बेनेट स्वीकृति अनुपात

From Vigyanwiki

बेनेट स्वीकृति अनुपात (बीएआर) दो प्रणाली के मध्य मुक्त ऊर्जा में अंतर का अनुमान लगाने के लिए एक एल्गोरिदम है (सामान्यतः सिस्टम कंप्यूटर पर सिम्युलेटेड होंगे)। इसका विचार 1976 में चार्ल्स एच. बेनेट ने दिया था।[1]

प्रारंभिक

इस प्रकार प्रणाली को एक निश्चित सुपर (अर्थात गिब्स) स्टेट में लें। मेट्रोपोलिस मोंटे कार्लो वॉक करके उन स्टेट के परिदृश्य का प्रारूप लेना संभव है जिनके मध्य प्रणाली समीकरण का उपयोग करके चलता है

जहां ΔU = U(Statey) − U(Statex) स्थितिज ऊर्जा β = 1/kT में अंतर है, (T केल्विन में तापमान है जबकि k बोल्ट्जमैन स्थिरांक है) और मेट्रोपोलिस कार्य है। परिणामी स्थितियों को तापमान T पर सुपर स्टेट के बोल्ट्जमैन वितरण के अनुसार प्रारूप लिया जाता है। वैकल्पिक रूप से यदि प्रणाली को कैनोनिकल समूह (जिसे एनवीटी समूह भी कहा जाता है) में गतिशील रूप से सिम्युलेटेड किया जाता है, तो सिम्युलेटेड प्रक्षेपवक्र के साथ परिणामी स्थितियों को इसी तरह वितरित किया जाता है। इस प्रकार प्रक्षेपवक्र के साथ औसत (किसी भी सूत्रीकरण में) कोण कोष्ठक द्वारा दर्शाया गया है

मान लीजिए कि इंटरेस्ट की दो सुपर स्टेट A और B दी गई हैं। हम मानते हैं कि उनके निकट एक सामान्य विन्यास समष्टि है, अर्थात, वह अपने सभी सूक्ष्म स्टेट को साझा करते हैं, किन्तु इनसे जुड़ी ऊर्जा (और इसलिए संभावनाएं) कुछ मापदंड में परिवर्तन के कारण भिन्न होती हैं (जैसे कि निश्चित इंटरैक्शन की शक्ति) संबोधित किया जाने वाला मूल प्रश्न यह है कि दो सुपर स्टेट के मध्य जाने पर हेल्महोल्ट्ज़ मुक्त ऊर्जा परिवर्तन (ΔF = FB - FA) की गणना दोनों समूहों में प्रारूप से कैसे की जा सकती है? मुक्त ऊर्जा में गतिज ऊर्जा भाग विभिन्न अवस्थाओं के मध्य समान होता है इसलिए इसे नजरअंदाज किया जा सकता है। इस प्रकार इसके अतिरिक्त गिब्स मुक्त ऊर्जा एनपीटी समूह से मेल खाती है।

सामान्य स्थिति

इस प्रकार बेनेट दर्शाता है कि प्रत्येक कार्य f के लिए नियम (जो अनिवार्य रूप से विस्तृत संतुलन की स्थिति है) को संतुष्ट करती है और प्रत्येक ऊर्जा ऑफसेट C के लिए स्पष्ट संबंध होता है

जहां UA और UB समान विन्यास की संभावित ऊर्जा हैं जिनकी गणना क्रमशः संभावित कार्य A (जब प्रणाली सुपरस्टेट A में है) और संभावित कार्य B (जब प्रणाली सुपरस्टेट B में है) का उपयोग करके की जाती है।

मूल स्थिति

इस प्रकार ऊपर परिभाषित मेट्रोपोलिस कार्य को F के लिए प्रतिस्थापित करना (जो विस्तृत संतुलन स्थिति को संतुष्ट करता है), और C को शून्य पर सेट करता है

इस सूत्रीकरण का लाभ (इसकी समानता के अतिरिक्त) यह है कि इसकी गणना प्रत्येक विशिष्ट समूह में दो सिमुलेशन किए बिना की जा सकती है। वास्तव में एक अतिरिक्त प्रकार के "संभावित स्विचिंग" मेट्रोपोलिस ट्रायल मूव (प्रत्येक निश्चित संख्या में चरण) को परिभाषित करना संभव है, जैसे कि मिश्रित संयोजन से एकल प्रारूप गणना के लिए पर्याप्त है।

सबसे उत्तम स्थिति

इस प्रकार बेनेट ने पता लगाया कि ΔF के लिए कौन C विशिष्ट अभिव्यक्ति किसी दिए गए सिमुलेशन समय के लिए सबसे छोटी मानक त्रुटि उत्पन्न करने के स्थिति में सबसे उत्तम है। वह दिखाता है कि सबसे अच्छा विकल्प लेना है

  1. , जो मूलतः फर्मी-डिराक सांख्यिकी या फर्मी-डिराक वितरण है (वास्तव में विस्तृत संतुलन स्थिति को संतुष्ट करता है)।
  2. निस्संदेह यह मान ज्ञात नहीं है (यह वही है जिसकी गणना करने की प्रयास की जा रही है), किन्तु इसे स्वसंगत विधि से चयन किया जा सकता है।

दक्षता के लिए आवश्यक कुछ मान्यताएँ निम्नलिखित हैं:

  1. दो सुपर स्टेट के घनत्व (उनके सामान्य विन्यास समष्टि में) में बड़ा अतिव्यापन होना चाहिए। अन्यथा, A और B के मध्य सुपर स्टेट की श्रृंखला की आवश्यकता हो सकती है, जिससे प्रत्येक दो निरंतर सुपर स्टेट का अतिव्यापन पर्याप्त होता है।
  2. इस प्रकार प्रारूप का आकार बड़ा होना चाहिए विशेष रूप से चूंकि क्रमिक स्थिति सहसंबद्ध होती हैं इसलिए सिमुलेशन समय सहसंबंध समय से अधिक बड़ा होना चाहिए।
  3. दोनों संयोजनों को अनुकरण करने की निवेश प्राय: समान होनी चाहिए - और पुनः, वास्तव में, प्रणाली को दोनों सुपर स्टेट में प्राय: समान रूप से प्रारूप किया जाता है। अन्यथा, C के लिए इष्टतम अभिव्यक्ति को संशोधित किया गया है, और प्रारूप को दो समूहों के लिए समान समय (समय चरणों की समान संख्या के अतिरिक्त) समर्पित करना चाहिए।

मल्टीस्टेट बेनेट स्वीकृति अनुपात

मल्टीस्टेट बेनेट स्वीकृति अनुपात (एमबीएआर) बेनेट स्वीकृति अनुपात का सामान्यीकरण है जो विभिन्न सुपर स्टेट की (सापेक्ष) मुक्त ऊर्जा की गणना करता है। इस प्रकार जब केवल दो सुपर स्टेट सम्मिलित होते हैं तो यह अनिवार्य रूप से बीएआर पद्धति तक सीमित हो जाता है।

अन्य पद्धतियों से संबंध

विक्षोभ सिद्धांत विधि

इस विधि को मुक्त ऊर्जा विक्षोभ (या एफईपी) भी कहा जाता है, इसमें केवल स्थिति A से प्रारूपीकरण सम्मिलित है। इसके लिए आवश्यक है कि सुपर स्टेट B के सभी उच्च संभावना विन्यास सुपर स्टेट A के उच्च संभावना विन्यास में समाहित हों, जो कि ऊपर बताई गई अतिव्यापन स्थिति की तुलना में बहुत अधिक कठोर आवश्यकता है।

स्पष्ट (अनंत क्रम) परिणाम

या

यह स्पष्ट परिणाम सामान्य बीएआर विधि से प्राप्त किया जा सकता है, (उदाहरण के लिए) सीमा में मेट्रोपोलिस कार्य का उपयोग करके प्राप्त किया जा सकता है। वास्तव में उस स्थिति में, उपरोक्त सामान्य स्थिति अभिव्यक्ति का प्रत्येक 1 की ओर प्रवृत्त होता है जबकि अंश का प्रवणता की ओर होता है। चूंकि, परिभाषाओं से प्रत्यक्ष व्युत्पत्ति अधिक प्रत्यक्ष है।

दूसरा क्रम (अनुमानित) परिणाम

यह मानते हुए कि और टेलर ने दूसरे स्पष्ट विक्षोभ सिद्धांत की अभिव्यक्ति को दूसरे क्रम में विस्तारित करते हुए, सन्निकटन प्राप्त किया जाता है

ध्यान दें कि पहला पद ऊर्जा अंतर का अपेक्षित मान है, जबकि दूसरा अनिवार्य रूप से इसका विचरण है।

प्रथम कोटि की असमानताएँ

स्पष्ट विक्षोभ विश्लेषण परिणाम में दिखाई देने वाले लॉग कार्य की उत्तलता का उपयोग, जेन्सेन की असमानता के साथ, रैखिक स्तर में असमानता देता है; इस प्रकार समूह B के अनुरूप परिणाम के साथ संयुक्त होने पर हेल्महोल्त्ज़ मुक्त ऊर्जा या बोगोलीउबोव असमानता का निम्नलिखित संस्करण प्राप्त होता है |

ध्यान दें कि असमानता दूसरे क्रम के परिणाम में (धनात्मक) विचरण पद के गुणांक के ऋणात्मक चिह्न से सहमत है।

थर्मोडायनामिक समाकलन विधि

एक सतत मापदंड के आधार पर संभावित ऊर्जा का स्पष्ट परिणाम है।

किसी के निकट स्पष्ट परिणाम होता है इसे या तो प्रत्यक्ष परिभाषाओं से सत्यापित किया जा सकता है या उपरोक्त गिब्स-बोगोलीबोव असमानताओं की सीमा से देखा जा सकता है जब लिख सकते हैं।

जो थर्मोडायनामिक समाकलन (या टीआई) परिणाम है। इसका अनुमान स्टेट A और B के मध्य की सीमा को λ के विभिन्न मूल्यों में विभाजित करके लगाया जा सकता है, इस प्रकार जिस पर अपेक्षित मान का अनुमान लगाया जाता है, और संख्यात्मक समाकलन किया जाता है।

कार्यान्वयन

इस प्रकार बेनेट स्वीकृति अनुपात पद्धति आधुनिक आणविक गतिशीलता प्रणाली, जैसे ग्रोमैक, में प्रयुक्त की जाती है। एमबीएआर और बीएआर के लिए पायथन-बेस्ड कोड [2] पर डाउनलोड के लिए उपलब्ध है।

यह भी देखें

  • पैरलल टेम्परिंग

संदर्भ

  1. Charles H. Bennett (1976) Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics 22 : 245–268 [1]


बाहरी संबंध