रिसाव (इलेक्ट्रॉनिक्स)

From Vigyanwiki

इलेक्ट्रानिक्स में, रिसाव एक सीमा के पार विद्युत ऊर्जा का क्रमिक हस्तांतरण है जिसे सामान्य रूप से इन्सुलेट के रूप में देखा जाता है, जैसे चार्ज संधारित्र का सहज निर्वहन, अन्य घटकों के साथ ट्रांसफार्मर के चुंबकीय युग्मन, या "ऑफ़" स्थिति या रिवर्स-पोलराइज़्ड डायोड में ट्रांजिस्टर के पार धारा का प्रवाह है।

संधारित्र

चार्ज किए गए संधारित्र से ऊर्जा का धीरे-धीरे नुकसान मुख्य रूप से संधारित्र से जुड़े इलेक्ट्रॉनिक उपकरणों, जैसे ट्रांजिस्टर या डायोड के कारण होता है, जो बंद होने पर भी थोड़ी मात्रा में धारा का संचालन करते हैं। भले ही यह ऑफ धारा चालू होने पर उपकरण के माध्यम से धारा से कम परिमाण का एक क्रम है, फिर भी धारा धीरे-धीरे संधारित्र को डिस्चार्ज करता है। संधारित्र से रिसाव के लिए एक अन्य योगदान संधारित्र में प्रयुक्त अपरिचालक पदार्थों की अवांछित अपूर्णता से होता है, जिसे अपरिचालक रिसाव भी कहा जाता है। यह अचालक सामग्री का आदर्श विसंवाहक नहीं होने और कुछ गैर-शून्य चालकता होने का परिणाम है, जिससे रिसाव प्रवाह की अनुमति मिलती है, जिससे धीरे-धीरे संधारित्र का निर्वहन होता है।[1]

अन्य प्रकार का रिसाव तब होता है जब धारा किसी वैकल्पिक मार्ग से प्रवाहित होने के बजाय इच्छित परिपथ से बाहर निकल जाता है। इस प्रकार का रिसाव अवांछनीय है क्योंकि वैकल्पिक मार्ग से प्रवाहित होने वाली धारा क्षति, आग, आरएफ ध्वनि, या बिजली के झटके का कारण बन सकती है।[2] इस प्रकार के रिसाव को यह देखकर मापा जा सकता है कि परिपथ में किसी बिंदु पर धारा का प्रवाह दूसरे बिंदु पर प्रवाह से मेल नहीं खाता है। उच्च-वोल्टेज प्रणाली में रिसाव, रिसाव के संपर्क में आने वाले व्यक्ति के लिए घातक हो सकता है, जैसे कि जब कोई व्यक्ति गलती से एक उच्च-वोल्टेज विद्युत लाइन को ग्राउंड कर देता है।[3]

इलेक्ट्रॉनिक संयोजनों और परिपथ के बीच

रिसाव का मतलब परिपथ से दूसरे परिपथ में ऊर्जा का अवांछित स्थानांतरण भी हो सकता है। उदाहरण के लिए, फ्लक्स की चुंबकीय रेखाएं पूरी तरह से बिजली ट्रांसफार्मर के कोर के भीतर ही सीमित नहीं होंगी; एक अन्य परिपथ ट्रांसफॉर्मर से जुड़ सकता है और बिजली के मेन्स की आवृत्ति पर कुछ क्षरण ऊर्जा प्राप्त कर सकता है, जो ऑडियो एप्लिकेशन में श्रव्य गुंजन का कारण होता है।[4]

क्षरण धारा भी कोई धारा होता है जो तब बहता है जब आदर्श धारा शून्य होता है। इलेक्ट्रॉनिक असेंबलियों में ऐसा मामला होता है जब वे स्टैंडबाय, अक्षम या "स्लीप" मोड (स्टैंडबाय पावर) में होते हैं। ये उपकरण पूर्ण संचालन के दौरान सैकड़ों या हजारों मिलीमीटर की तुलना में एक या दो माइक्रोएम्पीयर को अपनी शांत अवस्था में आकर्षित कर सकते हैं। उपभोक्ता के लिए बैटरी चलाने के समय पर उनके अवांछनीय प्रभाव के कारण ये क्षरण धाराएं पोर्टेबल उपकरण निर्माताओं के लिए एक महत्वपूर्ण कारक बन रही हैं।[5]

जब बिजली या इलेक्ट्रॉनिक असेंबली की आपूर्ति करने वाले बिजली परिपथ में मुख्य फिल्टर का उपयोग किया जाता है, उदाहरण के लिए, परिवर्तनीय आवृत्ति ड्राइव या एसी-डीसी विद्युत परिवर्तक, रिसाव धाराएं "Y" संधारित्र के माध्यम से बहती हैं जो लाइव और तटस्थ कंडक्टर अर्थिंग या ग्राउंडिंग कंडक्टर के बीच जुड़ी होती हैं।

इन संधारित्र के माध्यम से प्रवाहित होने वाली धारा विद्युत लाइन आवृत्तियों पर संधारित्र के प्रतिबाधा के कारण होती है।[6][7] क्षरण धारा की कुछ मात्रा को सामान्यतः स्वीकार्य माना जाता है, हालांकि, अत्यधिक क्षरण धारा, 30 mA से अधिक, उपकरण के उपयोगकर्ताओं के लिए खतरा पैदा कर सकता है। कुछ अनुप्रयोगों में, उदाहरण के लिए, रोगी संपर्क वाले चिकित्सा उपकरण, क्षरण धारा स्वीकार्य मात्रा 10 mA पर्याप्त से कम हो सकती है।

अर्धचालक

अर्धचालक उपकरणों में, क्षरण क्वांटम घटना है जहां मोबाइल चार्ज वाहक (इलेक्ट्रॉन या छेद) एक इन्सुलेटिंग क्षेत्र के माध्यम से सुरंग बनाते हैं। इंसुलेटिंग क्षेत्र की मोटाई कम होने से रिसाव तेजी से बढ़ता है। अत्यधिक डोप किए गए पी-टाइप और एन-टाइप अर्धचालकों के बीच अर्धचालक जंक्शनों में टनलिंग रिसाव भी हो सकता है। गेट विसंवाहक या जंक्शनों के माध्यम से सुरंग बनाने के अलावा, वाहक धातु ऑक्साइड सेमीकंडक्टर (एमओएस) ट्रांजिस्टर के स्रोत और नाली टर्मिनलों के बीच भी रिसाव कर सकते हैं। इसे सबथ्रेशोल्ड चालन कहा जाता है। रिसाव का प्राथमिक स्रोत ट्रांजिस्टर के अंदर होता है, लेकिन आपस के बीच इलेक्ट्रॉन भी क्षरण हो सकते हैं। रिसाव से बिजली की खपत बढ़ जाती है और यदि पर्याप्त रूप से बड़ा हो तो पूर्ण परिपथ विफलता हो सकती है।

क्षरण धारा में कंप्यूटर प्रोसेसर के प्रदर्शन को बढ़ाने वाले मुख्य कारकों में से एक है। रिसाव को कम करने के प्रयासों में सेमीकंडक्टर में अस्वाभाविक सिलिकॉन, उच्च-κ डाइलेक्ट्रिक्स, और/या मजबूत डोपेंट स्तरों का उपयोग सम्मिलित है। मूर के नियम को जारी रखने के लिए रिसाव में कमी के लिए न केवल नए भौतिक समाधानों की आवश्यकता होगी, बल्कि उचित प्रणाली डिजाइन की भी आवश्यकता होगी।

कुछ प्रकार के सेमीकंडक्टर निर्माण दोष बढ़े हुए रिसाव के रूप में खुद को प्रदर्शित करते हैं। इस प्रकार रिसाव को मापना, या आईडीडीक्यू परीक्षण दोषपूर्ण चिप्स खोजने का एक त्वरित, अल्पमूल्य विधि है।

बढ़ा हुआ रिसाव एक सामान्य विफलता मोड है, जो अर्धचालक उपकरण के गैर-विनाशकारी अतिप्रतिबल से उत्पन्न होता है, जब जंक्शन या गेट ऑक्साइड को स्थायी क्षति होती है, जो एक विनाशकारी विफलता का कारण नहीं बनती। गेट ऑक्साइड को ओवरस्ट्रेस करने से स्ट्रेस-प्रेरित क्षरण धारा हो सकता है।

द्विध्रुवी जंक्शन ट्रांजिस्टर में, एमिटर धारा कलेक्टर और बेस धारा का योग होता है। Ie = Ic + Ib संग्राहक धारा के दो घटक होते हैं: अल्पसंख्यक वाहक और बहुसंख्यक वाहक, अल्पसंख्यक धारा को क्षरण धारा कहा जाता है।

हेटरोस्ट्रक्चर फील्ड-इफेक्ट ट्रांजिस्टर (एचएफईटी) में गेट रिसाव सामान्यतः अवरोध के भीतर रहने वाले जाल के उच्च घनत्व के लिए जिम्मेदार होता है। जीएएन एचएफईटी का गेट क्षरण अब तक GaAs जैसे अन्य समकक्षों की तुलना में उच्च स्तर पर रहने के लिए देखा गया है।[8]

क्षरण धारा को सामान्यतः माइक्रोएम्पीयर में मापा जाता है। रिवर्स-बायस्ड डायोड तापमान संवेदनशील होता है। डायोड विशेषताओं को जानने के लिए विस्तृत तापमान रेंज में काम करने वाले अनुप्रयोगों के लिए क्षरण धारा की सावधानीपूर्वक जांच की जानी चाहिए।

यह भी देखें

  • ग्रिड क्षरण
  • निष्क्रिय धारा
  • विद्युत प्रणालियों में हानियाँ
  • परजीवी नुकसान
  • अवशिष्ट-वर्तमान परिपथ ब्रेकर

संदर्भ

  1. Associated Research Tech Info Archived 2006-10-16 at the Wayback Machine
  2. Issues with Leakage
  3. "Glossary from System Connection". Archived from the original on 2008-12-01. Retrieved 2009-09-09.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. Glossary from Electric Fence Archived 2011-10-08 at the Wayback Machine
  5. Keysight Technologies Application Note: Increase DC-input Battery Adapter Test Throughput By Several-fold
  6. Schaffner - Leakage currents in power line filters
  7. [https://incompliancemag.com/article/leakage-current-measuring-circuits/ Leakage Current Measuring Circuits
  8. Rahbardar Mojaver, Hassan; Valizadeh, Pouya (April 2016). "Reverse Gate-Current of AlGaN/GaN HFETs: Evidence of Leakage at Mesa Sidewalls". IEEE Transactions on Electron Devices. 63 (4): 1444–1449. doi:10.1109/TED.2016.2529301. ISSN 0018-9383. S2CID 43162250.