मल्टीसिंपलेक्टिक इंटीग्रेटर

From Vigyanwiki

गणित में, एक बहुआयामी इंटीग्रेटर आंशिक अंतर समीकरणों के निश्चित वर्ग के समाधान के लिए एक संख्यात्मक विश्लेषण है, जिसे बहुआयामी कहा जाता है। बहुआयामी इंटीग्रेटर्स ज्यामितीय इंटीग्रेटर्स हैं, जिसका अर्थ है कि वे समस्याओं की ज्यामिति को संरक्षित करते हैं; विशेष रूप से, संख्यात्मक विधि आंशिक अंतर समीकरण के समान कुछ अर्थों में ऊर्जा और संवेग को संरक्षित करती है। बहुआयामी इंटीग्रेटर्स के उदाहरणों में यूलर बॉक्स स्कीम और प्रीसमैन बॉक्स स्कीम सम्मलित हैं।

बहुआयामी समीकरण

यदि इसे इस रूप में लिखा जा सकता है, तो एक आंशिक अंतर समीकरण (पीडीई) को एक बहुआयामी समीकरण कहा जाता है,

जहाँ अज्ञात है, और (स्थिर) विषम-सममित आव्यूह हैं और , की प्रवणता को दर्शाता है।[1] हैमिल्टनियन यांत्रिकी ओडीई का रूप तथा यह का एक प्राकृतिक सामान्यीकरण है।[2]

बहुआयामी पीडीई के उदाहरणों में अरैखिक क्लेन-गॉर्डन समीकरण , या अधिक सामान्यतः अरैखिक तरंग समीकरण ,[3] और केडीवी समीकरण [4] सम्मलित हैं।

2-रूपों और को परिभाषित करें,

जहां डॉट उत्पाद को दर्शाता है। विभेदक समीकरण इस अर्थ में सहानुभूति को संरक्षित करता है,

[3]

पीडीई के डॉट उत्पाद को के साथ लेने से ऊर्जा के लिए स्थानीय संरक्षण नियम (भौतिकी) प्राप्त होता है:

[4]

संवेग के लिए स्थानीय संरक्षण नियम इसी प्रकार व्युत्पन्न किया गया है:

[4]

यूलर बॉक्स स्कीम

बहुआयामी इंटीग्रेटर बहुआयामी पीडीई को हल करने के लिए एक संख्यात्मक विधि है जिसका संख्यात्मक समाधान सहानुभूति के असतत रूप को संरक्षित करता है।[5] एक उदाहरण यूलर बॉक्स स्कीम है, जो प्रत्येक स्वतंत्र चर के लिए सिम्पलेक्टिक यूलर विधि लागू करके प्राप्त की जाती है।[6]

यूलर बॉक्स स्कीम विषम सममित आव्यूहों और फॉर्म के विभाजन का उपयोग करती है:

उदाहरण के लिए, कोई और को क्रमशः और का ऊपरी त्रिकोणीय भाग ले सकता है।[7]

अब एक नियमित ग्रिड का परिचय दें और को सन्निकटन को इंगित करें समय में और समष्टि दिशा में जहां और ग्रिड हैं, फिर यूलर बॉक्स स्कीम इस प्रकार है।

जहां परिमित अंतर ऑपरेटरों द्वारा परिभाषित किया गया है।

[8]

यूलर बॉक्स योजना एक प्रथम-क्रम विधि है,[6] जो असतत संरक्षण नियम को संतुष्ट करती है।

[9]

प्रीसमैन बॉक्स स्कीम

एक अन्य बहुआयामी इंटीग्रेटर प्रीसमैन बॉक्स स्कीम है, जिसे प्रीसमैन द्वारा हाइपरबॉलिक पीडीई के संदर्भ में प्रस्तुत किया गया था।[10] इसे केन्द्रित कोशिका योजना के रूप में भी जाना जाता है।[11] प्रिसमैन बॉक्स स्कीम को इंप्लिक्ट मिडपॉइंट नियम लागू करके प्राप्त किया जा सकता है, जो प्रत्येक स्वतंत्र चर के लिए एक सहानुभूतिपूर्ण इंटीग्रेटर है।[12] यह योजना की ओर जाता है,

जहां परिमित अंतर संकारक और ऊपर बताए अनुसार परिभाषित किए गए हैं और अर्ध-पूर्णांक पर मान निम्न द्वारा परिभाषित किए गए है।

[12]

प्रीसमैन बॉक्स स्कीम एक दूसरे क्रम का बहुआयामी इंटीग्रेटर है जो असतत संरक्षण नियम को संतुष्ट करता है।

[13]


टिप्पणियाँ


संदर्भ

  • Abbott, M.B.; Basco, D.R. (1989), Computational Fluid Dynamics, Longman Scientific.
  • Bridges, Thomas J. (1997), "A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities" (PDF), Proc. R. Soc. Lond. A, 453 (1962): 1365–1395, Bibcode:1997RSPSA.453.1365B, doi:10.1098/rspa.1997.0075, S2CID 122524451.
  • Bridges, Thomas J.; Reich, Sebiastian (2001), "Multi-Symplectic Integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity", Phys. Lett. A, 284 (4–5): 184–193, Bibcode:2001PhLA..284..184B, CiteSeerX 10.1.1.46.2783, doi:10.1016/S0375-9601(01)00294-8.
  • Leimkuhler, Benedict; Reich, Sebastian (2004), Simulating Hamiltonian Dynamics, Cambridge University Press, ISBN 978-0-521-77290-7.
  • Islas, A.L.; Schober, C.M. (2004), "On the preservation of phase space structure under multisymplectic discretization", J. Comput. Phys., 197 (2): 585–609, Bibcode:2004JCoPh.197..585I, doi:10.1016/j.jcp.2003.12.010.
  • Moore, Brian; Reich, Sebastian (2003), "Backward error analysis for multi-symplectic integration methods", Numer. Math., 95 (4): 625–652, CiteSeerX 10.1.1.163.8683, doi:10.1007/s00211-003-0458-9, S2CID 9669195.