यूनिट हाइपरबोला

From Vigyanwiki
इकाई हाइपरबोला नीला है, इसका संयुग्म हरा है, एवं स्पर्शोन्मुख लाल हैं।

ज्यामिति में, यूनिट हाइपरबोला कार्टेशियन तल में बिंदुओं (x,y) का समूह है जो अंतर निहित समीकरण को संतुष्ट करता है | अनिश्चित ऑर्थोगोनल समूहों के अध्ययन में, यूनिट हाइपरबोला वैकल्पिक रेडियल लंबाई के लिए आधार बनाता है |

यूनिट सर्कल इसके केंद्र के चारों ओर होता है, यूनिट हाइपरबोला को संयुग्मित हाइपरबोला की आवश्यकता होती है । हाइपरबोलस की यह जोड़ी स्पर्शोन्मुख y = x एवं y = −x भागित करती है। जब इकाई अतिशयोक्ति का संयुग्म उपयोग में होता है, तो वैकल्पिक रेडियल लंबाई होती है | यूनिट हाइपरबोला विशेष अभिविन्यास (ज्यामिति), अनुवाद (ज्यामिति), एवं स्केलिंग (ज्यामिति) के साथ आयताकार हाइपरबोला का विशेष विषय होता है। इसकी विलक्षणता (गणित) के समान होती है | यूनिट हाइपरबोला उन अनुप्रयोगों को अन्वेषण करता है जहां विश्लेषणात्मक ज्यामिति के प्रयोजनों के लिए घेरे को हाइपरबोला से परिवर्तित किया जाना चाहिए। प्रमुख उदाहरण छद्म-यूक्लिडियन अंतरिक्ष के रूप में अंतरिक्ष समय का चित्रण है। वहां इकाई अतिपरवलय के स्पर्शोन्मुख प्रकाश शंकु निर्माण करते हैं। इसके अतिरिक्त, सेंट विंसेंट के ग्रेगरी द्वारा अतिशयोक्तिपूर्ण क्षेत्रों पर ध्यान लघु गणक फलन एवं क्षेत्रों द्वारा अतिपरवलय के आधुनिक पैरामीट्रिजेशन का नेतृत्व किया गया है। जब संयुग्मी अतिपरवलय एवं अतिपरवलयिक कोणों की धारणाओं का अध्ययन किया जाता है, तो शास्त्रीय जटिल संख्याएँ, जो इकाई वृत्त के चारों ओर निर्मित होती हैं, उनको इकाई अतिपरवलय के चारों ओर निर्मित संख्याओं से परिवर्तित किया जा सकता है।

स्पर्शोन्मुख

सामान्यतः वक्र के लिए स्पर्शोन्मुख रेखाएँ वक्र की ओर अभिसरित होती हैं। बीजगणितीय ज्यामिति एवं बीजगणितीय वक्रों के सिद्धांत में स्पर्शोन्मुख के लिए भिन्न दृष्टिकोण होता है। सजातीय निर्देशांक का उपयोग करते हुए वक्र को पूर्व प्रक्षेपी समतल में व्याख्या की जाती है। स्पर्शोन्मुख रेखाएँ वह होती हैं जो अनंत पर बिंदु पर प्रक्षेप्य वक्र की स्पर्शरेखा होती हैं, दूरी की अवधारणा एवं अभिसरण की आवश्यकता को भिन्न करती हैं। सामान्य रूप में (x, y, z) समीकरण z = 0 द्वारा निर्धारित अनंत पर रेखा के साथ सजातीय निर्देशांक हैं। उदाहरण के लिए, सी. जी गिब्सन ने लिखा:[1]

मानक आयताकार अतिपरवलय के लिए 2, संगत प्रक्षेपी वक्र है, जो बिंदु P = (1 : 1 : 0) एवं Q = (1 : −1 : 0) पर z = 0 से मिलता है। P एवं Q दोनों शून्य हैं, F पर शून्य की बहुलता, स्पर्शरेखा x + y = 0, x - y = 0 के साथ; इस प्रकार हम प्राथमिक ज्यामिति के परिचित 'असिम्पटोट्स' को पुनः प्राप्त करते हैं।

मिन्कोव्स्की आरेख

मिन्कोव्स्की आरेख स्पेसटाइम समतल में चित्रित किया गया है जहां स्थानिक पछ को आयाम तक सीमित कर दिया गया है। ऐसे तल पर दूरी एवं समय की इकाइयाँ हैं

  • 30 सेंटीमीटर लंबाई एवं नैनोसेकंड की इकाइयां, या
  • खगोलीय इकाइयाँ एवं 8 मिनट एवं 20 सेकंड का अंतराल, या
  • प्रकाश वर्ष एवं वर्ष है।

निर्देशांक के इन स्तर में से प्रत्येक ढलान प्लस या माइनस विकर्ण रेखाओं के साथ घटनाओं के फोटॉन कनेक्शन में परिणत होता है। पांच तत्व आरेख का निर्माण करते हुए, हरमन मिन्कोव्स्की ने सापेक्षता परिवर्तनों का वर्णन करने के लिए इकाई हाइपरबोला, इसके संयुग्मित हाइपरबोला, हाइपरबोला की धुरी, इकाई हाइपरबोला का व्यास एवं संयुग्म व्यास उपयोग किया है। तल की धुरी संदर्भ के आराम करने वाले फ्रेम को संदर्भित करता है। यूनिट हाइपरबोला का व्यास गति के साथ गति के संदर्भ के फ्रेम का प्रतिनिधित्व करता है जहां tanh a = y/x एवं (x,y) यूनिट हाइपरबोला पर व्यास का अंत बिंदु है। संयुग्म व्यास साथ गति के स्थानिक हाइपरप्लेन का प्रतिनिधित्व करता है, जो कि तीव्रता a के अनुरूप है। इस संदर्भ में इकाई अतिपरवलय अंशांकन अतिपरवलय है[2][3]सामान्यतः सापेक्षता अध्ययन में ऊर्ध्वाधर अक्ष वाले अतिपरवलय को प्राथमिक के रूप में लिया जाता है:

समय का तीर आकृति के नीचे से ऊपर की ओर जाता है - रिचर्ड फेनमैन द्वारा अपने प्रसिद्ध आरेखों में अपनाई गई प्रथा है। अंतरिक्ष को समय अक्ष के लंबवत समतलों द्वारा प्रदर्शित किया गया है।[4]

वर्टिकल टाइम एक्सिस कन्वेंशन 1908 में मिंकोव्स्की से उपजा है, एवं एडिंगटन की द नेचर ऑफ द फिजिकल वर्ल्ड (1928) के पृष्ठ 48 पर भी चित्रित किया गया है।

पैरामीट्रिजेशन

यूनिट हाइपरबोला की शाखाएँ बिंदुओं के रूप में विकसित होती हैं एवं अतिशयोक्तिपूर्ण कोण पैरामीटर के आधार पर

यूनिट हाइपरबोला को पैरामीटराइज़ करने का सरल उपाय हाइपरबोला xy = 1 के साथ घातीय फलन के साथ प्रारम्भ होता है:

यह हाइपरबोला मैट्रिक्स वाले रेखीय मानचित्रण द्वारा इकाई हाइपरबोला में परिवर्तित हो जाता है

यह पैरामीटर t 'हाइपरबॉलिक कोण' है, जो हाइपरबोलिक फलन का तर्क है।

विलियम किंग्डन क्लिफोर्ड डब्ल्यू द्वारा गतिशील के तत्व (1878) में पैरामीट्रिज्ड यूनिट हाइपरबोला की प्रारंभिक अभिव्यक्ति प्राप्त होती है। क्लिफर्ड ने हाइपरबोला में अर्ध-हार्मोनिक गति का वर्णन इस प्रकार किया है:

प्रस्ताव अण्डाकार हार्मोनिक गति के लिए कुछ जिज्ञासु उपमाएँ हैं। त्वरण यह सदैव केंद्र से दूरी के समानुपाती होता है, जैसा कि अण्डाकार हार्मोनिक गति में होता है, परन्तु केंद्र से दूर निर्देशित होता है।[5]

विशेष शंकु खंड के रूप में, अतिपरवलय को शंकु पर अंक जोड़ने की प्रक्रिया द्वारा पैरामीट्रिज किया जा सकता है। निम्नलिखित विवरण रूसी विश्लेषकों द्वारा दिया गया था:

शांकव पर बिंदु E लगाइए । उन बिंदुओं पर विचार करें जिन पर AB के समानांतर E से खींची गई सीधी रेखा शांकव को दूसरी बार बिंदु A एवं B के योग के रूप में विभाजित करती है।
हाइपरबोला के लिए निश्चित बिंदु E = (1,0) के साथ अंकों का योग एवं बिंदु है पैरामीट्रिजेशन के अन्तर्गत एवं यह जोड़ पैरामीटर t के जोड़ से प्राप्त होता है।[6]


जटिल समतल बीजगणित

यूनिट सर्कल जटिल संख्याओं से जुड़ा हुआ है, यूनिट हाइपरबोला स्प्लिट-कॉम्प्लेक्स नंबर तल की कुंजी है जिसमें z = x + yj, जहां j2 = +1 सम्मिलित है । उसके पश्चात jz = y + xj, समतल पर j की क्रिया निर्देशांकों की आदान प्रदान करना है। विशेष रूप से, यह क्रिया यूनिट हाइपरबोला को इसके संयुग्म के साथ परिवर्तित करती है एवं हाइपरबोलस के संयुग्मित व्यास के जोड़े को परिवर्तित करती है।

हाइपरबॉलिक कोण पैरामीटर a के संदर्भ में, यूनिट हाइपरबोला में अंक होते हैं

, जहां j= (0,1) है।

यूनिट हाइपरबोला की दाहिनी शाखा सकारात्मक गुणांक के समान है। वास्तव में, यह शाखा j- अक्ष पर कार्य करने वाले घातीय मानचित्र (असत्य सिद्धांत) की छवि है। यह शाखा वक्र है, a पर वक्र की प्रवणता अवकलज द्वारा दी गई है। किसी a के लिए ), f(a) का अतिशयोक्तिपूर्ण-ऑर्थोगोनल है । जब i2 = - 1, यह संबंध exp(a i) एवं i exp(a i) की लंबवतता के अनुरूप है।

, शाखा गुणन के अन्तर्गत समूह (गणित) है।

वृत्त समूह के विपरीत, यह इकाई अतिपरवलय समूह कॉम्पैक्ट स्थान नहीं है। साधारण जटिल तल के समान, बिंदु जो विकर्णों पर नहीं है, उसका ध्रुवीय अपघटन होता है, वैकल्पिक समतलीय अपघटन इकाई हाइपरबोला के पैरामीट्रिजेशन एवं वैकल्पिक रेडियल लंबाई का उपयोग करता है।

संदर्भ

  1. C.G. Gibson (1998) Elementary Geometry of Algebraic Curves, p 159, Cambridge University Press ISBN 0-521-64140-3
  2. Anthony French (1968) Special Relativity, page 83, W. W. Norton & Company
  3. W.G.V. Rosser (1964) Introduction to the Theory of Relativity, figure 6.4, page 256, London: Butterworths
  4. A.P. French (1989) "Learning from the past; Looking to the future", acceptance speech for 1989 Oersted Medal, American Journal of Physics 57(7):587–92
  5. William Kingdon Clifford (1878) Elements of Dynamic, pages 89 & 90, London: MacMillan & Co; on-line presentation by Cornell University Historical Mathematical Monographs
  6. Viktor Prasolov & Yuri Solovyev (1997) Elliptic Functions and Elliptic Integrals, page one, Translations of Mathematical Monographs volume 170, American Mathematical Society