श्रेणी सहसंबंध

From Vigyanwiki

आंकड़ों में, श्रेणी सहसंबंध कई आँकड़ों में से एक है जो क्रमिक संघ को मापता है - विभिन्न क्रमिक आंकड़े चर की श्रेणी या एक ही चर की विभिन्न श्रेणी के बीच संबंध, जहां "श्रेणी" किसी विशेष चर के विभिन्न अवलोकनों के लिए क्रम वर्गीकरण "प्रथम", "दूसरा", "तीसरा" आदि का समनुदेशन है। श्रेणी सहसंबंध गुणांक दो श्रेणी के बीच समानता की घात को मापता है, और इसका उपयोग उनके बीच संबंध के सांख्यिकीय महत्व का आकलन करने के लिए किया जा सकता है। उदाहरण के लिए, श्रेणी सहसंबंध का उपयोग करने वाले महत्व के दो सामान्य गैर-पैरामीट्रिक तरीके मैन-व्हिटनी यू परीक्षण और विलकॉक्सन हस्ताक्षरित-श्रेणी परीक्षण हैं।

संदर्भ

यदि, उदाहरण के लिए, एक चर कॉलेज बास्केटबॉल कार्यक्रम की पहचान है और दूसरा चर कॉलेज फुटबॉल कार्यक्रम की पहचान है, तो कोई दो प्रकार के कार्यक्रम की पोल श्रेणी के बीच संबंध का परीक्षण कर सकता है: क्या उच्च श्रेणी वाले बास्केटबॉल कार्यक्रम वाले कॉलेज में उच्च श्रेणी वाले फुटबॉल कार्यक्रम होते हैं? एक श्रेणी सहसंबंध गुणांक उस रिश्ते को माप सकता है, और श्रेणी सहसंबंध गुणांक के महत्व का माप यह दिखा सकता है कि क्या मापा गया संबंध एक संयोग होने के लिए काफी छोटा है।

यदि केवल एक ही चर है, एक कॉलेज फुटबॉल कार्यक्रम की पहचान, लेकिन यह दो अलग-अलग पोल श्रेणी (जैसे, एक प्रशिक्षक द्वारा और एक खेल लेखकों द्वारा) के अधीन है, तो दो अलग-अलग पोल की श्रेणी की समानता को श्रेणी सहसंबंध गुणांक के साथ मापा जा सकता है।

एक अन्य उदाहरण के रूप में, कम आय, मध्यम आय, और पंक्ति चर में उच्च आय और शैक्षिक स्तर के साथ एक आसंग सारणी में - कॉलम चर में कोई हाई स्कूल, हाई स्कूल, विश्वविद्यालय नहीं),[1] श्रेणी सहसंबंध आय और शैक्षिक स्तर के बीच संबंध को मापता है।

सहसंबंध गुणांक

कुछ अधिक प्रचलित श्रेणी सहसंबंध आँकड़े सम्मिलित हैं

  1. स्पीयरमैन का श्रेणी सहसंबंध गुणांक
  2. केंडल का ताउ श्रेणी सहसंबंध गुणांक
  3. गुडमैन और क्रुस्कल का गामा
  4. सोमर्स डी

बढ़ते श्रेणी सहसंबंध गुणांक का तात्पर्य श्रेणी के बीच बढ़ते समझौते से है। गुणांक अंतराल [−1, 1] के अंदर है और मान मानता है:

  • 1 यदि दोनों श्रेणी के बीच समझौता सही है; दोनों श्रेणी समान हैं।
  • 0 यदि श्रेणी पूरी तरह से स्वतंत्र है।
  • −1 यदि दो श्रेणी के बीच असहमति सही है; एक श्रेणी दूसरे से उलट है।

अगले डायकोनिस (1988), श्रेणी को वस्तुओं के एक सम्मुच्चय (गणित) के क्रमपरिवर्तन के रूप में देखा जा सकता है। इस प्रकार हम प्रेक्षित श्रेणी को उस आंकड़े के रूप में देख सकते हैं जब प्रतिरूप स्थान एक सममित समूह (के साथ पहचाना जाता है) प्राप्त होता है। फिर हम एक आव्यूह (गणित) का परिचय दे सकते हैं, जिससे सममित समूह को एक मीट्रिक स्थान में बदल दिया जा सकता है। अलग-अलग आव्यूह अलग-अलग श्रेणी सहसंबंधों के अनुरूप होंगे।

सामान्य सहसंबंध गुणांक

केंडल 1970 [2] दिखाया कि उसका (तउ) और स्पीयरमैन का (आरएचओ) सामान्य सहसंबंध गुणांक की विशेष स्तिथि हैं।

मान लीजिए हमारे पास एक सम्मुच्चय है जिन वस्तुओं पर दो गुणों के संबंध में विचार किया जा रहा है, उनका प्रतिनिधित्व और द्वारा किया जाता है, जो और मूल्यों के सम्मुच्चय का निर्माण करता है। वैयक्तिक व्यक्तियों के किसी भी जोड़े को, मान लें कि i-वें और j-वें को हम एक x-स्कोर निर्दिष्ट करते हैं, जिसे द्वारा दर्शाया जाता है, और एक y-स्कोर, जिसे द्वारा दर्शाया जाता है। इन कार्यों के लिए एकमात्र आवश्यकता यह है कि वे सममित-विरोधी हों, इसलिए और है (ध्यान दें कि विशेष रूप से अगर ।) फिर सामान्यीकृत सहसंबंध गुणांक परिभाषित किया जाता है

समान रूप से, यदि सभी गुणांक आव्यूह और , साथ और में एकत्र किए जाते हैं, तब

जहाँ फ्रोबेनियस आंतरिक उत्पाद है और फ्रोबेनियस मानदंड है। विशेष रूप से, सामान्य सहसंबंध गुणांक आव्यूह और के बीच के कोण की कोज्या है।

केंडल का τ एक विशेष स्तिथि के रूप में

अगर , की श्रेणी -घटक के अनुसार क्रमशः -गुणवत्ता और -गुणवत्ता हैं, तो हम निम्न परिभाषित कर सकते हैं

योग सुसंगत जोड़ियों की संख्या घटाकर असंगत जोड़ियों की संख्या है (केंडल टाउ श्रेणी सहसंबंध गुणांक देखें)। योग बस है, पदों की संख्या है, जैसे । इस प्रकार इस स्तिथि में,


एक विशेष स्तिथि के रूप में स्पीयरमैन का ρ

अगर , की श्रेणी हैं, -घटक के अनुसार और यह -गुणवत्ता क्रमशः, हम आव्यूह पर विचार कर सकते हैं, जो निम्न द्वारा परिभाषित है

योग और बराबर हैं,

चूंकि दोनों और से श्रेणी को .

इस तरह

इस अभिव्यक्ति को सरल बनाने के लिए, मान लीजिये प्रत्येक के लिए श्रेणी में अंतर दर्शाएं। आगे, मान लीजिये एक समान रूप से वितरित असतत यादृच्छिक चर है।

श्रेणी के बाद से के केवल क्रमपरिवर्तन हैं, हम दोनों को वितरित यादृच्छिक चर के रूप में देख सकते हैं। असतत गणित से मूल योग परिणामों का उपयोग करना, यह देखना आसान है कि समान रूप से वितरित यादृच्छिक चर के लिए, हमारे पास और है और इस तरह

होता है। अब, समरूपता का अवलोकन हमें इसके भागों की गणना करने की अनुमति देता है निम्नलिखित नुसार:

और

इस तरह

जहाँ श्रेणी के बीच अंतर है, जो बिल्कुल स्पीयरमैन का श्रेणी सहसंबंध गुणांक है।

श्रेणी-द्विक्रमिक सहसंबंध

जीन ग्लास (1965) ने कहा कि श्रेणी-द्विपंक्तिक स्पीयरमैन से प्राप्त किया जा सकता है। कोई एक्स, द्विभाजित चर और वाई, श्रेणी चर पर परिभाषित गुणांक प्राप्त कर सकता है, जो एक्स और वाई के बीच स्पीयरमैन के आरएचओ का उसी तरह अनुमान लगाता है जैसे द्विक्रमिक आर दो सामान्य चर (पी. 91) के बीच पियर्सन के आर का अनुमान लगाता है"। श्रेणी-द्विक्रमिक सहसंबंध को नौ साल पहले एडवर्ड क्यूरटन (1956) द्वारा श्रेणी सहसंबंध के एक उपाय के रूप में प्रस्तुत किया गया था जब श्रेणी दो समूहों में होते हैं।

केर्बी सरल अंतर सूत्र

डेव केर्बी (2014) ने छात्रों को श्रेणी सहसंबंध से परिचित कराने के उपाय के रूप में श्रेणी-द्विक्रमिक का अनुग्रह किया, क्योंकि सामान्य तर्क को परिचयात्मक स्तर पर समझाया जा सकता है। श्रेणी-द्विपंक्तिक मान-व्हिटनी यू परीक्षण के साथ उपयोग किया जाने वाला सहसंबंध है, जो सामान्यतः सांख्यिकी पर परिचयात्मक कॉलेज पाठ्यक्रमों में सम्मिलित एक विधि है। इस परीक्षण के आंकड़े में दो समूह सम्मिलित हैं; और समूहों के प्रत्येक घटक के लिए, परिणाम को समग्र रूप से अध्ययन के लिए क्रमबद्ध किया जाता है।

केर्बी ने दिखाया कि इस श्रेणी सहसंबंध को दो अवधारणाओं के संदर्भ में व्यक्त किया जा सकता है: आंकड़े का प्रतिशत जो किसी बताई गई परिकल्पना का समर्थन करता है, और आंकड़े का प्रतिशत जो इसका समर्थन नहीं करता है। केर्बी सरल अंतर सूत्र में कहा गया है कि श्रेणी सहसंबंध को अनुकूल साक्ष्य (f) के अनुपात से प्रतिकूल साक्ष्य (u) के अनुपात के बीच अंतर के रूप में व्यक्त किया जा सकता है।


उदाहरण और व्याख्या

गणना को स्पष्ट करने के लिए, मान लीजिए कि एक प्रशिक्षक दो तरीकों का उपयोग करके एक महीने के लिए लंबी दूरी के धावकों को प्रशिक्षित करता है। समूह ए में 5 धावक हैं, और समूह बी में 4 धावक हैं। बताई गई परिकल्पना यह है कि विधि ए तीव्र धावक उत्पन्न करती है। परिणामों का आकलन करने की दौड़ में पाया गया कि समूह ए के धावक वास्तव में, निम्नलिखित श्रेणी के साथ: 1, 2, 3, 4, और 6 तीव्र दौड़ते हैं। समूह बी के धीमे धावकों की श्रेणी 5, 7, 8 और 9 है।

विश्लेषण जोड़ियों पर किया जाता है, जिन्हें एक समूह के घटक की तुलना में दूसरे समूह के घटक के रूप में परिभाषित किया जाता है। उदाहरण के लिए, अध्ययन में सबसे तीव्र धावक चार जोड़ियों का घटक (1,5), (1,7), (1,8), और (1,9) है। ये चारों जोड़े परिकल्पना का समर्थन करते हैं, क्योंकि प्रत्येक जोड़ी में समूह ए का धावक समूह बी के धावक से तीव्र है। कुल 20 जोड़े हैं, और 19 जोड़े परिकल्पना का समर्थन करते हैं। एकमात्र जोड़ी जो परिकल्पना का समर्थन नहीं करती वह श्रेणी 5 और 6 वाले दो धावक हैं, क्योंकि इस जोड़ी में समूह बी के धावक का समय सबसे तीव्र था। केर्बी सरल अंतर सूत्र के अनुसार, 95% आंकड़े परिकल्पना का समर्थन करता है (20 जोड़े में से 19), और 5% समर्थन नहीं करता है (20 जोड़े में से 1), इसलिए श्रेणी सहसंबंध r = .95 - .05 = .90 है।

सहसंबंध का अधिकतम मान r = 1 है, जिसका अर्थ है कि 100% जोड़े परिकल्पना के पक्ष में हैं। r = 0 का सहसंबंध इंगित करता है कि आधे जोड़े परिकल्पना का समर्थन करते हैं और आधे नहीं; दूसरे शब्दों में, प्रतिरूप समूह श्रेणी में भिन्न नहीं होते हैं, इसलिए इसका कोई प्रमाण नहीं है कि वे दो अलग-अलग आबादी से आते हैं। कहा जा सकता है कि r = 0 का प्रभाव आकार समूह घटकता और घटकों के श्रेणी के बीच कोई संबंध नहीं बताता है।

संदर्भ

  1. Kruskal, William H. (1958). "एसोसिएशन के सामान्य उपाय". Journal of the American Statistical Association. 53 (284): 814–861. doi:10.2307/2281954. JSTOR 2281954.
  2. Kendall, Maurice G (1970). रैंक सहसंबंध विधियाँ (4 ed.). Griffin. ISBN 9780852641996.


अग्रिम पठन


बाहरी संबंध