संघनित्र (कंडेनसर- ऊष्मा स्थानान्तरण)

From Vigyanwiki
एक रेफ्रिजरेटर का संघनित्र कॉइल

ऊष्मा स्थानान्तरण प्रणालियों में उष्मा का आदान प्रदान करने वाला एक संघनित्र ताप विनिमायक होता है जो शीतलन के माध्यम से एक गैस पदार्थ को तरल अवस्था में संघनित करने के लिए उपयोग किया जाता है। ऐसा करने में, पदार्थ द्वारा गुप्त ऊष्मा मुक्त की जाती है और आसपास के वातावरण में स्थानांतरित कर दी जाती है। संघनित्र का उपयोग कई औद्योगिक प्रणालियों में सक्षम ऊष्मा अस्वीकृति के लिए किया जाता है। संघनित्र को कई डिज़ाइनों के अनुसार बनाया जा सकता है, जो छोटे (हाथ से पकड़े जाने वाले) से लेकर बहुत बड़े (औद्योगिक पैमाने की इकाइयाँ हैं जो संयंत्र प्रक्रियाओं में प्रयुक्त होते हैं) आकारों में आते हैं। उदाहरण के लिए, एक रेफ्रिजरेटर एक संघनित्र का उपयोग करता है ताकि यूनिट के अंदर से बाहर की हवा में निकाली गई ऊष्मा से छुटकारा मिल सके।

संघनित्र का उपयोग एयर कंडीशनिंग, औद्योगिक रासायनिक प्रक्रियाओं जैसे आसवन, भाप बिजली संयंत्र और अन्य ताप-विनिमय प्रणालियों में किया जाता है। शीतलक के रूप में ठंडे पानी या आसपास की हवा का उपयोग कई संघनित्रों में सामान्य है।[1]


इतिहास

सबसे पहला प्रयोगशाला संघनित्र, एक "गेजेनस्ट्रॉमकुहलर" (प्रतिप्रवाह संघनित्र), का आविष्कार 1771 में स्वीडिश-जर्मन रसायनशास्त्री क्रिश्चियन एरेनफ्राइड वीगेल द्वारा किया गया था।[2] 19वीं शताब्दी के मध्य तक, जर्मन रसायनशास्त्री जस्टस वॉन लिबिग वीगेल और जोहान फ्रेडरिक अगस्त गॉटलिंग के पिछले डिजाइनों पर अपने स्वयं के सुधार प्रदान करेंगे, इस उपकरण को लिबिग कंडेनसर के रूप में जाना जाता है।[3]


संचालन का सिद्धांत

संघनित्र को काम कर रहे तरल पदार्थ (जैसे भाप बिजली संयंत्र में पानी) से माध्यमिक तरल पदार्थ या आसपास की हवा में ऊष्मा स्थानांतरित करने के लिए बनाया गया है। संघनित्र प्रभावी ऊष्मा स्थानान्तरण पर निर्भर करता है जो चरण परिवर्तनों के दौरान होता है, इस प्रकरण में वाष्प के तरल में संघनन के दौरान वाष्प सामान्य रूप से संघनित्र में द्वितीयक द्रव के तापमान से ऊपर के तापमान पर प्रवेश करता है। जैसे ही वाष्प ठंडा होता है, यह संतृप्ति तापमान तक पहुँच जाता है और तरल में संघनित हो जाता है, बड़ी मात्रा में गुप्त ऊष्मा को मुक्त करता है। जैसे ही यह प्रक्रिया संघनित्र के साथ होती है, वाष्प की मात्रा घट जाती है और द्रव की मात्रा बढ़ जाती है; संघनित्र के आउटलेट पर केवल द्रव ही रहता है। कुछ संघनित्र डिज़ाइनों में संतृप्ति तापमान के नीचे इस संघनित तरल को कम करने के लिए अतिरिक्त लंबाई होती है।[4] संघनित्र डिज़ाइन में अनगिनत विविधताएँ उपस्थित हैं, जिनमें कार्यशील द्रव, द्वितीयक तरल पदार्थ, ज्यामिति और सामग्री सहित डिज़ाइन सम्मिलित हैं। सामान्य माध्यमिक तरल पदार्थों में पानी, हवा, रेफ़्रिजरेंट या चरण-परिवर्तन सामग्री सम्मिलित हैं।

संघनित्र के पास अन्य कूलिंग तकनीकों की तुलना में दो महत्वपूर्ण डिज़ाइन लाभ हैं:

  • गुप्त ऊष्मा द्वारा ऊष्मा का स्थानान्तरण केवल संवेदी ऊष्मा द्वारा ऊष्मा के स्थानान्तरण की तुलना में कहीं अधिक सक्षम होता है।
  • कार्यशील तरल पदार्थ का तापमान संघनन के दौरान अपेक्षाकृत स्थिर रहता है, जो काम करने वाले और द्वितीयक तरल पदार्थ के बीच तापमान के अंतर को अधिकतम करता है।

संघनित्र के उदाहरण

भूतल संघनित्र

एक सतह संघनित्र वह है जिसमें संघनक माध्यम और वाष्प भौतिक रूप से अलग होते हैं और प्रत्यक्ष संपर्क वांछित नहीं होने पर उपयोग किया जाता है। यह एक शेल और ट्यूब ताप विद्युत केंद्र है जो थर्मल पावर स्टेशनों में प्रत्येक भाप टरबाइन के खोल और ट्यूब हीट एक्सचेंजर पर स्थापित होता है। सामान्य रूप से, ठंडा पानी ट्यूब की तरफ से बहता है और भाप शैल की तरफ प्रवेश करती है जहां ऊष्मा स्थानान्तरण ट्यूबों के बाहर संघनन होता है। कंडेनसेट नीचे टपकता है और नीचे इकट्ठा होता है, प्रायः एक अंतर्निर्मित पैन में जिसे हॉटवेल कहा जाता है। शैल पक्ष प्रायः खालीपन या आंशिक वैक्यूम पर संचालित होता है, जो भाप और संघनन के बीच विशिष्ट मात्रा में अंतर द्वारा निर्मित होता है। इसके विपरीत, वाष्प को ट्यूबों के माध्यम से शीतलक पानी या बाहर बहने वाली हवा के साथ सिंचित किया जा सकता है।

रसायन विज्ञान

रसायन विज्ञान में, संघनित्र वह उपकरण है जो गर्म वाष्प को ठंडा करता है, जिससे वे द्रव में संघनित हो जाते हैं। उदाहरणों में लिबिग संघनित्र, ग्राहम संघनित्र और एलिहान संघनित्र सम्मिलित हैं। यह एक संक्षेपण प्रतिक्रिया के साथ भ्रमित नहीं है जो एक रासायनिक प्रतिक्रिया और एक उन्मूलन प्रतिक्रिया द्वारा दो टुकड़ों को एक अणु में जोड़ता है।

प्रयोगशाला आसवन, भाटा और रोटरी बाष्पीकरण में, कई प्रकार के संघनित्र सामान्य रूप से उपयोग किए जाते हैं। लिबिग संघनित्र कूलिंग वॉटर जैकेट के भीतर बस एक सीधी ट्यूब है, और संघनित्र का सबसे सरल (और अपेक्षाकृत कम खर्चीला) रूप है। ग्राहम संघनित्र एक वॉटर जैकेट के भीतर एक कुंडली ट्यूब है, और एलिह्न संघनित्र के अंदर की ट्यूब पर बड़े और छोटे अवरोधों की एक श्रृंखला है, प्रत्येक सतह क्षेत्र को बढ़ाता है जिस पर वाष्प के घटक संघनित हो सकते हैं। निर्माण के लिए अधिक जटिल आकार होने के कारण, बाद वाले प्रकारों को खरीदना भी अधिक महंगा है। ये तीन प्रकार के संघनित्र प्रयोगशाला कांच के बने पदार्थ हैं क्योंकि वे सामान्य रूप से कांच से बने होते हैं। व्यावसायिक रूप से उपलब्ध संघनित्र सामान्य रूप से ग्राउंड ग्लास जोड़ों से लगे होते हैं और 100, 200 और 400 मिमी की मानक लंबाई में आते हैं। एयर-कूल्ड संघनित्र अनजैकेट होते हैं, जबकि वाटर-कूल्ड संघनित्र में पानी के लिए एक जैकेट होता है।

औद्योगिक आसवन

आसुत वाष्प को तरल आसवन में ठंडा करने के लिए बड़े पैमाने पर आसवन प्रक्रियाओं में बड़े संघनित्र का भी उपयोग किया जाता है। सामान्य रूप से, शीतलक ट्यूब की तरफ से बहता है और डिस्टिल्ड वाष्प शेल साइड के माध्यम से डिस्टिलेट के नीचे या बाहर बहने के साथ बहता है।

एयर कंडीशनिंग

एक ठेठ घर के लिए सेंट्रल एयर कंडीशनिंग के लिए संघनित्र यूनिट

केंद्रीय एयर कंडीशनिंग सिस्टम में उपयोग की जाने वाली एक संघनित्र इकाई में सामान्य रूप से ठंडा करने के लिए हीट विनिमय खंड होता है और आने वाले रेफ्रिजरेटर वाष्प को तरल में संघनित करता है, रेफ्रिजरेटर के दबाव को बढ़ाने और इसे साथ ले जाने के लिए एक गैस कंप्रेसर और ऊष्मा के माध्यम से बाहर की हवा उड़ाने के लिए एक पंखा होता है। रेफ्रिजरेटर को अंदर ठंडा करने के लिए विनिमय खंड भी होता है। ऐसी संघनित्र इकाई का एक विशिष्ट विन्यास इस प्रकार है: ताप विनिमायक अनुभाग अंदर कंप्रेसर के साथ इकाई के किनारों के चारों ओर लपेटा जाता है। इस हीट एक्सचेंजर सेक्शन में, रेफ्रिजरेटर कई ट्यूब पास से गुजरता है, जो हीट स्थानान्तरण फिन्स से घिरे होते हैं, जिसके माध्यम से ठंडी हवा बाहर से यूनिट के अंदर तक फैल सकती है। शीर्ष के पास संघनित्र यूनिट के अंदर एक मोटर चालित पंखा (यांत्रिक) होता है, जो किसी भी वस्तु को गलती से पंखे के अंदर गिरने से बचाने के लिए कुछ जाली से ढका होता है। पंखे का उपयोग पक्षों पर हीट एक्सचेंजर सेक्शन के माध्यम से बाहर की ठंडी हवा को खींचने के लिए किया जाता है और इसे जाली के माध्यम से ऊपर से बाहर निकाला जाता है। ये संघनित्र इकाइयां इमारत के बाहर स्थित हैं, वे ठंडा करने की कोशिश कर रहे हैं, इकाई और इमारत के बीच टयूबिंग के साथ, एक वाष्प शीतलक प्रवेश करने के लिए और दूसरा तरल शीतलक इकाई छोड़ने के लिए। बेशक, यूनिट के अंदर कंप्रेसर और पंखे के लिए बिजली की आपूर्ति की आवश्यकता होती है।

सीधा-संपर्क

प्रत्यक्ष-संपर्क संघनित्र में, गर्म वाष्प और ठंडे तरल को एक बर्तन में पेश किया जाता है और ऊष्मा विनिमय करने वाला ट्यूब जो दीवार जैसे बाधा से अलग होने के बजाय सीधे मिश्रण करने की अनुमति दी जाती है। वाष्प अपनी गुप्त ऊष्मा छोड़ कर द्रव में संघनित हो जाता है, जबकि द्रव इस ऊष्मा को अवशोषित कर लेता है और तापमान में वृद्धि करता है। प्रवेश करने वाले वाष्प और तरल में सामान्य रूप से एक संघनित पदार्थ होता है, जैसे हवा को ठंडा करने और इसकी आर्द्रता को समायोजित करने के लिए पानी के स्प्रे का इस्तेमाल किया जाता है।

समीकरण

एक आदर्श सिंगल-पास संघनित्र के लिए जिसका शीतलक निरंतर घनत्व, निरंतर ताप क्षमता, तापमान सीमा पर रैखिक तापीय धारिता, सही पार-अनुभागीय ऊष्मा स्थानान्तरण, और शून्य अनुदैर्ध्य ऊष्मा स्थानान्तरण, और जिसकी ट्यूबिंग में निरंतर परिधि, निरंतर मोटाई और निरंतर ऊष्मा होती है चालकता संघनित द्रव पूरी तरह से मिश्रित होता है और स्थिर तापमान पर, शीतलक का तापमान उसके ट्यूब के अनुसार बदलता रहता है:

कहाँ पे:

  • शीतलक इनलेट से दूरी है
  • शीतलक तापमान है, और टी (0) इसके इनलेट पर शीतलक तापमान है
  • गर्म द्रव का तापमान है
  • स्थानांतरण इकाइयों की संख्या है
  • शीतलक का द्रव्यमान (या अन्य) प्रवाह दर है
  • प्रति इकाई द्रव्यमान (या अन्य) स्थिर दबाव पर शीतलक की ताप क्षमता है
  • शीतलक ट्यूब का ताप हस्तांतरण गुणांक है
  • शीतलक ट्यूब की परिधि है
  • शीतलक ट्यूब का ऊष्मा चालन है (प्रायः निरूपित किया जाता है )
  • शीतलक ट्यूब की लंबाई है

यह भी देखें

संदर्भ

  1. Hindelang, Man jjhat; Palazzolo, Joseph; Robertson, Matthew, "Condensers", Encyclopedia of Chemical Engineering Equipment, University of Michigan, archived from the original on 24 December 2012
  2. Weigel, Christian Ehrenfried (1771). Christian Ehrenfried Weigel, Volume 1 (in Latina). Goettingae (Göttingen): Aere Dieterichiano. pp. 8–11. Retrieved 16 September 2019.
  3. Liebig, Justus von; Poggendorff, J.C.; Wöhler, Fr. (eds.) (1842), Handwörterbuch der reinen und angewandten Chemie [Dictionary of pure and applied chemistry], vol. 2 (in German). Braunschweig, Germany: Friedrich Vieweg und Sohn. Article: "Destillation," pp. 526–554.
  4. Kays, W.M.; London, A.L. (January 1984), "Condensers", Compact Heat Exchangers, OSTI, OSTI 6132549