बलोच का प्रमेय

From Vigyanwiki
सिलिकॉन जालक में बलोच अवस्था के वर्ग मापांक की आइसोसतह
ठोस रेखा: आयाम में विशिष्ट बलोच अवस्था के वास्तविक भाग का योजनाबद्ध। बिंदीदार रेखा कारक से है eik·r. प्रकाश वृत्त परमाणुओं का प्रतिनिधित्व करते हैं।

संघनित पदार्थ भौतिकी में, बलोच के प्रमेय में कहा गया है कि आवधिक क्षमता में श्रोडिंगर समीकरण या समय-स्वतंत्र समीकरण या श्रोडिंगर समीकरण के समाधान आवधिक कार्य द्वारा संशोधित समतल तरंग का रूप लेते हैं। प्रमेय का नाम भौतिक विज्ञानी फ़ेलिक्स बलोच के नाम पर रखा गया है, जिन्होंने 1929 में प्रमेय की खोज की थी।[1] गणितीय रूप से, वह लिखे गए हैं[2]

Bloch function


जहां स्थिति है, तरंग कार्य है, क्रिस्टल के समान आवधिकता वाला आवधिक कार्य है, तरंग सदिश क्रिस्टल गति सदिश है, e यूलर की संख्या है, और काल्पनिक इकाई है.

इस रूप के कार्यों को बलोच कार्यों या बलोच अवस्थाओं के रूप में जाना जाता है, और क्रिस्टलीय ठोस पदार्थों में तरंग कार्यों या इलेक्ट्रॉनों की अवस्थाओं के लिए उपयुक्त आधार के रूप में कार्य करते हैं।

स्विस भौतिक विज्ञानी फेलिक्स बलोच के नाम पर, बलोच कार्यों के संदर्भ में इलेक्ट्रॉनों का वर्णन, जिसे बलोच इलेक्ट्रॉन (या कम अधिकांशत: बलोच तरंगें) कहा जाता है, इलेक्ट्रॉनिक बैंड संरचनाओं की अवधारणा को रेखांकित करता है।

इन आइजनस्टेट्स को उपस्क्रिप्ट के साथ के रूप में लिखा गया है, जहां भिन्न सूचकांक है, जिसे बैंड इंडेक्स कहा जाता है, जो उपस्थित है क्योंकि ही के साथ अनेक भिन्न -भिन्न तरंग कार्य हैं (प्रत्येक का भिन्न आवधिक घटक है) . बैंड के अंदर (अथार्त , निश्चित के लिए के साथ निरंतर परिवर्तन होता है, जैसा कि इसकी ऊर्जा में होता है। इसके अतिरिक्त , केवल निरंतर पारस्परिक जालक सदिश , या, तक अद्वितीय है। इसलिए, तरंग सदिश को व्यापकता के हानि के बिना पारस्परिक जालक के पहले ब्रिलोइन क्षेत्र तक सीमित किया जा सकता है।

अनुप्रयोग और परिणाम

प्रयोज्यता

बलोच के प्रमेय का सबसे समान्य उदाहरण क्रिस्टल में इलेक्ट्रॉनों का वर्णन करना है, विशेष रूप से क्रिस्टल के इलेक्ट्रॉनिक गुणों, जैसे इलेक्ट्रॉनिक बैंड संरचना को चिह्नित करने में है चूँकि, बलोच-वेव विवरण समान्य रूप से किसी आवधिक माध्यम में किसी भी तरंग जैसी घटना पर उपस्थित होता है। उदाहरण के लिए, विद्युत चुंबकत्व में आवधिक परावैद्युत संरचना फोटोनिक क्रिस्टल की ओर ले जाती है, और आवधिक ध्वनिक माध्यम ध्वन्यात्मक क्रिस्टल की ओर ले जाती है। इसका व्यवहार समान्यत: विवर्तन के गतिशील सिद्धांत के विभिन्न रूपों में किया जाता है।

तरंग सदिश

बलोच वेव कार्य (नीचे) को आवधिक कार्य (शीर्ष) और प्लेन-वेव (केंद्र) के उत्पाद में विभाजित किया जा सकता है। बाईं ओर और दाईं ओर तरंग सदिश को सम्मिलित करते हुए दो भिन्न -भिन्न तरीकों से विभाजित ही बलोच स्थिति का प्रतिनिधित्व करते हैं k1 (बाएं) या k2 (सही)। के अंतर (k1k2) व्युत्क्रम जालक सदिश है। सभी कथानकों में, नीला वास्तविक भाग है और लाल काल्पनिक भाग है।

मान लीजिए कि इलेक्ट्रॉन बलोच अवस्था में है


जहां u क्रिस्टल जालक के समान आवधिकता के साथ आवर्त है। इलेक्ट्रॉन की वास्तविक क्वांटम स्थिति पूरी तरह से द्वारा निर्धारित होती है, सीधे k या u से नहीं। यह महत्वपूर्ण है क्योंकि k और u अद्वितीय नहीं हैं। विशेष रूप से, यदि को k का उपयोग करके उपरोक्त के रूप में लिखा जा सकता है, तो इसे (k + K) का उपयोग करके भी लिखा जा सकता है, जहां K कोई व्युत्क्रम जालक सदिश है (दाईं ओर चित्र देखें)। इसलिए, तरंग सदिश जो पारस्परिक जालक सदिश से भिन्न होते हैं, समतुल्य होते हैं, इस अर्थ में कि वे बलोच अवस्थाओ के समान सेट की विशेषता रखते हैं।

पहला ब्रिलौइन ज़ोन इस गुण के साथ k के मानों का प्रतिबंधित सेट है कि उनमें से कोई भी दो समकक्ष नहीं हैं, फिर भी प्रत्येक संभावित k पहले ब्रिलौइन ज़ोन में (और केवल एक) सदिश के समान है। इसलिए, यदि हम k को पहले ब्रिलॉइन ज़ोन तक सीमित रखते हैं, तो प्रत्येक बलोच अवस्था में अद्वितीय k होता है। इसलिए, पहले ब्रिलोइन ज़ोन का उपयोग अधिकांशत: सभी बलोच अवस्थाओ को बिना अतिरेक के चित्रित करने के लिए किया जाता है, उदाहरण के लिए बैंड संरचना में, और इसका उपयोग अनेक गणनाओं में ही कारण से किया जाता है।

जब k को कम किए गए प्लैंक स्थिरांक से गुणा किया जाता है, तो यह इलेक्ट्रॉन के क्रिस्टल संवेग के समान हो जाता है। इससे संबंधित, इलेक्ट्रॉन के समूह वेग की गणना इस आधार पर की जा सकती है कि बलोच अवस्था की ऊर्जा k के साथ कैसे परिवर्तित करती है; अधिक जानकारी के लिए क्रिस्टल मोमेंटम देखें।

विस्तृत उदाहरण

विस्तृत उदाहरण के लिए जिसमें बलोच के प्रमेय के परिणामों पर विशिष्ट स्थिति में काम किया जाता है, लेख एक-आयामी जालक (आवधिक क्षमता) में कण देखें।

प्रमेय

बलोच का प्रमेय इस प्रकार है:

आदर्श क्रिस्टल में इलेक्ट्रॉनों के लिए, निम्नलिखित दो गुणों के साथ तरंग कार्यों का आधार (रैखिक बीजगणित) होता है:

  • इनमें से प्रत्येक तरंग कार्य ऊर्जा आइजेनस्टेट है,
  • इनमें से प्रत्येक तरंग कार्य बलोच अवस्था है, जिसका अर्थ है कि इस तरंग कार्य को के रूप में लिखा जा सकता है
    जहाँ u(r) में क्रिस्टल की परमाणु संरचना के समान ही आवधिकता होती है, जैसे कि


प्रमाण

जालक आवधिकता का उपयोग करना[3]

प्रारंभिक: क्रिस्टल समरूपता, जालक , और पारस्परिक जालक

क्रिस्टल की परिभाषित गुण ट्रांसलेशनल समरूपता है, जिसका अर्थ है कि यदि क्रिस्टल को उचित मात्रा में स्थानांतरित किया जाता है, तो यह अपने सभी परमाणुओं के साथ ही स्थान पर समाप्त हो जाता है। ( परिमित आकार के क्रिस्टल में पूर्ण अनुवादात्मक समरूपता नहीं हो सकती है, किंतु यह उपयोगी सन्निकटन है।)

त्रि-आयामी क्रिस्टल में तीन प्राचीन जालक सदिश a1, a2, a3 होते हैं . यदि क्रिस्टल को इन तीन सदिशो में से किसी एक, या उनके रूप के संयोजन द्वारा स्थानांतरित किया जाता है

जहाँ ni तीन पूर्णांक हैं, तो परमाणु उन्हीं स्थानों के समूह में समाप्त हो जाते हैं जहां से वे प्रारंभ हुए थे।

प्रमाण में अन्य सहायक घटक पारस्परिक जालक सदिश है। ये तीन सदिश b1, b2, b3 (व्युत्क्रम लंबाई की इकाइयों के साथ) हैं, इस गुण के साथ कि ai · bi = 2π, लेकिन ai · bj = 0 जब iij। (bi के सूत्र के लिए, पारस्परिक जालक सदिश देखें।)

अनुवाद ऑपरेटरों के बारे में लेम्मा\

माना अनुवाद ऑपरेटर को दर्शाता है जो प्रत्येक तरंग कार्य को n1a1 + n2a2 + n3a3 की मात्रा से परिवर्तित करता है (जैसा कि ऊपर है, nj पूर्णांक हैं)। निम्नलिखित तथ्य बलोच प्रमेय के प्रमाण के लिए सहायक है:

Lemma — यदि एक वेव फ़ंक्शन ψ सभी अनुवाद ऑपरेटरों (एक साथ) का एक eigenstate है, तो ψ एक बलोच अवस्था है।

Proof of Lemma

Assume that we have a wave function ψ which is an eigenstate of all the translation operators. As a special case of this,

for j = 1, 2, 3, where Cj are three numbers (the eigenvalues) which do not depend on r. It is helpful to write the numbers Cj in a different form, by choosing three numbers θ1, θ2, θ3 with e2πiθj = Cj:
Again, the θj are three numbers which do not depend on r. Define k = θ1b1 + θ2b2 + θ3b3, where bj are the reciprocal lattice vectors (see above). Finally, define
Then
This proves that u has the periodicity of the lattice. Since that proves that the state is a Bloch state.

अंततः, हम बलोच प्रमेय के मुख्य प्रमाण के लिए तैयार हैं जो इस प्रकार है।

जैसा कि ऊपर दिया गया है, मान लीजिए कि अनुवाद ऑपरेटर को दर्शाता है जो प्रत्येक तरंग कार्य को n1a1 + n2a2 + n3a3 की मात्रा से बदलता है, जहां ni पूर्णांक हैं। क्योंकि क्रिस्टल में ट्रांसलेशनल समरूपता होती है, यह ऑपरेटर हैमिल्टनियन ऑपरेटर के साथ आवागमन करता है। इसके अतिरिक्त , ऐसा प्रत्येक अनुवाद ऑपरेटर दूसरे के साथ आवागमन करता है। इसलिए, हैमिल्टनियन ऑपरेटर का साथ ईजेनबेसिस है और हर संभव ऑपरेटर। यही वह आधार है जिसकी हम खोज कर रहे हैं। इस आधार पर तरंग कार्य ऊर्जा ईजेनस्टेट्स हैं (क्योंकि वे हैमिल्टनियन के ईजेनस्टेट्स हैं), और वे बलोच अवस्था भी हैं (क्योंकि वे अनुवाद ऑपरेटरों के ईजेनस्टेट्स हैं; ऊपर लेम्मा देखें)।

ऑपरेटरों का उपयोग करना[4]

हम अनुवाद ऑपरेटर को परिभाषित करते हैं

साथ
हम माध्य आवधिक क्षमता की परिकल्पना का उपयोग करते हैं
और हैमिल्टनियन के साथ स्वतंत्र इलेक्ट्रॉन सन्निकटन
यह देखते हुए कि हैमिल्टनियन अनुवाद के लिए अपरिवर्तनीय है, इसे अनुवाद ऑपरेटर के साथ स्थानांतरित किया जाएगा
और दोनों ऑपरेटरों के पास आईजेनफ़ंक्शंस का सामान्य सेट होगा।

इसलिए हम अनुवाद ऑपरेटर के आईजेन-फ़ंक्शंस को देखना प्रारंभ करते हैं:

दिया गया एडिटिव ऑपरेटर है
यदि हम यहां आईजेनवैल्यू समीकरण को प्रतिस्थापित करते हैं और दोनों पक्षों को विभाजित करते हैं अपने पास
के लिए यह सच है

जहाँ

यदि हम आयतन V की एकल प्राचीन सेल पर सामान्यीकरण की स्थिति का उपयोग करते हैं

और इसलिए
और
जहाँ . आखिरकार,
जो कि बलोच तरंग के लिए सत्य है अर्थात साथ


समूह सिद्धांत का उपयोग करना

Proof with character theory[5]: 345–348 

All translations are unitary and abelian. Translations can be written in terms of unit vectors

We can think of these as commuting operators
where

The commutativity of the operators gives three commuting cyclic subgroups (given they can be generated by only one element) which are infinite, 1-dimensional and abelian. All irreducible representations of abelian groups are one dimensional.[6]

Given they are one dimensional the matrix representation and the character are the same. The character is the representation over the complex numbers of the group or also the trace of the representation which in this case is a one dimensional matrix. All these subgroups, given they are cyclic, they have characters which are appropriate roots of unity. In fact they have one generator which shall obey to , and therefore the character . Note that this is straightforward in the finite cyclic group case but in the countable infinite case of the infinite cyclic group (i.e. the translation group here) there is a limit for where the character remains finite.

Given the character is a root of unity, for each subgroup the character can be then written as

If we introduce the Born–von Karman boundary condition on the potential:

where L is a macroscopic periodicity in the direction that can also be seen as a multiple of where

This substituting in the time independent Schrödinger equation with a simple effective Hamiltonian

induces a periodicity with the wave function:

And for each dimension a translation operator with a period L

From here we can see that also the character shall be invariant by a translation of :

and from the last equation we get for each dimension a periodic condition:
where is an integer and

The wave vector identify the irreducible representation in the same manner as , and is a macroscopic periodic length of the crystal in direction . In this context, the wave vector serves as a quantum number for the translation operator.

We can generalize this for 3 dimensions and the generic formula for the wave function becomes:

i.e. specializing it for a translation
and we have proven Bloch’s theorem.

समूह सिद्धांत तकनीकीताओं के अतिरिक्त यह प्रमाण दिलचस्प है क्योंकि यह स्पष्ट हो जाता है कि उन समूहों के लिए बलोच प्रमेय को कैसे सामान्यीकृत किया जाए जो केवल अनुवाद नहीं हैं।

यह समान्यत: अंतरिक्ष समूह के लिए किया जाता है जो अनुवाद और बिंदु समूह का संयोजन होते हैं और इसका उपयोग एफसीसी या बीसीसी जैसी विशिष्ट क्रिस्टल समूह समरूपता और अंततः अतिरिक्त ब्राविस जालक को देखते हुए बैंड संरचना, स्पेक्ट्रम और क्रिस्टल की विशिष्ट गर्मी की गणना के लिए किया जाता है। .[5]: 365–367 [7]

इस प्रमाण में यह देखना भी संभव है कि यह कैसे महत्वपूर्ण है कि अतिरिक्त बिंदु समूह प्रभावी क्षमता में समरूपता द्वारा संचालित होता है किंतु यह हैमिल्टन के साथ परिवर्तित होगा।

बलोच प्रमेय के सामान्यीकृत संस्करण में, फूरियर ट्रांसफॉर्म, अथार्त तरंग कार्य विस्तार, भिन्न फूरियर ट्रांसफॉर्म से सामान्यीकृत हो जाता है जो केवल चक्रीय समूहों के लिए उपस्थित होता है और इसलिए तरंग कार्य के परिमित समूहों असतत फूरियर रूपांतरण में अनुवाद होता है जहां चरित्र सिद्धांत विशिष्ट परिमित बिंदु समूह से दिए गए हैं।

यहां यह भी देखना संभव है कि कैसे चरित्र सिद्धांत (अघुलनशील अभ्यावेदन के अपरिवर्तनीय के रूप में) को स्वयं अघुलनशील अभ्यावेदन के अतिरिक्त मौलिक निर्माण खंड के रूप में माना जा सकता है।[8]


वेग और प्रभावी द्रव्यमान

यदि हम समय-स्वतंत्र श्रोडिंगर समीकरण को बलोच तरंग कार्य पर उपस्थित करते हैं तो हमें प्राप्त होता है

सीमा नियमों के साथ
यह देखते हुए कि इसे सीमित मात्रा में परिभाषित किया गया है, हम आईजेनवैल्यू ​​के अनंत परिवार की अपेक्षा करते हैं; यहां हैमिल्टनियन का पैरामीटर है और इसलिए हम निरंतर पैरामीटर पर निर्भर आइगेनवैल्यू के "निरंतर वर्ग" पर पहुंचते हैं और इस प्रकार इलेक्ट्रॉनिक बैंड संरचना की मूल अवधारणा पर पहुंचते हैं।

Proof[9]

We remain with

इससे पता चलता है कि प्रभावी गति को दो भागों से मिलकर कैसे देखा जा सकता है,

मानक गति और क्रिस्टल गति . अधिक स्पष्ट रूप से क्रिस्टल संवेग संवेग नहीं है, किंतु यह संवेग को उसी तरह प्रदर्शित करता है जैसे न्यूनतम युग्मन में विद्युत चुम्बकीय संवेग, और संवेग के विहित परिवर्तन के भाग के रूप में होता है।

प्रभावी वेग के लिए हम प्राप्त कर सकते हैं

mean velocity of a Bloch electron

Proof[10]

We evaluate the derivatives and given they are the coefficients of the following expansion in q where q is considered small with respect to k

Given are eigenvalues of We can consider the following perturbation problem in q:
Perturbation theory of the second order states that
To compute to linear order in q
where the integrations are over a primitive cell or the entire crystal, given if the integral
is normalized across the cell or the crystal.

We can simplify over q to obtain

and we can reinsert the complete wave functions

प्रभावी द्रव्यमान के लिए (ठोस अवस्था भौतिकी)

effective mass theorem

Proof[10]

The second order term

Again with
Eliminating and we have the theorem

दाईं ओर की मात्रा को कारक से गुणा करने पर प्रभावी द्रव्यमान टेंसर कहा जाता है[11] और हम इसका उपयोग बैंड में आवेश वाहक के लिए अर्ध-मौलिक समीकरण लिखने के लिए कर सकते हैं[12]

Second order semi-classical equation of motion for a charge carrier in a band

जहाँ त्वरण है. यह समीकरण पदार्थ तरंग प्रकार के सन्निकटन के अनुरूप है[13]

First order semi-classical equation of motion for electron in a band

सहज व्याख्या के रूप में, पिछले दोनों समीकरण औपचारिक रूप से मिलते-जुलते हैं और न्यूटन के गति के नियमों के साथ अर्ध-मौलिक सादृश्य में हैं या बाहरी लोरेंत्ज़ बल में न्यूटन का दूसरा नियम है।

इतिहास और संबंधित समीकरण

बलोच अवस्था की अवधारणा 1928 में फेलिक्स बलोच द्वारा विकसित की गई थी[14] क्रिस्टलीय ठोस पदार्थों में इलेक्ट्रॉनों के संचालन का वर्णन करने के लिए। चूँकि , वही अंतर्निहित गणित अनेक बार स्वतंत्र रूप से भी खोजा गया था: जॉर्ज विलियम हिल (1877) द्वारा,[15] गैस्टन फ़्लोक्वेट (1883),[16] और अलेक्जेंडर ल्यपुनोव (1892)[17] परिणामस्वरूप, विभिन्न प्रकार के नामकरण समान्य हैं: सामान्य अंतर समीकरणों पर उपस्थित होने पर, इसे फ़्लोक्वेट सिद्धांत (या कभी-कभी लायपुनोव-फ्लोक्वेट प्रमेय) कहा जाता है। एक-आयामी आवधिक संभावित समीकरण का सामान्य रूप हिल अंतर समीकरण हिल का समीकरण है:[18]


जहाँ f(t) आवधिक क्षमता है. विशिष्ट आवधिक एक-आयामी समीकरणों में क्रोनिग-पेनी मॉडल और मैथ्यू फ़ंक्शन या मैथ्यू का समीकरण सम्मिलित हैं।

गणितीय रूप से बलोच के प्रमेय की व्याख्या जालक समूह के एकात्मक वर्णों के संदर्भ में की जाती है, और इसे वर्णक्रमीय ज्यामिति पर उपस्थित किया जाता है।[19][20][21]


यह भी देखें

संदर्भ

  1. Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 52(7), 555-600.
  2. Kittel, Charles (1996). Introduction to Solid State Physics. New York: Wiley. ISBN 0-471-14286-7.
  3. Ashcroft & Mermin 1976, p. 134
  4. Ashcroft & Mermin 1976, p. 137
  5. 5.0 5.1 Dresselhaus, M. S. (2002). "Applications of Group Theory to the Physics of Solids" (PDF). MIT. Archived (PDF) from the original on 1 November 2019. Retrieved 12 September 2020.
  6. Roy, Ricky (May 2, 2010). "Representation Theory" (PDF). University of Puget Sound.
  7. The vibrational spectrum and specific heat of a face centered cubic crystal, Robert B. Leighton [1]
  8. Group Representations and Harmonic Analysis from Euler to Langlands, Part II [2]
  9. Ashcroft & Mermin 1976, p. 140
  10. 10.0 10.1 Ashcroft & Mermin 1976, p. 765 Appendix E
  11. Ashcroft & Mermin 1976, p. 228
  12. Ashcroft & Mermin 1976, p. 229
  13. Ashcroft & Mermin 1976, p. 227
  14. Felix Bloch (1928). "Über die Quantenmechanik der Elektronen in Kristallgittern". Zeitschrift für Physik (in Deutsch). 52 (7–8): 555–600. Bibcode:1929ZPhy...52..555B. doi:10.1007/BF01339455. S2CID 120668259.
  15. George William Hill (1886). "चंद्र उपभू की गति के भाग पर जो सूर्य और चंद्रमा की औसत गति का एक कार्य है". Acta Math. 8: 1–36. doi:10.1007/BF02417081. This work was initially published and distributed privately in 1877.
  16. Gaston Floquet (1883). "Sur les équations différentielles linéaires à coefficients périodiques". Annales Scientifiques de l'École Normale Supérieure. 12: 47–88. doi:10.24033/asens.220.
  17. Alexander Mihailovich Lyapunov (1992). गति की स्थिरता की सामान्य समस्या. London: Taylor and Francis. Translated by A. T. Fuller from Edouard Davaux's French translation (1907) of the original Russian dissertation (1892).
  18. Magnus, W; Winkler, S (2004). पहाड़ी का समीकरण. Courier Dover. p. 11. ISBN 0-486-49565-5.
  19. Kuchment, P.(1982), Floquet theory for partial differential equations, RUSS MATH SURV., 37, 1–60
  20. Katsuda, A.; Sunada, T (1987). "एक कॉम्पैक्ट रीमैन सतह में होमोलॉजी और बंद जियोडेसिक्स". Amer. J. Math. 110 (1): 145–156. doi:10.2307/2374542. JSTOR 2374542.
  21. Kotani M; Sunada T. (2000). "अल्बानीज़ मानचित्र और हीट कर्नेल के लिए एक ऑफ विकर्ण लंबे समय तक स्पर्शोन्मुख". Comm. Math. Phys. 209 (3): 633–670. Bibcode:2000CMaPh.209..633K. doi:10.1007/s002200050033. S2CID 121065949.


अग्रिम पठन