिंदु के जैकोबियन आव्यूह में पूर्ण सीमा नहीं है विशेषता शून्य में, ये समीकरण गैर-तुच्छ हैं, इसलिए वे विविधता के प्रत्येक बिंदु के लिए सत्य नहीं हो सकते हैं। परिणाम स्वरुप x के सभी गैर-नियमित बिंदुओं का समुच्चय x का एक उचित ज़ारिस्की-संवर्त उपसमुच्चय है।

यहाँ एक और उदाहरण है. मान लीजिए f : X → Y दो बीजगणितीय विविधो के मध्य एक नियमित मानचित्र है। Y के प्रत्येक बिंदु y के लिए, y के ऊपर f के तंतु के आयाम पर विचार करें, अर्थात अस्पष्ट f−1(y). सामान्यतः यह संख्या स्थिर रहती है। जरूरी नहीं कि यह हर जगह स्थिर हो. यदि, मान लीजिए, X एक बिंदु पर Y का विस्फोट है और f प्राकृतिक प्रक्षेपण है, तो जिस बिंदु पर विस्फोट हुआ है, उसे छोड़कर f का सापेक्ष आयाम शून्य है, जहां यह अस्पष्ट Y - 1 है।

कहा जाता है कि कुछ गुणों में बहुत उदारतापूर्वक धारण की जाती हैं। अधिकांशत: इसका अर्थ यह होता है कि समतल क्षेत्र अगणनीय है और गुण उचित ज़ारिस्की-संवर्त उपसमुच्चय के गणनीय संघ को छोड़कर सत्य है (अथार्त , गुण घने Gδ समुच्चय पर आधारित है)। उदाहरण के लिए, तर्कसंगत रूप से जुड़ी विविधता पर विचार करते समय बहुत सामान्य की यह धारणा उत्पन्न होती है। चूँकि, बहुत सामान्य की अन्य परिभाषाएँ अन्य संदर्भों में हो सकती हैं और होती भी हैं।

सामान्य बिंदु

बीजगणितीय ज्यामिति में, बीजगणितीय विविधता का एक सामान्य बिंदु एक ऐसा बिंदु होता है जिसके निर्देशांक विविधता के प्रत्येक बिंदु से संतुष्ट होने के अतिरिक्त किसी अन्य बीजगणितीय संबंध को संतुष्ट नहीं करते हैं।उदाहरण के लिए, क्षेत्र k पर एफ़िन स्पेस का एक सामान्य बिंदु एक ऐसा बिंदु है जिसके निर्देशांक k पर बीजगणितीय रूप से स्वतंत्र होते हैं।

योजना (गणित) में, जहां बिंदु उप-विविध हैं, विविधता का एक सामान्य बिंदु एक ऐसा बिंदु है जिसका ज़ारिस्की टोपोलॉजी के लिए समापन संपूर्ण विविधता है।

एक सामान्य गुण सामान्य बिंदु की एक गुण है। किसी भी उचित गुण के लिए, यह पता चलता है कि गुण उप-विविधता पर सामान्य रूप से सच है (एक विवर्त घने उपसमुच्चय पर सच होने के अर्थ में) यदि और केवल यदि गुण सामान्य बिंदु पर सच है। ऐसे परिणाम अधिकांशत: एलिमेंट्स डी जियोमेट्री अलजेब्रिक IV 8 में विकसित एफ़िन योजनाओं के अध: पतन (बीजगणितीय ज्यामिति) के विधियों का उपयोग करके सिद्ध किए जाते हैं।

सामान्य स्थिति

बीजगणितीय ज्यामिति में एक संबंधित अवधारणा सामान्य स्थिति है, जिसका स्पष्ट अर्थ संदर्भ पर निर्भर करता है। उदाहरण के लिए, यूक्लिडियन समतल में, सामान्य स्थिति में तीन बिंदु रेखा (ज्यामिति) नहीं हैं। ऐसा इसलिए है क्योंकि संरेख न होने की गुण R2 में तीन बिंदुओं के कॉन्फ़िगरेशन स्थान (गणित) की एक सामान्य गुण है.

संगणनीयता में

संगणनीयता और एल्गोरिथम यादृच्छिकता में, प्राकृतिक संख्याओं की एक अनंत स्ट्रिंग को 1-जेनेरिक कहा जाता है, यदि प्रत्येक सी.ई. के लिए समुच्चय या तो का प्रारंभिक खंड में है, या का प्रारंभिक खंड है, जैसे कि प्रत्येक विस्तारक W में नहीं है। 1-जेनेरिक संगणना में महत्वपूर्ण हैं, क्योंकि उपयुक्त 1-जेनेरिक पर विचार करके कई निर्माणों को सरल बनाया जा सकता है।[3] कुछ प्रमुख गुण हैं:

  • 1-जेनेरिक में प्रत्येक प्राकृतिक संख्या एक तत्व के रूप में सम्मिलित होती है;
  • कोई भी 1-जेनेरिक गणना योग्य नहीं है (या यहां तक ​​कि एक गणना योग्य फलन द्वारा सीमित नहीं है);
  • सभी 1-जेनेरिक सामान्यीकृत निम्न (कम्प्यूटेबिलिटी) .हैं:

1-जेनेरिकिटी जेनेरिक की टोपोलॉजिकल धारणा से इस प्रकार जुड़ी हुई है। बेयर स्थान (समुच्चय सिद्धांत) बेस (टोपोलॉजी) के साथ एक टोपोलॉजी है प्राकृतिक संख्याओं की प्रत्येक परिमित स्ट्रिंग के लिए . फिर, एक तत्व 1-जेनेरिक है यदि और केवल यदि यह किसी विवर्त समुच्चय की सीमा पर नहीं है। विशेष रूप से, प्रत्येक घने विवर्त समुच्चय को पूरा करने के लिए 1-जेनेरिक की आवश्यकता होती है (चूँकि यह एक सख्ती से अशक्त गुण है, जिसे अशक्त 1-जेनेरिक कहा जाता है)।

उदारता परिणाम

  • सार्ड का प्रमेय: यदि स्मूथ मैनिफोल्ड्स के मध्य एक सुचारू कार्य है, तो N का एक सामान्य बिंदु f का महत्वपूर्ण मान नहीं है - f का महत्वपूर्ण मान N में एक शून्य समुच्चय है।
  • जैकोबियन मानदंड / सामान्य स्मूथ्नेस: विशेषता शून्य के क्षेत्र पर विविधता का एक सामान्य बिंदु स्मूथ होता है।
  • रेखीय समय-अपरिवर्तनीय सिद्धांत की नियंत्रणीयता और अवलोकनीयता या रेखीय समय-अपरिवर्तनीय प्रणालियाँ टोपोलॉजिकल और माप सिद्धांत दोनों अर्थों में सामान्य हैं।[4]


संदर्भ

  1. Hunt, Brian R.; Kaloshin, Vadim Yu. (2010). प्रसार. Handbook of Dynamical Systems. Vol. 3. pp. 43–87. doi:10.1016/s1874-575x(10)00310-3. ISBN 9780444531414.
  2. Oxtoby, John C. (1980). Measure and Category | SpringerLink. Graduate Texts in Mathematics (in British English). Vol. 2. doi:10.1007/978-1-4684-9339-9. ISBN 978-1-4684-9341-2.
  3. Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi:10.1007/978-3-642-31933-4_3, ISBN 978-3-642-31932-7, retrieved 2020-11-01
  4. Polderman, Jan Willem; Willems, Jan C. (1998). Introduction to Mathematical Systems Theory | SpringerLink. Texts in Applied Mathematics (in British English). Vol. 26. doi:10.1007/978-1-4757-2953-5. ISBN 978-1-4757-2955-9.